File size: 15,452 Bytes
0b5e147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include "arrow/io/type_fwd.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/util/compare.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
/// \brief EXPERIMENTAL: Device type enum which matches up with C Data Device types
enum class DeviceAllocationType : char {
kCPU = 1,
kCUDA = 2,
kCUDA_HOST = 3,
kOPENCL = 4,
kVULKAN = 7,
kMETAL = 8,
kVPI = 9,
kROCM = 10,
kROCM_HOST = 11,
kEXT_DEV = 12,
kCUDA_MANAGED = 13,
kONEAPI = 14,
kWEBGPU = 15,
kHEXAGON = 16,
};
class MemoryManager;
/// \brief EXPERIMENTAL: Abstract interface for hardware devices
///
/// This object represents a device with access to some memory spaces.
/// When handling a Buffer or raw memory address, it allows deciding in which
/// context the raw memory address should be interpreted
/// (e.g. CPU-accessible memory, or embedded memory on some particular GPU).
class ARROW_EXPORT Device : public std::enable_shared_from_this<Device>,
public util::EqualityComparable<Device> {
public:
virtual ~Device();
/// \brief A shorthand for this device's type.
///
/// The returned value is different for each device class, but is the
/// same for all instances of a given class. It can be used as a replacement
/// for RTTI.
virtual const char* type_name() const = 0;
/// \brief A human-readable description of the device.
///
/// The returned value should be detailed enough to distinguish between
/// different instances, where necessary.
virtual std::string ToString() const = 0;
/// \brief Whether this instance points to the same device as another one.
virtual bool Equals(const Device&) const = 0;
/// \brief A device ID to identify this device if there are multiple of this type.
///
/// If there is no "device_id" equivalent (such as for the main CPU device on
/// non-numa systems) returns -1.
virtual int64_t device_id() const { return -1; }
/// \brief Whether this device is the main CPU device.
///
/// This shorthand method is very useful when deciding whether a memory address
/// is CPU-accessible.
bool is_cpu() const { return is_cpu_; }
/// \brief Return a MemoryManager instance tied to this device
///
/// The returned instance uses default parameters for this device type's
/// MemoryManager implementation. Some devices also allow constructing
/// MemoryManager instances with non-default parameters.
virtual std::shared_ptr<MemoryManager> default_memory_manager() = 0;
/// \brief Return the DeviceAllocationType of this device
virtual DeviceAllocationType device_type() const = 0;
class SyncEvent;
/// \brief EXPERIMENTAL: An opaque wrapper for Device-specific streams
///
/// In essence this is just a wrapper around a void* to represent the
/// standard concept of a stream/queue on a device. Derived classes
/// should be trivially constructible from it's device-specific counterparts.
class ARROW_EXPORT Stream {
public:
using release_fn_t = std::function<void(void*)>;
virtual ~Stream() = default;
virtual const void* get_raw() const { return stream_.get(); }
/// \brief Make the stream wait on the provided event.
///
/// Tells the stream that it should wait until the synchronization
/// event is completed without blocking the CPU.
virtual Status WaitEvent(const SyncEvent&) = 0;
/// \brief Blocks the current thread until a stream's remaining tasks are completed
virtual Status Synchronize() const = 0;
protected:
explicit Stream(void* stream, release_fn_t release_stream)
: stream_{stream, release_stream} {}
std::unique_ptr<void, release_fn_t> stream_;
};
virtual Result<std::shared_ptr<Stream>> MakeStream() { return NULLPTR; }
/// \brief Create a new device stream
///
/// This should create the appropriate stream type for the device,
/// derived from Device::Stream to allow for stream ordered events
/// and memory allocations.
virtual Result<std::shared_ptr<Stream>> MakeStream(unsigned int flags) {
return NULLPTR;
}
/// @brief Wrap an existing device stream alongside a release function
///
/// @param device_stream a pointer to the stream to wrap
/// @param release_fn a function to call during destruction, `nullptr` or
/// a no-op function can be passed to indicate ownership is maintained
/// externally
virtual Result<std::shared_ptr<Stream>> WrapStream(void* device_stream,
Stream::release_fn_t release_fn) {
return NULLPTR;
}
/// \brief EXPERIMENTAL: An object that provides event/stream sync primitives
class ARROW_EXPORT SyncEvent {
public:
using release_fn_t = std::function<void(void*)>;
virtual ~SyncEvent() = default;
void* get_raw() { return sync_event_.get(); }
/// @brief Block until sync event is completed.
virtual Status Wait() = 0;
/// @brief Record the wrapped event on the stream so it triggers
/// the event when the stream gets to that point in its queue.
virtual Status Record(const Stream&) = 0;
protected:
/// If creating this with a passed in event, the caller must ensure
/// that the event lives until clear_event is called on this as it
/// won't own it.
explicit SyncEvent(void* sync_event, release_fn_t release_sync_event)
: sync_event_{sync_event, release_sync_event} {}
std::unique_ptr<void, release_fn_t> sync_event_;
};
protected:
ARROW_DISALLOW_COPY_AND_ASSIGN(Device);
explicit Device(bool is_cpu = false) : is_cpu_(is_cpu) {}
bool is_cpu_;
};
/// \brief EXPERIMENTAL: An object that provides memory management primitives
///
/// A MemoryManager is always tied to a particular Device instance.
/// It can also have additional parameters (such as a MemoryPool to
/// allocate CPU memory).
class ARROW_EXPORT MemoryManager : public std::enable_shared_from_this<MemoryManager> {
public:
virtual ~MemoryManager();
/// \brief The device this MemoryManager is tied to
const std::shared_ptr<Device>& device() const { return device_; }
/// \brief Whether this MemoryManager is tied to the main CPU device.
///
/// This shorthand method is very useful when deciding whether a memory address
/// is CPU-accessible.
bool is_cpu() const { return device_->is_cpu(); }
/// \brief Create a RandomAccessFile to read a particular buffer.
///
/// The given buffer must be tied to this MemoryManager.
///
/// See also the Buffer::GetReader shorthand.
virtual Result<std::shared_ptr<io::RandomAccessFile>> GetBufferReader(
std::shared_ptr<Buffer> buf) = 0;
/// \brief Create a OutputStream to write to a particular buffer.
///
/// The given buffer must be mutable and tied to this MemoryManager.
/// The returned stream object writes into the buffer's underlying memory
/// (but it won't resize it).
///
/// See also the Buffer::GetWriter shorthand.
virtual Result<std::shared_ptr<io::OutputStream>> GetBufferWriter(
std::shared_ptr<Buffer> buf) = 0;
/// \brief Allocate a (mutable) Buffer
///
/// The buffer will be allocated in the device's memory.
virtual Result<std::unique_ptr<Buffer>> AllocateBuffer(int64_t size) = 0;
/// \brief Copy a Buffer to a destination MemoryManager
///
/// See also the Buffer::Copy shorthand.
static Result<std::shared_ptr<Buffer>> CopyBuffer(
const std::shared_ptr<Buffer>& source, const std::shared_ptr<MemoryManager>& to);
/// \brief Copy a non-owned Buffer to a destination MemoryManager
///
/// This is useful for cases where the source memory area is externally managed
/// (its lifetime not tied to the source Buffer), otherwise please use CopyBuffer().
static Result<std::unique_ptr<Buffer>> CopyNonOwned(
const Buffer& source, const std::shared_ptr<MemoryManager>& to);
/// \brief Make a no-copy Buffer view in a destination MemoryManager
///
/// See also the Buffer::View shorthand.
static Result<std::shared_ptr<Buffer>> ViewBuffer(
const std::shared_ptr<Buffer>& source, const std::shared_ptr<MemoryManager>& to);
/// \brief Create a new SyncEvent.
///
/// This version should construct the appropriate event for the device and
/// provide the unique_ptr with the correct deleter for the event type.
/// If the device does not require or work with any synchronization, it is
/// allowed for it to return a nullptr.
virtual Result<std::shared_ptr<Device::SyncEvent>> MakeDeviceSyncEvent();
/// \brief Wrap an event into a SyncEvent.
///
/// @param sync_event passed in sync_event (should be a pointer to the appropriate type)
/// @param release_sync_event destructor to free sync_event. `nullptr` may be
/// passed to indicate that no destruction/freeing is necessary
virtual Result<std::shared_ptr<Device::SyncEvent>> WrapDeviceSyncEvent(
void* sync_event, Device::SyncEvent::release_fn_t release_sync_event);
protected:
ARROW_DISALLOW_COPY_AND_ASSIGN(MemoryManager);
explicit MemoryManager(const std::shared_ptr<Device>& device) : device_(device) {}
// Default implementations always return nullptr, should be overridden
// by subclasses that support data transfer.
// (returning nullptr means unsupported copy / view)
// In CopyBufferFrom and ViewBufferFrom, the `from` parameter is guaranteed to
// be equal to `buf->memory_manager()`.
virtual Result<std::shared_ptr<Buffer>> CopyBufferFrom(
const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& from);
virtual Result<std::shared_ptr<Buffer>> CopyBufferTo(
const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& to);
virtual Result<std::unique_ptr<Buffer>> CopyNonOwnedFrom(
const Buffer& buf, const std::shared_ptr<MemoryManager>& from);
virtual Result<std::unique_ptr<Buffer>> CopyNonOwnedTo(
const Buffer& buf, const std::shared_ptr<MemoryManager>& to);
virtual Result<std::shared_ptr<Buffer>> ViewBufferFrom(
const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& from);
virtual Result<std::shared_ptr<Buffer>> ViewBufferTo(
const std::shared_ptr<Buffer>& buf, const std::shared_ptr<MemoryManager>& to);
std::shared_ptr<Device> device_;
};
// ----------------------------------------------------------------------
// CPU backend implementation
class ARROW_EXPORT CPUDevice : public Device {
public:
const char* type_name() const override;
std::string ToString() const override;
bool Equals(const Device&) const override;
DeviceAllocationType device_type() const override { return DeviceAllocationType::kCPU; }
std::shared_ptr<MemoryManager> default_memory_manager() override;
/// \brief Return the global CPUDevice instance
static std::shared_ptr<Device> Instance();
/// \brief Create a MemoryManager
///
/// The returned MemoryManager will use the given MemoryPool for allocations.
static std::shared_ptr<MemoryManager> memory_manager(MemoryPool* pool);
protected:
CPUDevice() : Device(true) {}
};
class ARROW_EXPORT CPUMemoryManager : public MemoryManager {
public:
Result<std::shared_ptr<io::RandomAccessFile>> GetBufferReader(
std::shared_ptr<Buffer> buf) override;
Result<std::shared_ptr<io::OutputStream>> GetBufferWriter(
std::shared_ptr<Buffer> buf) override;
Result<std::unique_ptr<Buffer>> AllocateBuffer(int64_t size) override;
/// \brief Return the MemoryPool associated with this MemoryManager.
MemoryPool* pool() const { return pool_; }
protected:
CPUMemoryManager(const std::shared_ptr<Device>& device, MemoryPool* pool)
: MemoryManager(device), pool_(pool) {}
static std::shared_ptr<MemoryManager> Make(const std::shared_ptr<Device>& device,
MemoryPool* pool = default_memory_pool());
Result<std::shared_ptr<Buffer>> CopyBufferFrom(
const std::shared_ptr<Buffer>& buf,
const std::shared_ptr<MemoryManager>& from) override;
Result<std::shared_ptr<Buffer>> CopyBufferTo(
const std::shared_ptr<Buffer>& buf,
const std::shared_ptr<MemoryManager>& to) override;
Result<std::unique_ptr<Buffer>> CopyNonOwnedFrom(
const Buffer& buf, const std::shared_ptr<MemoryManager>& from) override;
Result<std::unique_ptr<Buffer>> CopyNonOwnedTo(
const Buffer& buf, const std::shared_ptr<MemoryManager>& to) override;
Result<std::shared_ptr<Buffer>> ViewBufferFrom(
const std::shared_ptr<Buffer>& buf,
const std::shared_ptr<MemoryManager>& from) override;
Result<std::shared_ptr<Buffer>> ViewBufferTo(
const std::shared_ptr<Buffer>& buf,
const std::shared_ptr<MemoryManager>& to) override;
MemoryPool* pool_;
friend std::shared_ptr<MemoryManager> CPUDevice::memory_manager(MemoryPool* pool);
ARROW_FRIEND_EXPORT friend std::shared_ptr<MemoryManager> default_cpu_memory_manager();
};
/// \brief Return the default CPU MemoryManager instance
///
/// The returned singleton instance uses the default MemoryPool.
/// This function is a faster spelling of
/// `CPUDevice::Instance()->default_memory_manager()`.
ARROW_EXPORT
std::shared_ptr<MemoryManager> default_cpu_memory_manager();
using DeviceMapper =
std::function<Result<std::shared_ptr<MemoryManager>>(int64_t device_id)>;
/// \brief Register a function to retrieve a MemoryManager for a Device type
///
/// This registers the device type globally. A specific device type can only
/// be registered once. This method is thread-safe.
///
/// Currently, this registry is only used for importing data through the C Device
/// Data Interface (for the default Device to MemoryManager mapper in
/// arrow::ImportDeviceArray/ImportDeviceRecordBatch).
///
/// \param[in] device_type the device type for which to register a MemoryManager
/// \param[in] mapper function that takes a device id and returns the appropriate
/// MemoryManager for the registered device type and given device id
/// \return Status
ARROW_EXPORT
Status RegisterDeviceMapper(DeviceAllocationType device_type, DeviceMapper mapper);
/// \brief Get the registered function to retrieve a MemoryManager for the
/// given Device type
///
/// \param[in] device_type the device type
/// \return function that takes a device id and returns the appropriate
/// MemoryManager for the registered device type and given device id
ARROW_EXPORT
Result<DeviceMapper> GetDeviceMapper(DeviceAllocationType device_type);
} // namespace arrow
|