File size: 31,358 Bytes
b90def7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/buffer.h"
#include "arrow/compute/exec.h"
#include "arrow/datum.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
// macOS defines PREALLOCATE as a preprocessor macro in the header sys/vnode.h.
// No other BSD seems to do so. The name is used as an identifier in MemAllocation enum.
#if defined(__APPLE__) && defined(PREALLOCATE)
#undef PREALLOCATE
#endif
namespace arrow {
namespace compute {
class FunctionOptions;
/// \brief Base class for opaque kernel-specific state. For example, if there
/// is some kind of initialization required.
struct ARROW_EXPORT KernelState {
virtual ~KernelState() = default;
};
/// \brief Context/state for the execution of a particular kernel.
class ARROW_EXPORT KernelContext {
public:
// Can pass optional backreference; not used consistently for the
// moment but will be made so in the future
explicit KernelContext(ExecContext* exec_ctx, const Kernel* kernel = NULLPTR)
: exec_ctx_(exec_ctx), kernel_(kernel) {}
/// \brief Allocate buffer from the context's memory pool. The contents are
/// not initialized.
Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes);
/// \brief Allocate buffer for bitmap from the context's memory pool. Like
/// Allocate, the contents of the buffer are not initialized but the last
/// byte is preemptively zeroed to help avoid ASAN or valgrind issues.
Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits);
/// \brief Assign the active KernelState to be utilized for each stage of
/// kernel execution. Ownership and memory lifetime of the KernelState must
/// be minded separately.
void SetState(KernelState* state) { state_ = state; }
// Set kernel that is being invoked since some kernel
// implementations will examine the kernel state.
void SetKernel(const Kernel* kernel) { kernel_ = kernel; }
KernelState* state() { return state_; }
/// \brief Configuration related to function execution that is to be shared
/// across multiple kernels.
ExecContext* exec_context() { return exec_ctx_; }
/// \brief The memory pool to use for allocations. For now, it uses the
/// MemoryPool contained in the ExecContext used to create the KernelContext.
MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); }
const Kernel* kernel() const { return kernel_; }
private:
ExecContext* exec_ctx_;
KernelState* state_ = NULLPTR;
const Kernel* kernel_ = NULLPTR;
};
/// \brief An type-checking interface to permit customizable validation rules
/// for use with InputType and KernelSignature. This is for scenarios where the
/// acceptance is not an exact type instance, such as a TIMESTAMP type for a
/// specific TimeUnit, but permitting any time zone.
struct ARROW_EXPORT TypeMatcher {
virtual ~TypeMatcher() = default;
/// \brief Return true if this matcher accepts the data type.
virtual bool Matches(const DataType& type) const = 0;
/// \brief A human-interpretable string representation of what the type
/// matcher checks for, usable when printing KernelSignature or formatting
/// error messages.
virtual std::string ToString() const = 0;
/// \brief Return true if this TypeMatcher contains the same matching rule as
/// the other. Currently depends on RTTI.
virtual bool Equals(const TypeMatcher& other) const = 0;
};
namespace match {
/// \brief Match any DataType instance having the same DataType::id.
ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id);
/// \brief Match any TimestampType instance having the same unit, but the time
/// zones can be different.
ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit);
// \brief Match any integer type
ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer();
// Match types using 32-bit varbinary representation
ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike();
// Match types using 64-bit varbinary representation
ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike();
// Match any fixed binary type
ARROW_EXPORT std::shared_ptr<TypeMatcher> FixedSizeBinaryLike();
// \brief Match any primitive type (boolean or any type representable as a C
// Type)
ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive();
// \brief Match any integer type that can be used as run-end in run-end encoded
// arrays
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndInteger();
/// \brief Match run-end encoded types that use any valid run-end type and
/// encode specific value types
///
/// @param[in] value_type_matcher a matcher that is applied to the values field
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(
std::shared_ptr<TypeMatcher> value_type_matcher);
/// \brief Match run-end encoded types that use any valid run-end type and
/// encode specific value types
///
/// @param[in] value_type_id a type id that the type of the values field should match
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(Type::type value_type_id);
/// \brief Match run-end encoded types that encode specific run-end and value types
///
/// @param[in] run_end_type_matcher a matcher that is applied to the run_ends field
/// @param[in] value_type_matcher a matcher that is applied to the values field
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(
std::shared_ptr<TypeMatcher> run_end_type_matcher,
std::shared_ptr<TypeMatcher> value_type_matcher);
} // namespace match
/// \brief An object used for type-checking arguments to be passed to a kernel
/// and stored in a KernelSignature. The type-checking rule can be supplied
/// either with an exact DataType instance or a custom TypeMatcher.
class ARROW_EXPORT InputType {
public:
/// \brief The kind of type-checking rule that the InputType contains.
enum Kind {
/// \brief Accept any value type.
ANY_TYPE,
/// \brief A fixed arrow::DataType and will only exact match having this
/// exact type (e.g. same TimestampType unit, same decimal scale and
/// precision, or same nested child types).
EXACT_TYPE,
/// \brief Uses a TypeMatcher implementation to check the type.
USE_TYPE_MATCHER
};
/// \brief Accept any value type
InputType() : kind_(ANY_TYPE) {}
/// \brief Accept an exact value type.
InputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
: kind_(EXACT_TYPE), type_(std::move(type)) {}
/// \brief Use the passed TypeMatcher to type check.
InputType(std::shared_ptr<TypeMatcher> type_matcher) // NOLINT implicit construction
: kind_(USE_TYPE_MATCHER), type_matcher_(std::move(type_matcher)) {}
/// \brief Match any type with the given Type::type. Uses a TypeMatcher for
/// its implementation.
InputType(Type::type type_id) // NOLINT implicit construction
: InputType(match::SameTypeId(type_id)) {}
InputType(const InputType& other) { CopyInto(other); }
void operator=(const InputType& other) { CopyInto(other); }
InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
// \brief Match any input (array, scalar of any type)
static InputType Any() { return InputType(); }
/// \brief Return true if this input type matches the same type cases as the
/// other.
bool Equals(const InputType& other) const;
bool operator==(const InputType& other) const { return this->Equals(other); }
bool operator!=(const InputType& other) const { return !(*this == other); }
/// \brief Return hash code.
size_t Hash() const;
/// \brief Render a human-readable string representation.
std::string ToString() const;
/// \brief Return true if the Datum matches this argument kind in
/// type (and only allows scalar or array-like Datums).
bool Matches(const Datum& value) const;
/// \brief Return true if the type matches this InputType
bool Matches(const DataType& type) const;
/// \brief The type matching rule that this InputType uses.
Kind kind() const { return kind_; }
/// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType
/// must match. Otherwise this function should not be used and will assert in
/// debug builds.
const std::shared_ptr<DataType>& type() const;
/// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for
/// checking the type of a value. Otherwise this function should not be used
/// and will assert in debug builds.
const TypeMatcher& type_matcher() const;
private:
void CopyInto(const InputType& other) {
this->kind_ = other.kind_;
this->type_ = other.type_;
this->type_matcher_ = other.type_matcher_;
}
void MoveInto(InputType&& other) {
this->kind_ = other.kind_;
this->type_ = std::move(other.type_);
this->type_matcher_ = std::move(other.type_matcher_);
}
Kind kind_;
// For EXACT_TYPE Kind
std::shared_ptr<DataType> type_;
// For USE_TYPE_MATCHER Kind
std::shared_ptr<TypeMatcher> type_matcher_;
};
/// \brief Container to capture both exact and input-dependent output types.
class ARROW_EXPORT OutputType {
public:
/// \brief An enum indicating whether the value type is an invariant fixed
/// value or one that's computed by a kernel-defined resolver function.
enum ResolveKind { FIXED, COMPUTED };
/// Type resolution function. Given input types, return output type. This
/// function MAY may use the kernel state to decide the output type based on
/// the FunctionOptions.
///
/// This function SHOULD _not_ be used to check for arity, that is to be
/// performed one or more layers above.
using Resolver =
std::function<Result<TypeHolder>(KernelContext*, const std::vector<TypeHolder>&)>;
/// \brief Output an exact type
OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
: kind_(FIXED), type_(std::move(type)) {}
/// \brief Output a computed type depending on actual input types
template <typename Fn>
OutputType(Fn resolver) // NOLINT implicit construction
: kind_(COMPUTED), resolver_(std::move(resolver)) {}
OutputType(const OutputType& other) {
this->kind_ = other.kind_;
this->type_ = other.type_;
this->resolver_ = other.resolver_;
}
OutputType(OutputType&& other) {
this->kind_ = other.kind_;
this->type_ = std::move(other.type_);
this->resolver_ = other.resolver_;
}
OutputType& operator=(const OutputType&) = default;
OutputType& operator=(OutputType&&) = default;
/// \brief Return the type of the expected output value of the kernel given
/// the input argument types. The resolver may make use of state information
/// kept in the KernelContext.
Result<TypeHolder> Resolve(KernelContext* ctx,
const std::vector<TypeHolder>& args) const;
/// \brief The exact output value type for the FIXED kind.
const std::shared_ptr<DataType>& type() const;
/// \brief For use with COMPUTED resolution strategy. It may be more
/// convenient to invoke this with OutputType::Resolve returned from this
/// method.
const Resolver& resolver() const;
/// \brief Render a human-readable string representation.
std::string ToString() const;
/// \brief Return the kind of type resolution of this output type, whether
/// fixed/invariant or computed by a resolver.
ResolveKind kind() const { return kind_; }
private:
ResolveKind kind_;
// For FIXED resolution
std::shared_ptr<DataType> type_;
// For COMPUTED resolution
Resolver resolver_ = NULLPTR;
};
/// \brief Holds the input types and output type of the kernel.
///
/// VarArgs functions with minimum N arguments should pass up to N input types to be
/// used to validate the input types of a function invocation. The first N-1 types
/// will be matched against the first N-1 arguments, and the last type will be
/// matched against the remaining arguments.
class ARROW_EXPORT KernelSignature {
public:
KernelSignature(std::vector<InputType> in_types, OutputType out_type,
bool is_varargs = false);
/// \brief Convenience ctor since make_shared can be awkward
static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types,
OutputType out_type,
bool is_varargs = false);
/// \brief Return true if the signature if compatible with the list of input
/// value descriptors.
bool MatchesInputs(const std::vector<TypeHolder>& types) const;
/// \brief Returns true if the input types of each signature are
/// equal. Well-formed functions should have a deterministic output type
/// given input types, but currently it is the responsibility of the
/// developer to ensure this.
bool Equals(const KernelSignature& other) const;
bool operator==(const KernelSignature& other) const { return this->Equals(other); }
bool operator!=(const KernelSignature& other) const { return !(*this == other); }
/// \brief Compute a hash code for the signature
size_t Hash() const;
/// \brief The input types for the kernel. For VarArgs functions, this should
/// generally contain a single validator to use for validating all of the
/// function arguments.
const std::vector<InputType>& in_types() const { return in_types_; }
/// \brief The output type for the kernel. Use Resolve to return the
/// exact output given input argument types, since many kernels'
/// output types depend on their input types (or their type
/// metadata).
const OutputType& out_type() const { return out_type_; }
/// \brief Render a human-readable string representation
std::string ToString() const;
bool is_varargs() const { return is_varargs_; }
private:
std::vector<InputType> in_types_;
OutputType out_type_;
bool is_varargs_;
// For caching the hash code after it's computed the first time
mutable uint64_t hash_code_;
};
/// \brief A function may contain multiple variants of a kernel for a given
/// type combination for different SIMD levels. Based on the active system's
/// CPU info or the user's preferences, we can elect to use one over the other.
struct SimdLevel {
enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX };
};
/// \brief The strategy to use for propagating or otherwise populating the
/// validity bitmap of a kernel output.
struct NullHandling {
enum type {
/// Compute the output validity bitmap by intersecting the validity bitmaps
/// of the arguments using bitwise-and operations. This means that values
/// in the output are valid/non-null only if the corresponding values in
/// all input arguments were valid/non-null. Kernel generally need not
/// touch the bitmap thereafter, but a kernel's exec function is permitted
/// to alter the bitmap after the null intersection is computed if it needs
/// to.
INTERSECTION,
/// Kernel expects a pre-allocated buffer to write the result bitmap
/// into. The preallocated memory is not zeroed (except for the last byte),
/// so the kernel should ensure to completely populate the bitmap.
COMPUTED_PREALLOCATE,
/// Kernel allocates and sets the validity bitmap of the output.
COMPUTED_NO_PREALLOCATE,
/// Kernel output is never null and a validity bitmap does not need to be
/// allocated.
OUTPUT_NOT_NULL
};
};
/// \brief The preference for memory preallocation of fixed-width type outputs
/// in kernel execution.
struct MemAllocation {
enum type {
// For data types that support pre-allocation (i.e. fixed-width), the
// kernel expects to be provided a pre-allocated data buffer to write
// into. Non-fixed-width types must always allocate their own data
// buffers. The allocation made for the same length as the execution batch,
// so vector kernels yielding differently sized output should not use this.
//
// It is valid for the data to not be preallocated but the validity bitmap
// is (or is computed using the intersection/bitwise-and method).
//
// For variable-size output types like BinaryType or StringType, or for
// nested types, this option has no effect.
PREALLOCATE,
// The kernel is responsible for allocating its own data buffer for
// fixed-width type outputs.
NO_PREALLOCATE
};
};
struct Kernel;
/// \brief Arguments to pass to an KernelInit function. A struct is used to help
/// avoid API breakage should the arguments passed need to be expanded.
struct KernelInitArgs {
/// \brief A pointer to the kernel being initialized. The init function may
/// depend on the kernel's KernelSignature or other data contained there.
const Kernel* kernel;
/// \brief The types of the input arguments that the kernel is
/// about to be executed against.
const std::vector<TypeHolder>& inputs;
/// \brief Opaque options specific to this kernel. May be nullptr for functions
/// that do not require options.
const FunctionOptions* options;
};
/// \brief Common initializer function for all kernel types.
using KernelInit = std::function<Result<std::unique_ptr<KernelState>>(
KernelContext*, const KernelInitArgs&)>;
/// \brief Base type for kernels. Contains the function signature and
/// optionally the state initialization function, along with some common
/// attributes
struct ARROW_EXPORT Kernel {
Kernel() = default;
Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init)
: signature(std::move(sig)), init(std::move(init)) {}
Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init)
: Kernel(KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init)) {}
/// \brief The "signature" of the kernel containing the InputType input
/// argument validators and OutputType output type resolver.
std::shared_ptr<KernelSignature> signature;
/// \brief Create a new KernelState for invocations of this kernel, e.g. to
/// set up any options or state relevant for execution.
KernelInit init;
/// \brief Create a vector of new KernelState for invocations of this kernel.
static Status InitAll(KernelContext*, const KernelInitArgs&,
std::vector<std::unique_ptr<KernelState>>*);
/// \brief Indicates whether execution can benefit from parallelization
/// (splitting large chunks into smaller chunks and using multiple
/// threads). Some kernels may not support parallel execution at
/// all. Synchronization and concurrency-related issues are currently the
/// responsibility of the Kernel's implementation.
bool parallelizable = true;
/// \brief Indicates the level of SIMD instruction support in the host CPU is
/// required to use the function. The intention is for functions to be able to
/// contain multiple kernels with the same signature but different levels of SIMD,
/// so that the most optimized kernel supported on a host's processor can be chosen.
SimdLevel::type simd_level = SimdLevel::NONE;
// Additional kernel-specific data
std::shared_ptr<KernelState> data;
};
/// \brief The scalar kernel execution API that must be implemented for SCALAR
/// kernel types. This includes both stateless and stateful kernels. Kernels
/// depending on some execution state access that state via subclasses of
/// KernelState set on the KernelContext object. Implementations should
/// endeavor to write into pre-allocated memory if they are able, though for
/// some kernels (e.g. in cases when a builder like StringBuilder) must be
/// employed this may not be possible.
using ArrayKernelExec = Status (*)(KernelContext*, const ExecSpan&, ExecResult*);
/// \brief Kernel data structure for implementations of ScalarFunction. In
/// addition to the members found in Kernel, contains the null handling
/// and memory pre-allocation preferences.
struct ARROW_EXPORT ScalarKernel : public Kernel {
ScalarKernel() = default;
ScalarKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
KernelInit init = NULLPTR)
: Kernel(std::move(sig), init), exec(exec) {}
ScalarKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
KernelInit init = NULLPTR)
: Kernel(std::move(in_types), std::move(out_type), std::move(init)), exec(exec) {}
/// \brief Perform a single invocation of this kernel. Depending on the
/// implementation, it may only write into preallocated memory, while in some
/// cases it will allocate its own memory. Any required state is managed
/// through the KernelContext.
ArrayKernelExec exec;
/// \brief Writing execution results into larger contiguous allocations
/// requires that the kernel be able to write into sliced output ArrayData*,
/// including sliced output validity bitmaps. Some kernel implementations may
/// not be able to do this, so setting this to false disables this
/// functionality.
bool can_write_into_slices = true;
// For scalar functions preallocated data and intersecting arg validity
// bitmaps is a reasonable default
NullHandling::type null_handling = NullHandling::INTERSECTION;
MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE;
};
// ----------------------------------------------------------------------
// VectorKernel (for VectorFunction)
/// \brief Kernel data structure for implementations of VectorFunction. In
/// contains an optional finalizer function, the null handling and memory
/// pre-allocation preferences (which have different defaults from
/// ScalarKernel), and some other execution-related options.
struct ARROW_EXPORT VectorKernel : public Kernel {
/// \brief See VectorKernel::finalize member for usage
using FinalizeFunc = std::function<Status(KernelContext*, std::vector<Datum>*)>;
/// \brief Function for executing a stateful VectorKernel against a
/// ChunkedArray input. Does not need to be defined for all VectorKernels
using ChunkedExec = Status (*)(KernelContext*, const ExecBatch&, Datum* out);
VectorKernel() = default;
VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR)
: Kernel(std::move(in_types), std::move(out_type), std::move(init)),
exec(exec),
finalize(std::move(finalize)) {}
VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR)
: Kernel(std::move(sig), std::move(init)),
exec(exec),
finalize(std::move(finalize)) {}
/// \brief Perform a single invocation of this kernel. Any required state is
/// managed through the KernelContext.
ArrayKernelExec exec;
/// \brief Execute the kernel on a ChunkedArray. Does not need to be defined
ChunkedExec exec_chunked = NULLPTR;
/// \brief For VectorKernel, convert intermediate results into finalized
/// results. Mutates input argument. Some kernels may accumulate state
/// (example: hashing-related functions) through processing chunked inputs, and
/// then need to attach some accumulated state to each of the outputs of
/// processing each chunk of data.
FinalizeFunc finalize;
/// Since vector kernels generally are implemented rather differently from
/// scalar/elementwise kernels (and they may not even yield arrays of the same
/// size), so we make the developer opt-in to any memory preallocation rather
/// than having to turn it off.
NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE;
/// \brief Writing execution results into larger contiguous allocations
/// requires that the kernel be able to write into sliced output ArrayData*,
/// including sliced output validity bitmaps. Some kernel implementations may
/// not be able to do this, so setting this to false disables this
/// functionality.
bool can_write_into_slices = true;
/// Some vector kernels can do chunkwise execution using ExecSpanIterator,
/// in some cases accumulating some state. Other kernels (like Take) need to
/// be passed whole arrays and don't work on ChunkedArray inputs
bool can_execute_chunkwise = true;
/// Some kernels (like unique and value_counts) yield non-chunked output from
/// chunked-array inputs. This option controls how the results are boxed when
/// returned from ExecVectorFunction
///
/// true -> ChunkedArray
/// false -> Array
bool output_chunked = true;
};
// ----------------------------------------------------------------------
// ScalarAggregateKernel (for ScalarAggregateFunction)
using ScalarAggregateConsume = Status (*)(KernelContext*, const ExecSpan&);
using ScalarAggregateMerge = Status (*)(KernelContext*, KernelState&&, KernelState*);
// Finalize returns Datum to permit multiple return values
using ScalarAggregateFinalize = Status (*)(KernelContext*, Datum*);
/// \brief Kernel data structure for implementations of
/// ScalarAggregateFunction. The four necessary components of an aggregation
/// kernel are the init, consume, merge, and finalize functions.
///
/// * init: creates a new KernelState for a kernel.
/// * consume: processes an ExecSpan and updates the KernelState found in the
/// KernelContext.
/// * merge: combines one KernelState with another.
/// * finalize: produces the end result of the aggregation using the
/// KernelState in the KernelContext.
struct ARROW_EXPORT ScalarAggregateKernel : public Kernel {
ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
ScalarAggregateConsume consume, ScalarAggregateMerge merge,
ScalarAggregateFinalize finalize, const bool ordered)
: Kernel(std::move(sig), std::move(init)),
consume(consume),
merge(merge),
finalize(finalize),
ordered(ordered) {}
ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
KernelInit init, ScalarAggregateConsume consume,
ScalarAggregateMerge merge, ScalarAggregateFinalize finalize,
const bool ordered)
: ScalarAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), consume, merge, finalize, ordered) {}
/// \brief Merge a vector of KernelStates into a single KernelState.
/// The merged state will be returned and will be set on the KernelContext.
static Result<std::unique_ptr<KernelState>> MergeAll(
const ScalarAggregateKernel* kernel, KernelContext* ctx,
std::vector<std::unique_ptr<KernelState>> states);
ScalarAggregateConsume consume;
ScalarAggregateMerge merge;
ScalarAggregateFinalize finalize;
/// \brief Whether this kernel requires ordering
/// Some aggregations, such as, "first", requires some kind of input order. The
/// order can be implicit, e.g., the order of the input data, or explicit, e.g.
/// the ordering specified with a window aggregation.
/// The caller of the aggregate kernel is responsible for passing data in some
/// defined order to the kernel. The flag here is a way for the kernel to tell
/// the caller that data passed to the kernel must be defined in some order.
bool ordered = false;
};
// ----------------------------------------------------------------------
// HashAggregateKernel (for HashAggregateFunction)
using HashAggregateResize = Status (*)(KernelContext*, int64_t);
using HashAggregateConsume = Status (*)(KernelContext*, const ExecSpan&);
using HashAggregateMerge = Status (*)(KernelContext*, KernelState&&, const ArrayData&);
// Finalize returns Datum to permit multiple return values
using HashAggregateFinalize = Status (*)(KernelContext*, Datum*);
/// \brief Kernel data structure for implementations of
/// HashAggregateFunction. The four necessary components of an aggregation
/// kernel are the init, consume, merge, and finalize functions.
///
/// * init: creates a new KernelState for a kernel.
/// * resize: ensure that the KernelState can accommodate the specified number of groups.
/// * consume: processes an ExecSpan (which includes the argument as well
/// as an array of group identifiers) and updates the KernelState found in the
/// KernelContext.
/// * merge: combines one KernelState with another.
/// * finalize: produces the end result of the aggregation using the
/// KernelState in the KernelContext.
struct ARROW_EXPORT HashAggregateKernel : public Kernel {
HashAggregateKernel() = default;
HashAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
HashAggregateResize resize, HashAggregateConsume consume,
HashAggregateMerge merge, HashAggregateFinalize finalize,
const bool ordered)
: Kernel(std::move(sig), std::move(init)),
resize(resize),
consume(consume),
merge(merge),
finalize(finalize),
ordered(ordered) {}
HashAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
KernelInit init, HashAggregateConsume consume,
HashAggregateResize resize, HashAggregateMerge merge,
HashAggregateFinalize finalize, const bool ordered)
: HashAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), resize, consume, merge, finalize, ordered) {}
HashAggregateResize resize;
HashAggregateConsume consume;
HashAggregateMerge merge;
HashAggregateFinalize finalize;
/// @brief whether the summarizer requires ordering
/// This is similar to ScalarAggregateKernel. See ScalarAggregateKernel
/// for detailed doc of this variable.
bool ordered = false;
};
} // namespace compute
} // namespace arrow
|