File size: 18,164 Bytes
0b5e147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <algorithm>
#include <cstddef>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include "arrow/array.h"
#include "arrow/array/builder_base.h"
#include "arrow/array/builder_binary.h"
#include "arrow/array/builder_nested.h"
#include "arrow/array/builder_primitive.h"
#include "arrow/chunked_array.h"
#include "arrow/compute/api.h"
#include "arrow/status.h"
#include "arrow/table.h"
#include "arrow/type_fwd.h"
#include "arrow/type_traits.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/macros.h"
namespace arrow {
class Schema;
namespace stl {
namespace internal {
template <typename T, typename = void>
struct is_optional_like : public std::false_type {};
template <typename T, typename = void>
struct is_dereferencable : public std::false_type {};
template <typename T>
struct is_dereferencable<T, arrow::internal::void_t<decltype(*std::declval<T>())>>
: public std::true_type {};
template <typename T>
struct is_optional_like<
T, typename std::enable_if<
std::is_constructible<bool, T>::value && is_dereferencable<T>::value &&
!std::is_array<typename std::remove_reference<T>::type>::value>::type>
: public std::true_type {};
template <size_t N, typename Tuple>
using BareTupleElement =
typename std::decay<typename std::tuple_element<N, Tuple>::type>::type;
} // namespace internal
template <typename T, typename R = void>
using enable_if_optional_like =
typename std::enable_if<internal::is_optional_like<T>::value, R>::type;
/// Traits meta class to map standard C/C++ types to equivalent Arrow types.
template <typename T, typename Enable = void>
struct ConversionTraits {};
/// Returns builder type for given standard C/C++ type.
template <typename CType>
using CBuilderType =
typename TypeTraits<typename ConversionTraits<CType>::ArrowType>::BuilderType;
/// Default implementation of AppendListValues.
///
/// This function can be specialized by user to take advantage of appending
/// contiguous ranges while appending. This default implementation will call
/// ConversionTraits<ValueCType>::AppendRow() for each value in the range.
template <typename ValueCType, typename Range>
inline Status AppendListValues(CBuilderType<ValueCType>& value_builder,
Range&& cell_range) {
for (auto const& value : cell_range) {
ARROW_RETURN_NOT_OK(ConversionTraits<ValueCType>::AppendRow(value_builder, value));
}
return Status::OK();
}
#define ARROW_STL_CONVERSION(CType_, ArrowType_) \
template <> \
struct ConversionTraits<CType_> : public CTypeTraits<CType_> { \
static Status AppendRow(typename TypeTraits<ArrowType_>::BuilderType& builder, \
CType_ cell) { \
return builder.Append(cell); \
} \
static CType_ GetEntry(const typename TypeTraits<ArrowType_>::ArrayType& array, \
size_t j) { \
return array.Value(j); \
} \
}; \
\
template <> \
inline Status AppendListValues<CType_, const std::vector<CType_>&>( \
typename TypeTraits<ArrowType_>::BuilderType & value_builder, \
const std::vector<CType_>& cell_range) { \
return value_builder.AppendValues(cell_range); \
}
ARROW_STL_CONVERSION(bool, BooleanType)
ARROW_STL_CONVERSION(int8_t, Int8Type)
ARROW_STL_CONVERSION(int16_t, Int16Type)
ARROW_STL_CONVERSION(int32_t, Int32Type)
ARROW_STL_CONVERSION(int64_t, Int64Type)
ARROW_STL_CONVERSION(uint8_t, UInt8Type)
ARROW_STL_CONVERSION(uint16_t, UInt16Type)
ARROW_STL_CONVERSION(uint32_t, UInt32Type)
ARROW_STL_CONVERSION(uint64_t, UInt64Type)
ARROW_STL_CONVERSION(float, FloatType)
ARROW_STL_CONVERSION(double, DoubleType)
template <>
struct ConversionTraits<std::string> : public CTypeTraits<std::string> {
static Status AppendRow(StringBuilder& builder, const std::string& cell) {
return builder.Append(cell);
}
static std::string GetEntry(const StringArray& array, size_t j) {
return array.GetString(j);
}
};
/// Append cell range elements as a single value to the list builder.
///
/// Cell range will be added to child builder using AppendListValues<ValueCType>()
/// if provided. AppendListValues<ValueCType>() has a default implementation, but
/// it can be specialized by users.
template <typename ValueCType, typename ListBuilderType, typename Range>
Status AppendCellRange(ListBuilderType& builder, Range&& cell_range) {
constexpr bool is_list_builder = std::is_same<ListBuilderType, ListBuilder>::value;
constexpr bool is_large_list_builder =
std::is_same<ListBuilderType, LargeListBuilder>::value;
static_assert(
is_list_builder || is_large_list_builder,
"Builder type must be either ListBuilder or LargeListBuilder for appending "
"multiple rows.");
using ChildBuilderType = CBuilderType<ValueCType>;
ARROW_RETURN_NOT_OK(builder.Append());
auto& value_builder =
::arrow::internal::checked_cast<ChildBuilderType&>(*builder.value_builder());
// XXX: Remove appended value before returning if status isn't OK?
return AppendListValues<ValueCType>(value_builder, std::forward<Range>(cell_range));
}
template <typename ValueCType>
struct ConversionTraits<std::vector<ValueCType>>
: public CTypeTraits<std::vector<ValueCType>> {
static Status AppendRow(ListBuilder& builder, const std::vector<ValueCType>& cell) {
return AppendCellRange<ValueCType>(builder, cell);
}
static std::vector<ValueCType> GetEntry(const ListArray& array, size_t j) {
using ElementArrayType =
typename TypeTraits<typename ConversionTraits<ValueCType>::ArrowType>::ArrayType;
const ElementArrayType& value_array =
::arrow::internal::checked_cast<const ElementArrayType&>(*array.values());
std::vector<ValueCType> vec(array.value_length(j));
for (int64_t i = 0; i < array.value_length(j); i++) {
vec[i] =
ConversionTraits<ValueCType>::GetEntry(value_array, array.value_offset(j) + i);
}
return vec;
}
};
template <typename Optional>
struct ConversionTraits<Optional, enable_if_optional_like<Optional>>
: public CTypeTraits<typename std::decay<decltype(*std::declval<Optional>())>::type> {
using OptionalInnerType =
typename std::decay<decltype(*std::declval<Optional>())>::type;
using typename CTypeTraits<OptionalInnerType>::ArrowType;
using CTypeTraits<OptionalInnerType>::type_singleton;
static Status AppendRow(typename TypeTraits<ArrowType>::BuilderType& builder,
const Optional& cell) {
if (cell) {
return ConversionTraits<OptionalInnerType>::AppendRow(builder, *cell);
} else {
return builder.AppendNull();
}
}
};
/// Build an arrow::Schema based upon the types defined in a std::tuple-like structure.
///
/// While the type information is available at compile-time, we still need to add the
/// column names at runtime, thus these methods are not constexpr.
template <typename Tuple, std::size_t N = std::tuple_size<Tuple>::value>
struct SchemaFromTuple {
using Element = internal::BareTupleElement<N - 1, Tuple>;
// Implementations that take a vector-like object for the column names.
/// Recursively build a vector of arrow::Field from the defined types.
///
/// In most cases MakeSchema is the better entrypoint for the Schema creation.
static std::vector<std::shared_ptr<Field>> MakeSchemaRecursion(
const std::vector<std::string>& names) {
std::vector<std::shared_ptr<Field>> ret =
SchemaFromTuple<Tuple, N - 1>::MakeSchemaRecursion(names);
auto type = ConversionTraits<Element>::type_singleton();
ret.push_back(field(names[N - 1], type, internal::is_optional_like<Element>::value));
return ret;
}
/// Build a Schema from the types of the tuple-like structure passed in as template
/// parameter assign the column names at runtime.
///
/// An example usage of this API can look like the following:
///
/// \code{.cpp}
/// using TupleType = std::tuple<int, std::vector<std::string>>;
/// std::shared_ptr<Schema> schema =
/// SchemaFromTuple<TupleType>::MakeSchema({"int_column", "list_of_strings_column"});
/// \endcode
static std::shared_ptr<Schema> MakeSchema(const std::vector<std::string>& names) {
return std::make_shared<Schema>(MakeSchemaRecursion(names));
}
// Implementations that take a tuple-like object for the column names.
/// Recursively build a vector of arrow::Field from the defined types.
///
/// In most cases MakeSchema is the better entrypoint for the Schema creation.
template <typename NamesTuple>
static std::vector<std::shared_ptr<Field>> MakeSchemaRecursionT(
const NamesTuple& names) {
using std::get;
std::vector<std::shared_ptr<Field>> ret =
SchemaFromTuple<Tuple, N - 1>::MakeSchemaRecursionT(names);
std::shared_ptr<DataType> type = ConversionTraits<Element>::type_singleton();
ret.push_back(
field(get<N - 1>(names), type, internal::is_optional_like<Element>::value));
return ret;
}
/// Build a Schema from the types of the tuple-like structure passed in as template
/// parameter assign the column names at runtime.
///
/// An example usage of this API can look like the following:
///
/// \code{.cpp}
/// using TupleType = std::tuple<int, std::vector<std::string>>;
/// std::shared_ptr<Schema> schema =
/// SchemaFromTuple<TupleType>::MakeSchema({"int_column", "list_of_strings_column"});
/// \endcode
template <typename NamesTuple>
static std::shared_ptr<Schema> MakeSchema(const NamesTuple& names) {
return std::make_shared<Schema>(MakeSchemaRecursionT<NamesTuple>(names));
}
};
template <typename Tuple>
struct SchemaFromTuple<Tuple, 0> {
static std::vector<std::shared_ptr<Field>> MakeSchemaRecursion(
const std::vector<std::string>& names) {
std::vector<std::shared_ptr<Field>> ret;
ret.reserve(names.size());
return ret;
}
template <typename NamesTuple>
static std::vector<std::shared_ptr<Field>> MakeSchemaRecursionT(
const NamesTuple& names) {
std::vector<std::shared_ptr<Field>> ret;
ret.reserve(std::tuple_size<NamesTuple>::value);
return ret;
}
};
namespace internal {
template <typename Tuple, std::size_t N = std::tuple_size<Tuple>::value>
struct CreateBuildersRecursive {
static Status Make(MemoryPool* pool,
std::vector<std::unique_ptr<ArrayBuilder>>* builders) {
using Element = BareTupleElement<N - 1, Tuple>;
std::shared_ptr<DataType> type = ConversionTraits<Element>::type_singleton();
ARROW_RETURN_NOT_OK(MakeBuilder(pool, type, &builders->at(N - 1)));
return CreateBuildersRecursive<Tuple, N - 1>::Make(pool, builders);
}
};
template <typename Tuple>
struct CreateBuildersRecursive<Tuple, 0> {
static Status Make(MemoryPool*, std::vector<std::unique_ptr<ArrayBuilder>>*) {
return Status::OK();
}
};
template <typename Tuple, std::size_t N = std::tuple_size<Tuple>::value>
struct RowIterator {
static Status Append(const std::vector<std::unique_ptr<ArrayBuilder>>& builders,
const Tuple& row) {
using std::get;
using Element = BareTupleElement<N - 1, Tuple>;
using BuilderType =
typename TypeTraits<typename ConversionTraits<Element>::ArrowType>::BuilderType;
BuilderType& builder =
::arrow::internal::checked_cast<BuilderType&>(*builders[N - 1]);
ARROW_RETURN_NOT_OK(ConversionTraits<Element>::AppendRow(builder, get<N - 1>(row)));
return RowIterator<Tuple, N - 1>::Append(builders, row);
}
};
template <typename Tuple>
struct RowIterator<Tuple, 0> {
static Status Append(const std::vector<std::unique_ptr<ArrayBuilder>>& builders,
const Tuple& row) {
return Status::OK();
}
};
template <typename Tuple, std::size_t N = std::tuple_size<Tuple>::value>
struct EnsureColumnTypes {
static Status Cast(const Table& table, std::shared_ptr<Table>* table_owner,
const compute::CastOptions& cast_options, compute::ExecContext* ctx,
std::reference_wrapper<const ::arrow::Table>* result) {
using Element = BareTupleElement<N - 1, Tuple>;
std::shared_ptr<DataType> expected_type = ConversionTraits<Element>::type_singleton();
if (!table.schema()->field(N - 1)->type()->Equals(*expected_type)) {
ARROW_ASSIGN_OR_RAISE(
Datum casted,
compute::Cast(table.column(N - 1), expected_type, cast_options, ctx));
auto new_field = table.schema()->field(N - 1)->WithType(expected_type);
ARROW_ASSIGN_OR_RAISE(*table_owner,
table.SetColumn(N - 1, new_field, casted.chunked_array()));
*result = **table_owner;
}
return EnsureColumnTypes<Tuple, N - 1>::Cast(result->get(), table_owner, cast_options,
ctx, result);
}
};
template <typename Tuple>
struct EnsureColumnTypes<Tuple, 0> {
static Status Cast(const Table& table, std::shared_ptr<Table>* table_owner,
const compute::CastOptions& cast_options, compute::ExecContext* ctx,
std::reference_wrapper<const ::arrow::Table>* result) {
return Status::OK();
}
};
template <typename Range, typename Tuple, std::size_t N = std::tuple_size<Tuple>::value>
struct TupleSetter {
static void Fill(const Table& table, Range* rows) {
using std::get;
using Element = typename std::tuple_element<N - 1, Tuple>::type;
using ArrayType =
typename TypeTraits<typename ConversionTraits<Element>::ArrowType>::ArrayType;
auto iter = rows->begin();
const ChunkedArray& chunked_array = *table.column(N - 1);
for (int i = 0; i < chunked_array.num_chunks(); i++) {
const ArrayType& array =
::arrow::internal::checked_cast<const ArrayType&>(*chunked_array.chunk(i));
for (int64_t j = 0; j < array.length(); j++) {
get<N - 1>(*iter++) = ConversionTraits<Element>::GetEntry(array, j);
}
}
return TupleSetter<Range, Tuple, N - 1>::Fill(table, rows);
}
};
template <typename Range, typename Tuple>
struct TupleSetter<Range, Tuple, 0> {
static void Fill(const Table& table, Range* rows) {}
};
} // namespace internal
template <typename Range>
Status TableFromTupleRange(MemoryPool* pool, Range&& rows,
const std::vector<std::string>& names,
std::shared_ptr<Table>* table) {
using row_type = typename std::iterator_traits<decltype(std::begin(rows))>::value_type;
constexpr std::size_t n_columns = std::tuple_size<row_type>::value;
std::shared_ptr<Schema> schema = SchemaFromTuple<row_type>::MakeSchema(names);
std::vector<std::unique_ptr<ArrayBuilder>> builders(n_columns);
ARROW_RETURN_NOT_OK(internal::CreateBuildersRecursive<row_type>::Make(pool, &builders));
for (auto const& row : rows) {
ARROW_RETURN_NOT_OK(internal::RowIterator<row_type>::Append(builders, row));
}
std::vector<std::shared_ptr<Array>> arrays;
for (auto const& builder : builders) {
std::shared_ptr<Array> array;
ARROW_RETURN_NOT_OK(builder->Finish(&array));
arrays.emplace_back(array);
}
*table = Table::Make(std::move(schema), std::move(arrays));
return Status::OK();
}
template <typename Range>
Status TupleRangeFromTable(const Table& table, const compute::CastOptions& cast_options,
compute::ExecContext* ctx, Range* rows) {
using row_type = typename std::decay<decltype(*std::begin(*rows))>::type;
constexpr std::size_t n_columns = std::tuple_size<row_type>::value;
if (table.schema()->num_fields() != n_columns) {
return Status::Invalid(
"Number of columns in the table does not match the width of the target: ",
table.schema()->num_fields(), " != ", n_columns);
}
if (std::size(*rows) != static_cast<size_t>(table.num_rows())) {
return Status::Invalid(
"Number of rows in the table does not match the size of the target: ",
table.num_rows(), " != ", std::size(*rows));
}
// Check that all columns have the correct type, otherwise cast them.
std::shared_ptr<Table> table_owner;
std::reference_wrapper<const ::arrow::Table> current_table(table);
ARROW_RETURN_NOT_OK(internal::EnsureColumnTypes<row_type>::Cast(
table, &table_owner, cast_options, ctx, ¤t_table));
internal::TupleSetter<Range, row_type>::Fill(current_table.get(), rows);
return Status::OK();
}
} // namespace stl
} // namespace arrow
|