File size: 11,494 Bytes
9eff8f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <iosfwd>
#include <limits>
#include <string>
#include <string_view>
#include <utility>
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/util/basic_decimal.h"
namespace arrow {
/// Represents a signed 128-bit integer in two's complement.
/// Calculations wrap around and overflow is ignored.
/// The max decimal precision that can be safely represented is
/// 38 significant digits.
///
/// For a discussion of the algorithms, look at Knuth's volume 2,
/// Semi-numerical Algorithms section 4.3.1.
///
/// Adapted from the Apache ORC C++ implementation
///
/// The implementation is split into two parts :
///
/// 1. BasicDecimal128
/// - can be safely compiled to IR without references to libstdc++.
/// 2. Decimal128
/// - has additional functionality on top of BasicDecimal128 to deal with
/// strings and streams.
class ARROW_EXPORT Decimal128 : public BasicDecimal128 {
public:
/// \cond FALSE
// (need to avoid a duplicate definition in Sphinx)
using BasicDecimal128::BasicDecimal128;
/// \endcond
/// \brief constructor creates a Decimal128 from a BasicDecimal128.
constexpr Decimal128(const BasicDecimal128& value) noexcept // NOLINT runtime/explicit
: BasicDecimal128(value) {}
/// \brief Parse the number from a base 10 string representation.
explicit Decimal128(const std::string& value);
/// \brief Empty constructor creates a Decimal128 with a value of 0.
// This is required on some older compilers.
constexpr Decimal128() noexcept : BasicDecimal128() {}
/// Divide this number by right and return the result.
///
/// This operation is not destructive.
/// The answer rounds to zero. Signs work like:
/// 21 / 5 -> 4, 1
/// -21 / 5 -> -4, -1
/// 21 / -5 -> -4, 1
/// -21 / -5 -> 4, -1
/// \param[in] divisor the number to divide by
/// \return the pair of the quotient and the remainder
Result<std::pair<Decimal128, Decimal128>> Divide(const Decimal128& divisor) const {
std::pair<Decimal128, Decimal128> result;
auto dstatus = BasicDecimal128::Divide(divisor, &result.first, &result.second);
ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
return std::move(result);
}
/// \brief Convert the Decimal128 value to a base 10 decimal string with the given
/// scale.
std::string ToString(int32_t scale) const;
/// \brief Convert the value to an integer string
std::string ToIntegerString() const;
/// \brief Cast this value to an int64_t.
explicit operator int64_t() const;
/// \brief Convert a decimal string to a Decimal128 value, optionally including
/// precision and scale if they're passed in and not null.
static Status FromString(std::string_view s, Decimal128* out, int32_t* precision,
int32_t* scale = NULLPTR);
static Status FromString(const std::string& s, Decimal128* out, int32_t* precision,
int32_t* scale = NULLPTR);
static Status FromString(const char* s, Decimal128* out, int32_t* precision,
int32_t* scale = NULLPTR);
static Result<Decimal128> FromString(std::string_view s);
static Result<Decimal128> FromString(const std::string& s);
static Result<Decimal128> FromString(const char* s);
static Result<Decimal128> FromReal(double real, int32_t precision, int32_t scale);
static Result<Decimal128> FromReal(float real, int32_t precision, int32_t scale);
/// \brief Convert from a big-endian byte representation. The length must be
/// between 1 and 16.
/// \return error status if the length is an invalid value
static Result<Decimal128> FromBigEndian(const uint8_t* data, int32_t length);
/// \brief Convert Decimal128 from one scale to another
Result<Decimal128> Rescale(int32_t original_scale, int32_t new_scale) const {
Decimal128 out;
auto dstatus = BasicDecimal128::Rescale(original_scale, new_scale, &out);
ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
return std::move(out);
}
/// \brief Convert to a signed integer
template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
Result<T> ToInteger() const {
constexpr auto min_value = std::numeric_limits<T>::min();
constexpr auto max_value = std::numeric_limits<T>::max();
const auto& self = *this;
if (self < min_value || self > max_value) {
return Status::Invalid("Invalid cast from Decimal128 to ", sizeof(T),
" byte integer");
}
return static_cast<T>(low_bits());
}
/// \brief Convert to a signed integer
template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
Status ToInteger(T* out) const {
return ToInteger<T>().Value(out);
}
/// \brief Convert to a floating-point number (scaled)
float ToFloat(int32_t scale) const;
/// \brief Convert to a floating-point number (scaled)
double ToDouble(int32_t scale) const;
/// \brief Convert to a floating-point number (scaled)
template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>>
T ToReal(int32_t scale) const {
static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
"Unexpected floating-point type");
if constexpr (std::is_same_v<T, float>) {
return ToFloat(scale);
} else {
return ToDouble(scale);
}
}
ARROW_FRIEND_EXPORT friend std::ostream& operator<<(std::ostream& os,
const Decimal128& decimal);
private:
/// Converts internal error code to Status
Status ToArrowStatus(DecimalStatus dstatus) const;
};
/// Represents a signed 256-bit integer in two's complement.
/// The max decimal precision that can be safely represented is
/// 76 significant digits.
///
/// The implementation is split into two parts :
///
/// 1. BasicDecimal256
/// - can be safely compiled to IR without references to libstdc++.
/// 2. Decimal256
/// - (TODO) has additional functionality on top of BasicDecimal256 to deal with
/// strings and streams.
class ARROW_EXPORT Decimal256 : public BasicDecimal256 {
public:
/// \cond FALSE
// (need to avoid a duplicate definition in Sphinx)
using BasicDecimal256::BasicDecimal256;
/// \endcond
/// \brief constructor creates a Decimal256 from a BasicDecimal256.
constexpr Decimal256(const BasicDecimal256& value) noexcept // NOLINT(runtime/explicit)
: BasicDecimal256(value) {}
/// \brief Parse the number from a base 10 string representation.
explicit Decimal256(const std::string& value);
/// \brief Empty constructor creates a Decimal256 with a value of 0.
// This is required on some older compilers.
constexpr Decimal256() noexcept : BasicDecimal256() {}
/// \brief Convert the Decimal256 value to a base 10 decimal string with the given
/// scale.
std::string ToString(int32_t scale) const;
/// \brief Convert the value to an integer string
std::string ToIntegerString() const;
/// \brief Convert a decimal string to a Decimal256 value, optionally including
/// precision and scale if they're passed in and not null.
static Status FromString(std::string_view s, Decimal256* out, int32_t* precision,
int32_t* scale = NULLPTR);
static Status FromString(const std::string& s, Decimal256* out, int32_t* precision,
int32_t* scale = NULLPTR);
static Status FromString(const char* s, Decimal256* out, int32_t* precision,
int32_t* scale = NULLPTR);
static Result<Decimal256> FromString(std::string_view s);
static Result<Decimal256> FromString(const std::string& s);
static Result<Decimal256> FromString(const char* s);
/// \brief Convert Decimal256 from one scale to another
Result<Decimal256> Rescale(int32_t original_scale, int32_t new_scale) const {
Decimal256 out;
auto dstatus = BasicDecimal256::Rescale(original_scale, new_scale, &out);
ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
return std::move(out);
}
/// Divide this number by right and return the result.
///
/// This operation is not destructive.
/// The answer rounds to zero. Signs work like:
/// 21 / 5 -> 4, 1
/// -21 / 5 -> -4, -1
/// 21 / -5 -> -4, 1
/// -21 / -5 -> 4, -1
/// \param[in] divisor the number to divide by
/// \return the pair of the quotient and the remainder
Result<std::pair<Decimal256, Decimal256>> Divide(const Decimal256& divisor) const {
std::pair<Decimal256, Decimal256> result;
auto dstatus = BasicDecimal256::Divide(divisor, &result.first, &result.second);
ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
return std::move(result);
}
/// \brief Convert from a big-endian byte representation. The length must be
/// between 1 and 32.
/// \return error status if the length is an invalid value
static Result<Decimal256> FromBigEndian(const uint8_t* data, int32_t length);
static Result<Decimal256> FromReal(double real, int32_t precision, int32_t scale);
static Result<Decimal256> FromReal(float real, int32_t precision, int32_t scale);
/// \brief Convert to a floating-point number (scaled).
/// May return infinity in case of overflow.
float ToFloat(int32_t scale) const;
/// \brief Convert to a floating-point number (scaled)
double ToDouble(int32_t scale) const;
/// \brief Convert to a floating-point number (scaled)
template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>>
T ToReal(int32_t scale) const {
static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
"Unexpected floating-point type");
if constexpr (std::is_same_v<T, float>) {
return ToFloat(scale);
} else {
return ToDouble(scale);
}
}
ARROW_FRIEND_EXPORT friend std::ostream& operator<<(std::ostream& os,
const Decimal256& decimal);
private:
/// Converts internal error code to Status
Status ToArrowStatus(DecimalStatus dstatus) const;
};
/// For an integer type, return the max number of decimal digits
/// (=minimal decimal precision) it can represent.
inline Result<int32_t> MaxDecimalDigitsForInteger(Type::type type_id) {
switch (type_id) {
case Type::INT8:
case Type::UINT8:
return 3;
case Type::INT16:
case Type::UINT16:
return 5;
case Type::INT32:
case Type::UINT32:
return 10;
case Type::INT64:
return 19;
case Type::UINT64:
return 20;
default:
break;
}
return Status::Invalid("Not an integer type: ", type_id);
}
} // namespace arrow
|