File size: 10,328 Bytes
0b5e147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "arrow/chunk_resolver.h"
#include "arrow/compare.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"

namespace arrow {

class Array;
class DataType;
class MemoryPool;
namespace stl {
template <typename T, typename V>
class ChunkedArrayIterator;
}  // namespace stl

/// \class ChunkedArray
/// \brief A data structure managing a list of primitive Arrow arrays logically
/// as one large array
///
/// Data chunking is treated throughout this project largely as an
/// implementation detail for performance and memory use optimization.
/// ChunkedArray allows Array objects to be collected and interpreted
/// as a single logical array without requiring an expensive concatenation
/// step.
///
/// In some cases, data produced by a function may exceed the capacity of an
/// Array (like BinaryArray or StringArray) and so returning multiple Arrays is
/// the only possibility. In these cases, we recommend returning a ChunkedArray
/// instead of vector of Arrays or some alternative.
///
/// When data is processed in parallel, it may not be practical or possible to
/// create large contiguous memory allocations and write output into them. With
/// some data types, like binary and string types, it is not possible at all to
/// produce non-chunked array outputs without requiring a concatenation step at
/// the end of processing.
///
/// Application developers may tune chunk sizes based on analysis of
/// performance profiles but many developer-users will not need to be
/// especially concerned with the chunking details.
///
/// Preserving the chunk layout/sizes in processing steps is generally not
/// considered to be a contract in APIs. A function may decide to alter the
/// chunking of its result. Similarly, APIs accepting multiple ChunkedArray
/// inputs should not expect the chunk layout to be the same in each input.
class ARROW_EXPORT ChunkedArray {
 public:
  ChunkedArray(ChunkedArray&&) = default;
  ChunkedArray& operator=(ChunkedArray&&) = default;

  /// \brief Construct a chunked array from a single Array
  explicit ChunkedArray(std::shared_ptr<Array> chunk)
      : ChunkedArray(ArrayVector{std::move(chunk)}) {}

  /// \brief Construct a chunked array from a vector of arrays and an optional data type
  ///
  /// The vector elements must have the same data type.
  /// If the data type is passed explicitly, the vector may be empty.
  /// If the data type is omitted, the vector must be non-empty.
  explicit ChunkedArray(ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);

  // \brief Constructor with basic input validation.
  static Result<std::shared_ptr<ChunkedArray>> Make(
      ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);

  /// \brief Create an empty ChunkedArray of a given type
  ///
  /// The output ChunkedArray will have one chunk with an empty
  /// array of the given type.
  ///
  /// \param[in] type the data type of the empty ChunkedArray
  /// \param[in] pool the memory pool to allocate memory from
  /// \return the resulting ChunkedArray
  static Result<std::shared_ptr<ChunkedArray>> MakeEmpty(
      std::shared_ptr<DataType> type, MemoryPool* pool = default_memory_pool());

  /// \return the total length of the chunked array; computed on construction
  int64_t length() const { return length_; }

  /// \return the total number of nulls among all chunks
  int64_t null_count() const { return null_count_; }

  /// \return the total number of chunks in the chunked array
  int num_chunks() const { return static_cast<int>(chunks_.size()); }

  /// \return chunk a particular chunk from the chunked array
  const std::shared_ptr<Array>& chunk(int i) const { return chunks_[i]; }

  /// \return an ArrayVector of chunks
  const ArrayVector& chunks() const { return chunks_; }

  /// \brief Construct a zero-copy slice of the chunked array with the
  /// indicated offset and length
  ///
  /// \param[in] offset the position of the first element in the constructed
  /// slice
  /// \param[in] length the length of the slice. If there are not enough
  /// elements in the chunked array, the length will be adjusted accordingly
  ///
  /// \return a new object wrapped in std::shared_ptr<ChunkedArray>
  std::shared_ptr<ChunkedArray> Slice(int64_t offset, int64_t length) const;

  /// \brief Slice from offset until end of the chunked array
  std::shared_ptr<ChunkedArray> Slice(int64_t offset) const;

  /// \brief Flatten this chunked array as a vector of chunked arrays, one
  /// for each struct field
  ///
  /// \param[in] pool The pool for buffer allocations, if any
  Result<std::vector<std::shared_ptr<ChunkedArray>>> Flatten(
      MemoryPool* pool = default_memory_pool()) const;

  /// Construct a zero-copy view of this chunked array with the given
  /// type. Calls Array::View on each constituent chunk. Always succeeds if
  /// there are zero chunks
  Result<std::shared_ptr<ChunkedArray>> View(const std::shared_ptr<DataType>& type) const;

  /// \brief Return the type of the chunked array
  const std::shared_ptr<DataType>& type() const { return type_; }

  /// \brief Return a Scalar containing the value of this array at index
  Result<std::shared_ptr<Scalar>> GetScalar(int64_t index) const;

  /// \brief Determine if two chunked arrays are equal.
  ///
  /// Two chunked arrays can be equal only if they have equal datatypes.
  /// However, they may be equal even if they have different chunkings.
  bool Equals(const ChunkedArray& other,
              const EqualOptions& opts = EqualOptions::Defaults()) const;
  /// \brief Determine if two chunked arrays are equal.
  bool Equals(const std::shared_ptr<ChunkedArray>& other,
              const EqualOptions& opts = EqualOptions::Defaults()) const;
  /// \brief Determine if two chunked arrays approximately equal
  bool ApproxEquals(const ChunkedArray& other,
                    const EqualOptions& = EqualOptions::Defaults()) const;

  /// \return PrettyPrint representation suitable for debugging
  std::string ToString() const;

  /// \brief Perform cheap validation checks to determine obvious inconsistencies
  /// within the chunk array's internal data.
  ///
  /// This is O(k*m) where k is the number of array descendents,
  /// and m is the number of chunks.
  ///
  /// \return Status
  Status Validate() const;

  /// \brief Perform extensive validation checks to determine inconsistencies
  /// within the chunk array's internal data.
  ///
  /// This is O(k*n) where k is the number of array descendents,
  /// and n is the length in elements.
  ///
  /// \return Status
  Status ValidateFull() const;

 protected:
  ArrayVector chunks_;
  std::shared_ptr<DataType> type_;
  int64_t length_;
  int64_t null_count_;

 private:
  template <typename T, typename V>
  friend class ::arrow::stl::ChunkedArrayIterator;
  internal::ChunkResolver chunk_resolver_;
  ARROW_DISALLOW_COPY_AND_ASSIGN(ChunkedArray);
};

namespace internal {

/// \brief EXPERIMENTAL: Utility for incremental iteration over contiguous
/// pieces of potentially differently-chunked ChunkedArray objects
class ARROW_EXPORT MultipleChunkIterator {
 public:
  MultipleChunkIterator(const ChunkedArray& left, const ChunkedArray& right)
      : left_(left),
        right_(right),
        pos_(0),
        length_(left.length()),
        chunk_idx_left_(0),
        chunk_idx_right_(0),
        chunk_pos_left_(0),
        chunk_pos_right_(0) {}

  bool Next(std::shared_ptr<Array>* next_left, std::shared_ptr<Array>* next_right);

  int64_t position() const { return pos_; }

 private:
  const ChunkedArray& left_;
  const ChunkedArray& right_;

  // The amount of the entire ChunkedArray consumed
  int64_t pos_;

  // Length of the chunked array(s)
  int64_t length_;

  // Current left chunk
  int chunk_idx_left_;

  // Current right chunk
  int chunk_idx_right_;

  // Offset into the current left chunk
  int64_t chunk_pos_left_;

  // Offset into the current right chunk
  int64_t chunk_pos_right_;
};

/// \brief Evaluate binary function on two ChunkedArray objects having possibly
/// different chunk layouts. The passed binary function / functor should have
/// the following signature.
///
///    Status(const Array&, const Array&, int64_t)
///
/// The third argument is the absolute position relative to the start of each
/// ChunkedArray. The function is executed against each contiguous pair of
/// array segments, slicing if necessary.
///
/// For example, if two arrays have chunk sizes
///
///   left: [10, 10, 20]
///   right: [15, 10, 15]
///
/// Then the following invocations take place (pseudocode)
///
///   func(left.chunk[0][0:10], right.chunk[0][0:10], 0)
///   func(left.chunk[1][0:5], right.chunk[0][10:15], 10)
///   func(left.chunk[1][5:10], right.chunk[1][0:5], 15)
///   func(left.chunk[2][0:5], right.chunk[1][5:10], 20)
///   func(left.chunk[2][5:20], right.chunk[2][:], 25)
template <typename Action>
Status ApplyBinaryChunked(const ChunkedArray& left, const ChunkedArray& right,
                          Action&& action) {
  MultipleChunkIterator iterator(left, right);
  std::shared_ptr<Array> left_piece, right_piece;
  while (iterator.Next(&left_piece, &right_piece)) {
    ARROW_RETURN_NOT_OK(action(*left_piece, *right_piece, iterator.position()));
  }
  return Status::OK();
}

}  // namespace internal
}  // namespace arrow