File size: 17,969 Bytes
b90def7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
#include <atomic>
#include <cstdint>
#include <limits>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "arrow/array/data.h"
#include "arrow/compute/expression.h"
#include "arrow/compute/type_fwd.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "arrow/type_fwd.h"
#include "arrow/util/macros.h"
#include "arrow/util/type_fwd.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace compute {
// It seems like 64K might be a good default chunksize to use for execution
// based on the experience of other query processing systems. The current
// default is not to chunk contiguous arrays, though, but this may change in
// the future once parallel execution is implemented
static constexpr int64_t kDefaultExecChunksize = UINT16_MAX;
/// \brief Context for expression-global variables and options used by
/// function evaluation
class ARROW_EXPORT ExecContext {
public:
// If no function registry passed, the default is used.
explicit ExecContext(MemoryPool* pool = default_memory_pool(),
::arrow::internal::Executor* executor = NULLPTR,
FunctionRegistry* func_registry = NULLPTR);
/// \brief The MemoryPool used for allocations, default is
/// default_memory_pool().
MemoryPool* memory_pool() const { return pool_; }
const ::arrow::internal::CpuInfo* cpu_info() const;
/// \brief An Executor which may be used to parallelize execution.
::arrow::internal::Executor* executor() const { return executor_; }
/// \brief The FunctionRegistry for looking up functions by name and
/// selecting kernels for execution. Defaults to the library-global function
/// registry provided by GetFunctionRegistry.
FunctionRegistry* func_registry() const { return func_registry_; }
// \brief Set maximum length unit of work for kernel execution. Larger
// contiguous array inputs will be split into smaller chunks, and, if
// possible and enabled, processed in parallel. The default chunksize is
// INT64_MAX, so contiguous arrays are not split.
void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; }
// \brief Maximum length for ExecBatch data chunks processed by
// kernels. Contiguous array inputs with longer length will be split into
// smaller chunks.
int64_t exec_chunksize() const { return exec_chunksize_; }
/// \brief Set whether to use multiple threads for function execution. This
/// is not yet used.
void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; }
/// \brief If true, then utilize multiple threads where relevant for function
/// execution. This is not yet used.
bool use_threads() const { return use_threads_; }
// Set the preallocation strategy for kernel execution as it relates to
// chunked execution. For chunked execution, whether via ChunkedArray inputs
// or splitting larger Array arguments into smaller pieces, contiguous
// allocation (if permitted by the kernel) will allocate one large array to
// write output into yielding it to the caller at the end. If this option is
// set to off, then preallocations will be performed independently for each
// chunk of execution
//
// TODO: At some point we might want the limit the size of contiguous
// preallocations. For example, even if the exec_chunksize is 64K or less, we
// might limit contiguous allocations to 1M records, say.
void set_preallocate_contiguous(bool preallocate) {
preallocate_contiguous_ = preallocate;
}
/// \brief If contiguous preallocations should be used when doing chunked
/// execution as specified by exec_chunksize(). See
/// set_preallocate_contiguous() for more information.
bool preallocate_contiguous() const { return preallocate_contiguous_; }
private:
MemoryPool* pool_;
::arrow::internal::Executor* executor_;
FunctionRegistry* func_registry_;
int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max();
bool preallocate_contiguous_ = true;
bool use_threads_ = true;
};
// TODO: Consider standardizing on uint16 selection vectors and only use them
// when we can ensure that each value is 64K length or smaller
/// \brief Container for an array of value selection indices that were
/// materialized from a filter.
///
/// Columnar query engines (see e.g. [1]) have found that rather than
/// materializing filtered data, the filter can instead be converted to an
/// array of the "on" indices and then "fusing" these indices in operator
/// implementations. This is especially relevant for aggregations but also
/// applies to scalar operations.
///
/// We are not yet using this so this is mostly a placeholder for now.
///
/// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf
class ARROW_EXPORT SelectionVector {
public:
explicit SelectionVector(std::shared_ptr<ArrayData> data);
explicit SelectionVector(const Array& arr);
/// \brief Create SelectionVector from boolean mask
static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr);
const int32_t* indices() const { return indices_; }
int32_t length() const;
private:
std::shared_ptr<ArrayData> data_;
const int32_t* indices_;
};
/// An index to represent that a batch does not belong to an ordered stream
constexpr int64_t kUnsequencedIndex = -1;
/// \brief A unit of work for kernel execution. It contains a collection of
/// Array and Scalar values and an optional SelectionVector indicating that
/// there is an unmaterialized filter that either must be materialized, or (if
/// the kernel supports it) pushed down into the kernel implementation.
///
/// ExecBatch is semantically similar to RecordBatch in that in a SQL context
/// it represents a collection of records, but constant "columns" are
/// represented by Scalar values rather than having to be converted into arrays
/// with repeated values.
///
/// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight
/// than is desirable for this class. Microbenchmarks would help determine for
/// sure. See ARROW-8928.
/// \addtogroup acero-internals
/// @{
struct ARROW_EXPORT ExecBatch {
ExecBatch() = default;
ExecBatch(std::vector<Datum> values, int64_t length)
: values(std::move(values)), length(length) {}
explicit ExecBatch(const RecordBatch& batch);
/// \brief Infer the ExecBatch length from values.
static Result<int64_t> InferLength(const std::vector<Datum>& values);
/// Creates an ExecBatch with length-validation.
///
/// If any value is given, then all values must have a common length. If the given
/// length is negative, then the length of the ExecBatch is set to this common length,
/// or to 1 if no values are given. Otherwise, the given length must equal the common
/// length, if any value is given.
static Result<ExecBatch> Make(std::vector<Datum> values, int64_t length = -1);
Result<std::shared_ptr<RecordBatch>> ToRecordBatch(
std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool()) const;
/// The values representing positional arguments to be passed to a kernel's
/// exec function for processing.
std::vector<Datum> values;
/// A deferred filter represented as an array of indices into the values.
///
/// For example, the filter [true, true, false, true] would be represented as
/// the selection vector [0, 1, 3]. When the selection vector is set,
/// ExecBatch::length is equal to the length of this array.
std::shared_ptr<SelectionVector> selection_vector;
/// A predicate Expression guaranteed to evaluate to true for all rows in this batch.
Expression guarantee = literal(true);
/// The semantic length of the ExecBatch. When the values are all scalars,
/// the length should be set to 1 for non-aggregate kernels, otherwise the
/// length is taken from the array values, except when there is a selection
/// vector. When there is a selection vector set, the length of the batch is
/// the length of the selection. Aggregate kernels can have an ExecBatch
/// formed by projecting just the partition columns from a batch in which
/// case, it would have scalar rows with length greater than 1.
///
/// If the array values are of length 0 then the length is 0 regardless of
/// whether any values are Scalar.
int64_t length = 0;
/// \brief index of this batch in a sorted stream of batches
///
/// This index must be strictly monotonic starting at 0 without gaps or
/// it can be set to kUnsequencedIndex if there is no meaningful order
int64_t index = kUnsequencedIndex;
/// \brief The sum of bytes in each buffer referenced by the batch
///
/// Note: Scalars are not counted
/// Note: Some values may referenced only part of a buffer, for
/// example, an array with an offset. The actual data
/// visible to this batch will be smaller than the total
/// buffer size in this case.
int64_t TotalBufferSize() const;
/// \brief Return the value at the i-th index
template <typename index_type>
inline const Datum& operator[](index_type i) const {
return values[i];
}
bool Equals(const ExecBatch& other) const;
/// \brief A convenience for the number of values / arguments.
int num_values() const { return static_cast<int>(values.size()); }
ExecBatch Slice(int64_t offset, int64_t length) const;
Result<ExecBatch> SelectValues(const std::vector<int>& ids) const;
/// \brief A convenience for returning the types from the batch.
std::vector<TypeHolder> GetTypes() const {
std::vector<TypeHolder> result;
for (const auto& value : this->values) {
result.emplace_back(value.type());
}
return result;
}
std::string ToString() const;
};
inline bool operator==(const ExecBatch& l, const ExecBatch& r) { return l.Equals(r); }
inline bool operator!=(const ExecBatch& l, const ExecBatch& r) { return !l.Equals(r); }
ARROW_EXPORT void PrintTo(const ExecBatch&, std::ostream*);
/// @}
/// \defgroup compute-internals Utilities for calling functions, useful for those
/// extending the function registry
///
/// @{
struct ExecValue {
ArraySpan array = {};
const Scalar* scalar = NULLPTR;
ExecValue(Scalar* scalar) // NOLINT implicit conversion
: scalar(scalar) {}
ExecValue(ArraySpan array) // NOLINT implicit conversion
: array(std::move(array)) {}
ExecValue(const ArrayData& array) { // NOLINT implicit conversion
this->array.SetMembers(array);
}
ExecValue() = default;
ExecValue(const ExecValue& other) = default;
ExecValue& operator=(const ExecValue& other) = default;
ExecValue(ExecValue&& other) = default;
ExecValue& operator=(ExecValue&& other) = default;
int64_t length() const { return this->is_array() ? this->array.length : 1; }
bool is_array() const { return this->scalar == NULLPTR; }
bool is_scalar() const { return !this->is_array(); }
void SetArray(const ArrayData& array) {
this->array.SetMembers(array);
this->scalar = NULLPTR;
}
void SetScalar(const Scalar* scalar) { this->scalar = scalar; }
template <typename ExactType>
const ExactType& scalar_as() const {
return ::arrow::internal::checked_cast<const ExactType&>(*this->scalar);
}
/// XXX: here temporarily for compatibility with datum, see
/// e.g. MakeStructExec in scalar_nested.cc
int64_t null_count() const {
if (this->is_array()) {
return this->array.GetNullCount();
} else {
return this->scalar->is_valid ? 0 : 1;
}
}
const DataType* type() const {
if (this->is_array()) {
return array.type;
} else {
return scalar->type.get();
}
}
};
struct ARROW_EXPORT ExecResult {
// The default value of the variant is ArraySpan
std::variant<ArraySpan, std::shared_ptr<ArrayData>> value;
int64_t length() const {
if (this->is_array_span()) {
return this->array_span()->length;
} else {
return this->array_data()->length;
}
}
const DataType* type() const {
if (this->is_array_span()) {
return this->array_span()->type;
} else {
return this->array_data()->type.get();
}
}
const ArraySpan* array_span() const { return &std::get<ArraySpan>(this->value); }
ArraySpan* array_span_mutable() { return &std::get<ArraySpan>(this->value); }
bool is_array_span() const { return this->value.index() == 0; }
const std::shared_ptr<ArrayData>& array_data() const {
return std::get<std::shared_ptr<ArrayData>>(this->value);
}
ArrayData* array_data_mutable() {
return std::get<std::shared_ptr<ArrayData>>(this->value).get();
}
bool is_array_data() const { return this->value.index() == 1; }
};
/// \brief A "lightweight" column batch object which contains no
/// std::shared_ptr objects and does not have any memory ownership
/// semantics. Can represent a view onto an "owning" ExecBatch.
struct ARROW_EXPORT ExecSpan {
ExecSpan() = default;
ExecSpan(const ExecSpan& other) = default;
ExecSpan& operator=(const ExecSpan& other) = default;
ExecSpan(ExecSpan&& other) = default;
ExecSpan& operator=(ExecSpan&& other) = default;
explicit ExecSpan(std::vector<ExecValue> values, int64_t length)
: length(length), values(std::move(values)) {}
explicit ExecSpan(const ExecBatch& batch) {
this->length = batch.length;
this->values.resize(batch.values.size());
for (size_t i = 0; i < batch.values.size(); ++i) {
const Datum& in_value = batch[i];
ExecValue* out_value = &this->values[i];
if (in_value.is_array()) {
out_value->SetArray(*in_value.array());
} else {
out_value->SetScalar(in_value.scalar().get());
}
}
}
/// \brief Return the value at the i-th index
template <typename index_type>
inline const ExecValue& operator[](index_type i) const {
return values[i];
}
/// \brief A convenience for the number of values / arguments.
int num_values() const { return static_cast<int>(values.size()); }
std::vector<TypeHolder> GetTypes() const {
std::vector<TypeHolder> result;
for (const auto& value : this->values) {
result.emplace_back(value.type());
}
return result;
}
ExecBatch ToExecBatch() const {
ExecBatch result;
result.length = this->length;
for (const ExecValue& value : this->values) {
if (value.is_array()) {
result.values.push_back(value.array.ToArrayData());
} else {
result.values.push_back(value.scalar->GetSharedPtr());
}
}
return result;
}
int64_t length = 0;
std::vector<ExecValue> values;
};
/// \defgroup compute-call-function One-shot calls to compute functions
///
/// @{
/// \brief One-shot invoker for all types of functions.
///
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
/// and wrapping of outputs.
ARROW_EXPORT
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
const FunctionOptions* options, ExecContext* ctx = NULLPTR);
/// \brief Variant of CallFunction which uses a function's default options.
///
/// NB: Some functions require FunctionOptions be provided.
ARROW_EXPORT
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
ExecContext* ctx = NULLPTR);
/// \brief One-shot invoker for all types of functions.
///
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
/// and wrapping of outputs.
ARROW_EXPORT
Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch,
const FunctionOptions* options, ExecContext* ctx = NULLPTR);
/// \brief Variant of CallFunction which uses a function's default options.
///
/// NB: Some functions require FunctionOptions be provided.
ARROW_EXPORT
Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch,
ExecContext* ctx = NULLPTR);
/// @}
/// \defgroup compute-function-executor One-shot calls to obtain function executors
///
/// @{
/// \brief One-shot executor provider for all types of functions.
///
/// This function creates and initializes a `FunctionExecutor` appropriate
/// for the given function name, input types and function options.
ARROW_EXPORT
Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor(
const std::string& func_name, std::vector<TypeHolder> in_types,
const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR);
/// \brief One-shot executor provider for all types of functions.
///
/// This function creates and initializes a `FunctionExecutor` appropriate
/// for the given function name, input types (taken from the Datum arguments)
/// and function options.
ARROW_EXPORT
Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor(
const std::string& func_name, const std::vector<Datum>& args,
const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR);
/// @}
} // namespace compute
} // namespace arrow
|