File size: 14,637 Bytes
b90def7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/array.h"
#include "arrow/chunked_array.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/type_traits.h"
#include "arrow/util/checked_cast.h"
#include "arrow/visit_type_inline.h"
namespace arrow {
namespace internal {
template <typename BaseConverter, template <typename...> class ConverterTrait>
static Result<std::unique_ptr<BaseConverter>> MakeConverter(
std::shared_ptr<DataType> type, typename BaseConverter::OptionsType options,
MemoryPool* pool);
template <typename Input, typename Options>
class Converter {
public:
using Self = Converter<Input, Options>;
using InputType = Input;
using OptionsType = Options;
virtual ~Converter() = default;
Status Construct(std::shared_ptr<DataType> type, OptionsType options,
MemoryPool* pool) {
type_ = std::move(type);
options_ = std::move(options);
return Init(pool);
}
virtual Status Append(InputType value) { return Status::NotImplemented("Append"); }
virtual Status Extend(InputType values, int64_t size, int64_t offset = 0) {
return Status::NotImplemented("Extend");
}
virtual Status ExtendMasked(InputType values, InputType mask, int64_t size,
int64_t offset = 0) {
return Status::NotImplemented("ExtendMasked");
}
const std::shared_ptr<ArrayBuilder>& builder() const { return builder_; }
const std::shared_ptr<DataType>& type() const { return type_; }
OptionsType options() const { return options_; }
bool may_overflow() const { return may_overflow_; }
bool rewind_on_overflow() const { return rewind_on_overflow_; }
virtual Status Reserve(int64_t additional_capacity) {
return builder_->Reserve(additional_capacity);
}
Status AppendNull() { return builder_->AppendNull(); }
virtual Result<std::shared_ptr<Array>> ToArray() { return builder_->Finish(); }
virtual Result<std::shared_ptr<Array>> ToArray(int64_t length) {
ARROW_ASSIGN_OR_RAISE(auto arr, this->ToArray());
return arr->Slice(0, length);
}
virtual Result<std::shared_ptr<ChunkedArray>> ToChunkedArray() {
ARROW_ASSIGN_OR_RAISE(auto array, ToArray());
std::vector<std::shared_ptr<Array>> chunks = {std::move(array)};
return std::make_shared<ChunkedArray>(chunks);
}
protected:
virtual Status Init(MemoryPool* pool) { return Status::OK(); }
std::shared_ptr<DataType> type_;
std::shared_ptr<ArrayBuilder> builder_;
OptionsType options_;
bool may_overflow_ = false;
bool rewind_on_overflow_ = false;
};
template <typename ArrowType, typename BaseConverter>
class PrimitiveConverter : public BaseConverter {
public:
using BuilderType = typename TypeTraits<ArrowType>::BuilderType;
protected:
Status Init(MemoryPool* pool) override {
this->builder_ = std::make_shared<BuilderType>(this->type_, pool);
// Narrow variable-sized binary types may overflow
this->may_overflow_ = is_binary_like(this->type_->id());
primitive_type_ = checked_cast<const ArrowType*>(this->type_.get());
primitive_builder_ = checked_cast<BuilderType*>(this->builder_.get());
return Status::OK();
}
const ArrowType* primitive_type_;
BuilderType* primitive_builder_;
};
template <typename ArrowType, typename BaseConverter,
template <typename...> class ConverterTrait>
class ListConverter : public BaseConverter {
public:
using BuilderType = typename TypeTraits<ArrowType>::BuilderType;
using ConverterType = typename ConverterTrait<ArrowType>::type;
protected:
Status Init(MemoryPool* pool) override {
list_type_ = checked_cast<const ArrowType*>(this->type_.get());
ARROW_ASSIGN_OR_RAISE(value_converter_,
(MakeConverter<BaseConverter, ConverterTrait>(
list_type_->value_type(), this->options_, pool)));
this->builder_ =
std::make_shared<BuilderType>(pool, value_converter_->builder(), this->type_);
list_builder_ = checked_cast<BuilderType*>(this->builder_.get());
// Narrow list types may overflow
this->may_overflow_ = this->rewind_on_overflow_ =
sizeof(typename ArrowType::offset_type) < sizeof(int64_t);
return Status::OK();
}
const ArrowType* list_type_;
BuilderType* list_builder_;
std::unique_ptr<BaseConverter> value_converter_;
};
template <typename BaseConverter, template <typename...> class ConverterTrait>
class StructConverter : public BaseConverter {
public:
using ConverterType = typename ConverterTrait<StructType>::type;
Status Reserve(int64_t additional_capacity) override {
ARROW_RETURN_NOT_OK(this->builder_->Reserve(additional_capacity));
for (const auto& child : children_) {
ARROW_RETURN_NOT_OK(child->Reserve(additional_capacity));
}
return Status::OK();
}
protected:
Status Init(MemoryPool* pool) override {
std::unique_ptr<BaseConverter> child_converter;
std::vector<std::shared_ptr<ArrayBuilder>> child_builders;
struct_type_ = checked_cast<const StructType*>(this->type_.get());
for (const auto& field : struct_type_->fields()) {
ARROW_ASSIGN_OR_RAISE(child_converter,
(MakeConverter<BaseConverter, ConverterTrait>(
field->type(), this->options_, pool)));
this->may_overflow_ |= child_converter->may_overflow();
this->rewind_on_overflow_ = this->may_overflow_;
child_builders.push_back(child_converter->builder());
children_.push_back(std::move(child_converter));
}
this->builder_ =
std::make_shared<StructBuilder>(this->type_, pool, std::move(child_builders));
struct_builder_ = checked_cast<StructBuilder*>(this->builder_.get());
return Status::OK();
}
const StructType* struct_type_;
StructBuilder* struct_builder_;
std::vector<std::unique_ptr<BaseConverter>> children_;
};
template <typename ValueType, typename BaseConverter>
class DictionaryConverter : public BaseConverter {
public:
using BuilderType = DictionaryBuilder<ValueType>;
protected:
Status Init(MemoryPool* pool) override {
std::unique_ptr<ArrayBuilder> builder;
ARROW_RETURN_NOT_OK(MakeDictionaryBuilder(pool, this->type_, NULLPTR, &builder));
this->builder_ = std::move(builder);
this->may_overflow_ = false;
dict_type_ = checked_cast<const DictionaryType*>(this->type_.get());
value_type_ = checked_cast<const ValueType*>(dict_type_->value_type().get());
value_builder_ = checked_cast<BuilderType*>(this->builder_.get());
return Status::OK();
}
const DictionaryType* dict_type_;
const ValueType* value_type_;
BuilderType* value_builder_;
};
template <typename BaseConverter, template <typename...> class ConverterTrait>
struct MakeConverterImpl {
template <typename T, typename ConverterType = typename ConverterTrait<T>::type>
Status Visit(const T&) {
out.reset(new ConverterType());
return out->Construct(std::move(type), std::move(options), pool);
}
Status Visit(const DictionaryType& t) {
switch (t.value_type()->id()) {
#define DICTIONARY_CASE(TYPE) \
case TYPE::type_id: \
out = std::make_unique< \
typename ConverterTrait<DictionaryType>::template dictionary_type<TYPE>>(); \
break;
DICTIONARY_CASE(BooleanType);
DICTIONARY_CASE(Int8Type);
DICTIONARY_CASE(Int16Type);
DICTIONARY_CASE(Int32Type);
DICTIONARY_CASE(Int64Type);
DICTIONARY_CASE(UInt8Type);
DICTIONARY_CASE(UInt16Type);
DICTIONARY_CASE(UInt32Type);
DICTIONARY_CASE(UInt64Type);
DICTIONARY_CASE(FloatType);
DICTIONARY_CASE(DoubleType);
DICTIONARY_CASE(BinaryType);
DICTIONARY_CASE(StringType);
DICTIONARY_CASE(FixedSizeBinaryType);
#undef DICTIONARY_CASE
default:
return Status::NotImplemented("DictionaryArray converter for type ", t.ToString(),
" not implemented");
}
return out->Construct(std::move(type), std::move(options), pool);
}
Status Visit(const DataType& t) { return Status::NotImplemented(t.name()); }
std::shared_ptr<DataType> type;
typename BaseConverter::OptionsType options;
MemoryPool* pool;
std::unique_ptr<BaseConverter> out;
};
template <typename BaseConverter, template <typename...> class ConverterTrait>
static Result<std::unique_ptr<BaseConverter>> MakeConverter(
std::shared_ptr<DataType> type, typename BaseConverter::OptionsType options,
MemoryPool* pool) {
MakeConverterImpl<BaseConverter, ConverterTrait> visitor{
std::move(type), std::move(options), pool, NULLPTR};
ARROW_RETURN_NOT_OK(VisitTypeInline(*visitor.type, &visitor));
return std::move(visitor.out);
}
template <typename Converter>
class Chunker {
public:
using InputType = typename Converter::InputType;
explicit Chunker(std::unique_ptr<Converter> converter)
: converter_(std::move(converter)) {}
Status Reserve(int64_t additional_capacity) {
ARROW_RETURN_NOT_OK(converter_->Reserve(additional_capacity));
reserved_ += additional_capacity;
return Status::OK();
}
Status AppendNull() {
auto status = converter_->AppendNull();
if (ARROW_PREDICT_FALSE(status.IsCapacityError())) {
if (converter_->builder()->length() == 0) {
// Builder length == 0 means the individual element is too large to append.
// In this case, no need to try again.
return status;
}
ARROW_RETURN_NOT_OK(FinishChunk());
return converter_->AppendNull();
}
++length_;
return status;
}
Status Append(InputType value) {
auto status = converter_->Append(value);
if (ARROW_PREDICT_FALSE(status.IsCapacityError())) {
if (converter_->builder()->length() == 0) {
return status;
}
ARROW_RETURN_NOT_OK(FinishChunk());
return Append(value);
}
++length_;
return status;
}
Status Extend(InputType values, int64_t size, int64_t offset = 0) {
while (offset < size) {
auto length_before = converter_->builder()->length();
auto status = converter_->Extend(values, size, offset);
auto length_after = converter_->builder()->length();
auto num_converted = length_after - length_before;
offset += num_converted;
length_ += num_converted;
if (status.IsCapacityError()) {
if (converter_->builder()->length() == 0) {
// Builder length == 0 means the individual element is too large to append.
// In this case, no need to try again.
return status;
} else if (converter_->rewind_on_overflow()) {
// The list-like and binary-like conversion paths may raise a capacity error,
// we need to handle them differently. While the binary-like converters check
// the capacity before append/extend the list-like converters just check after
// append/extend. Thus depending on the implementation semantics we may need
// to rewind (slice) the output chunk by one.
length_ -= 1;
offset -= 1;
}
ARROW_RETURN_NOT_OK(FinishChunk());
} else if (!status.ok()) {
return status;
}
}
return Status::OK();
}
Status ExtendMasked(InputType values, InputType mask, int64_t size,
int64_t offset = 0) {
while (offset < size) {
auto length_before = converter_->builder()->length();
auto status = converter_->ExtendMasked(values, mask, size, offset);
auto length_after = converter_->builder()->length();
auto num_converted = length_after - length_before;
offset += num_converted;
length_ += num_converted;
if (status.IsCapacityError()) {
if (converter_->builder()->length() == 0) {
// Builder length == 0 means the individual element is too large to append.
// In this case, no need to try again.
return status;
} else if (converter_->rewind_on_overflow()) {
// The list-like and binary-like conversion paths may raise a capacity error,
// we need to handle them differently. While the binary-like converters check
// the capacity before append/extend the list-like converters just check after
// append/extend. Thus depending on the implementation semantics we may need
// to rewind (slice) the output chunk by one.
length_ -= 1;
offset -= 1;
}
ARROW_RETURN_NOT_OK(FinishChunk());
} else if (!status.ok()) {
return status;
}
}
return Status::OK();
}
Status FinishChunk() {
ARROW_ASSIGN_OR_RAISE(auto chunk, converter_->ToArray(length_));
chunks_.push_back(chunk);
// Reserve space for the remaining items.
// Besides being an optimization, it is also required if the converter's
// implementation relies on unsafe builder methods in converter->Append().
auto remaining = reserved_ - length_;
Reset();
return Reserve(remaining);
}
Result<std::shared_ptr<ChunkedArray>> ToChunkedArray() {
ARROW_RETURN_NOT_OK(FinishChunk());
return std::make_shared<ChunkedArray>(chunks_);
}
protected:
void Reset() {
converter_->builder()->Reset();
length_ = 0;
reserved_ = 0;
}
int64_t length_ = 0;
int64_t reserved_ = 0;
std::unique_ptr<Converter> converter_;
std::vector<std::shared_ptr<Array>> chunks_;
};
template <typename T>
static Result<std::unique_ptr<Chunker<T>>> MakeChunker(std::unique_ptr<T> converter) {
return std::make_unique<Chunker<T>>(std::move(converter));
}
} // namespace internal
} // namespace arrow
|