File size: 6,456 Bytes
9ad7093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <atomic>
#include <cassert>
#include <cstdint>
#include <vector>
#include "arrow/type_fwd.h"
#include "arrow/util/macros.h"
namespace arrow::internal {
struct ChunkLocation {
/// \brief Index of the chunk in the array of chunks
///
/// The value is always in the range `[0, chunks.size()]`. `chunks.size()` is used
/// to represent out-of-bounds locations.
int64_t chunk_index = 0;
/// \brief Index of the value in the chunk
///
/// The value is undefined if chunk_index >= chunks.size()
int64_t index_in_chunk = 0;
};
/// \brief An utility that incrementally resolves logical indices into
/// physical indices in a chunked array.
struct ARROW_EXPORT ChunkResolver {
private:
/// \brief Array containing `chunks.size() + 1` offsets.
///
/// `offsets_[i]` is the starting logical index of chunk `i`. `offsets_[0]` is always 0
/// and `offsets_[chunks.size()]` is the logical length of the chunked array.
std::vector<int64_t> offsets_;
/// \brief Cache of the index of the last resolved chunk.
///
/// \invariant `cached_chunk_ in [0, chunks.size()]`
mutable std::atomic<int64_t> cached_chunk_;
public:
explicit ChunkResolver(const ArrayVector& chunks) noexcept;
explicit ChunkResolver(const std::vector<const Array*>& chunks) noexcept;
explicit ChunkResolver(const RecordBatchVector& batches) noexcept;
ChunkResolver(ChunkResolver&& other) noexcept;
ChunkResolver& operator=(ChunkResolver&& other) noexcept;
ChunkResolver(const ChunkResolver& other) noexcept;
ChunkResolver& operator=(const ChunkResolver& other) noexcept;
/// \brief Resolve a logical index to a ChunkLocation.
///
/// The returned ChunkLocation contains the chunk index and the within-chunk index
/// equivalent to the logical index.
///
/// \pre index >= 0
/// \post location.chunk_index in [0, chunks.size()]
/// \param index The logical index to resolve
/// \return ChunkLocation with a valid chunk_index if index is within
/// bounds, or with chunk_index == chunks.size() if logical index is
/// `>= chunked_array.length()`.
inline ChunkLocation Resolve(int64_t index) const {
const auto cached_chunk = cached_chunk_.load(std::memory_order_relaxed);
const auto chunk_index =
ResolveChunkIndex</*StoreCachedChunk=*/true>(index, cached_chunk);
return {chunk_index, index - offsets_[chunk_index]};
}
/// \brief Resolve a logical index to a ChunkLocation.
///
/// The returned ChunkLocation contains the chunk index and the within-chunk index
/// equivalent to the logical index.
///
/// \pre index >= 0
/// \post location.chunk_index in [0, chunks.size()]
/// \param index The logical index to resolve
/// \param hint ChunkLocation{} or the last ChunkLocation returned by
/// this ChunkResolver.
/// \return ChunkLocation with a valid chunk_index if index is within
/// bounds, or with chunk_index == chunks.size() if logical index is
/// `>= chunked_array.length()`.
inline ChunkLocation ResolveWithChunkIndexHint(int64_t index,
ChunkLocation hint) const {
assert(hint.chunk_index < static_cast<int64_t>(offsets_.size()));
const auto chunk_index =
ResolveChunkIndex</*StoreCachedChunk=*/false>(index, hint.chunk_index);
return {chunk_index, index - offsets_[chunk_index]};
}
private:
template <bool StoreCachedChunk>
inline int64_t ResolveChunkIndex(int64_t index, int64_t cached_chunk) const {
// It is common for algorithms sequentially processing arrays to make consecutive
// accesses at a relatively small distance from each other, hence often falling in the
// same chunk.
//
// This is guaranteed when merging (assuming each side of the merge uses its
// own resolver), and is the most common case in recursive invocations of
// partitioning.
const auto num_offsets = static_cast<int64_t>(offsets_.size());
const int64_t* offsets = offsets_.data();
if (ARROW_PREDICT_TRUE(index >= offsets[cached_chunk]) &&
(cached_chunk + 1 == num_offsets || index < offsets[cached_chunk + 1])) {
return cached_chunk;
}
// lo < hi is guaranteed by `num_offsets = chunks.size() + 1`
const auto chunk_index = Bisect(index, offsets, /*lo=*/0, /*hi=*/num_offsets);
if constexpr (StoreCachedChunk) {
assert(chunk_index < static_cast<int64_t>(offsets_.size()));
cached_chunk_.store(chunk_index, std::memory_order_relaxed);
}
return chunk_index;
}
/// \brief Find the index of the chunk that contains the logical index.
///
/// Any non-negative index is accepted. When `hi=num_offsets`, the largest
/// possible return value is `num_offsets-1` which is equal to
/// `chunks.size()`. The is returned when the logical index is out-of-bounds.
///
/// \pre index >= 0
/// \pre lo < hi
/// \pre lo >= 0 && hi <= offsets_.size()
static inline int64_t Bisect(int64_t index, const int64_t* offsets, int64_t lo,
int64_t hi) {
// Similar to std::upper_bound(), but slightly different as our offsets
// array always starts with 0.
auto n = hi - lo;
// First iteration does not need to check for n > 1
// (lo < hi is guaranteed by the precondition).
assert(n > 1 && "lo < hi is a precondition of Bisect");
do {
const int64_t m = n >> 1;
const int64_t mid = lo + m;
if (index >= offsets[mid]) {
lo = mid;
n -= m;
} else {
n = m;
}
} while (n > 1);
return lo;
}
};
} // namespace arrow::internal
|