File size: 8,913 Bytes
0b5e147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <cstdint>
#include <memory>
#include <string>
#include <vector>

#include "arrow/buffer.h"
#include "arrow/compare.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/type_traits.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"

namespace arrow {

static inline bool is_tensor_supported(Type::type type_id) {
  switch (type_id) {
    case Type::UINT8:
    case Type::INT8:
    case Type::UINT16:
    case Type::INT16:
    case Type::UINT32:
    case Type::INT32:
    case Type::UINT64:
    case Type::INT64:
    case Type::HALF_FLOAT:
    case Type::FLOAT:
    case Type::DOUBLE:
      return true;
    default:
      break;
  }
  return false;
}

namespace internal {

ARROW_EXPORT
Status ComputeRowMajorStrides(const FixedWidthType& type,
                              const std::vector<int64_t>& shape,
                              std::vector<int64_t>* strides);

ARROW_EXPORT
Status ComputeColumnMajorStrides(const FixedWidthType& type,
                                 const std::vector<int64_t>& shape,
                                 std::vector<int64_t>* strides);

ARROW_EXPORT
bool IsTensorStridesContiguous(const std::shared_ptr<DataType>& type,
                               const std::vector<int64_t>& shape,
                               const std::vector<int64_t>& strides);

ARROW_EXPORT
Status ValidateTensorParameters(const std::shared_ptr<DataType>& type,
                                const std::shared_ptr<Buffer>& data,
                                const std::vector<int64_t>& shape,
                                const std::vector<int64_t>& strides,
                                const std::vector<std::string>& dim_names);

}  // namespace internal

class ARROW_EXPORT Tensor {
 public:
  /// \brief Create a Tensor with full parameters
  ///
  /// This factory function will return Status::Invalid when the parameters are
  /// inconsistent
  ///
  /// \param[in] type The data type of the tensor values
  /// \param[in] data The buffer of the tensor content
  /// \param[in] shape The shape of the tensor
  /// \param[in] strides The strides of the tensor
  ///            (if this is empty, the data assumed to be row-major)
  /// \param[in] dim_names The names of the tensor dimensions
  static inline Result<std::shared_ptr<Tensor>> Make(
      const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
      const std::vector<int64_t>& shape, const std::vector<int64_t>& strides = {},
      const std::vector<std::string>& dim_names = {}) {
    ARROW_RETURN_NOT_OK(
        internal::ValidateTensorParameters(type, data, shape, strides, dim_names));
    return std::make_shared<Tensor>(type, data, shape, strides, dim_names);
  }

  virtual ~Tensor() = default;

  /// Constructor with no dimension names or strides, data assumed to be row-major
  Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
         const std::vector<int64_t>& shape);

  /// Constructor with non-negative strides
  Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
         const std::vector<int64_t>& shape, const std::vector<int64_t>& strides);

  /// Constructor with non-negative strides and dimension names
  Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
         const std::vector<int64_t>& shape, const std::vector<int64_t>& strides,
         const std::vector<std::string>& dim_names);

  std::shared_ptr<DataType> type() const { return type_; }
  std::shared_ptr<Buffer> data() const { return data_; }

  const uint8_t* raw_data() const { return data_->data(); }
  uint8_t* raw_mutable_data() { return data_->mutable_data(); }

  const std::vector<int64_t>& shape() const { return shape_; }
  const std::vector<int64_t>& strides() const { return strides_; }

  int ndim() const { return static_cast<int>(shape_.size()); }

  const std::vector<std::string>& dim_names() const { return dim_names_; }
  const std::string& dim_name(int i) const;

  /// Total number of value cells in the tensor
  int64_t size() const;

  /// Return true if the underlying data buffer is mutable
  bool is_mutable() const { return data_->is_mutable(); }

  /// Either row major or column major
  bool is_contiguous() const;

  /// AKA "C order"
  bool is_row_major() const;

  /// AKA "Fortran order"
  bool is_column_major() const;

  Type::type type_id() const;

  bool Equals(const Tensor& other, const EqualOptions& = EqualOptions::Defaults()) const;

  /// Compute the number of non-zero values in the tensor
  Result<int64_t> CountNonZero() const;

  /// Return the offset of the given index on the given strides
  static int64_t CalculateValueOffset(const std::vector<int64_t>& strides,
                                      const std::vector<int64_t>& index) {
    const int64_t n = static_cast<int64_t>(index.size());
    int64_t offset = 0;
    for (int64_t i = 0; i < n; ++i) {
      offset += index[i] * strides[i];
    }
    return offset;
  }

  int64_t CalculateValueOffset(const std::vector<int64_t>& index) const {
    return Tensor::CalculateValueOffset(strides_, index);
  }

  /// Returns the value at the given index without data-type and bounds checks
  template <typename ValueType>
  const typename ValueType::c_type& Value(const std::vector<int64_t>& index) const {
    using c_type = typename ValueType::c_type;
    const int64_t offset = CalculateValueOffset(index);
    const c_type* ptr = reinterpret_cast<const c_type*>(raw_data() + offset);
    return *ptr;
  }

  Status Validate() const {
    return internal::ValidateTensorParameters(type_, data_, shape_, strides_, dim_names_);
  }

 protected:
  Tensor() {}

  std::shared_ptr<DataType> type_;
  std::shared_ptr<Buffer> data_;
  std::vector<int64_t> shape_;
  std::vector<int64_t> strides_;

  /// These names are optional
  std::vector<std::string> dim_names_;

  template <typename SparseIndexType>
  friend class SparseTensorImpl;

 private:
  ARROW_DISALLOW_COPY_AND_ASSIGN(Tensor);
};

template <typename TYPE>
class NumericTensor : public Tensor {
 public:
  using TypeClass = TYPE;
  using value_type = typename TypeClass::c_type;

  /// \brief Create a NumericTensor with full parameters
  ///
  /// This factory function will return Status::Invalid when the parameters are
  /// inconsistent
  ///
  /// \param[in] data The buffer of the tensor content
  /// \param[in] shape The shape of the tensor
  /// \param[in] strides The strides of the tensor
  ///            (if this is empty, the data assumed to be row-major)
  /// \param[in] dim_names The names of the tensor dimensions
  static Result<std::shared_ptr<NumericTensor<TYPE>>> Make(
      const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape,
      const std::vector<int64_t>& strides = {},
      const std::vector<std::string>& dim_names = {}) {
    ARROW_RETURN_NOT_OK(internal::ValidateTensorParameters(
        TypeTraits<TYPE>::type_singleton(), data, shape, strides, dim_names));
    return std::make_shared<NumericTensor<TYPE>>(data, shape, strides, dim_names);
  }

  /// Constructor with non-negative strides and dimension names
  NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape,
                const std::vector<int64_t>& strides,
                const std::vector<std::string>& dim_names)
      : Tensor(TypeTraits<TYPE>::type_singleton(), data, shape, strides, dim_names) {}

  /// Constructor with no dimension names or strides, data assumed to be row-major
  NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape)
      : NumericTensor(data, shape, {}, {}) {}

  /// Constructor with non-negative strides
  NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape,
                const std::vector<int64_t>& strides)
      : NumericTensor(data, shape, strides, {}) {}

  const value_type& Value(const std::vector<int64_t>& index) const {
    return Tensor::Value<TypeClass>(index);
  }
};

}  // namespace arrow