File size: 5,612 Bytes
b90def7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <memory>
#include <tuple>
#include <type_traits>
#include "arrow/result.h"
#include "arrow/util/macros.h"
namespace arrow {
namespace internal {
struct Empty {
static Result<Empty> ToResult(Status s) {
if (ARROW_PREDICT_TRUE(s.ok())) {
return Empty{};
}
return s;
}
};
/// Helper struct for examining lambdas and other callables.
/// TODO(ARROW-12655) support function pointers
struct call_traits {
public:
template <typename R, typename... A>
static std::false_type is_overloaded_impl(R(A...));
template <typename F>
static std::false_type is_overloaded_impl(decltype(&F::operator())*);
template <typename F>
static std::true_type is_overloaded_impl(...);
template <typename F, typename R, typename... A>
static R return_type_impl(R (F::*)(A...));
template <typename F, typename R, typename... A>
static R return_type_impl(R (F::*)(A...) const);
template <std::size_t I, typename F, typename R, typename... A>
static typename std::tuple_element<I, std::tuple<A...>>::type argument_type_impl(
R (F::*)(A...));
template <std::size_t I, typename F, typename R, typename... A>
static typename std::tuple_element<I, std::tuple<A...>>::type argument_type_impl(
R (F::*)(A...) const);
template <std::size_t I, typename F, typename R, typename... A>
static typename std::tuple_element<I, std::tuple<A...>>::type argument_type_impl(
R (F::*)(A...) &&);
template <typename F, typename R, typename... A>
static std::integral_constant<int, sizeof...(A)> argument_count_impl(R (F::*)(A...));
template <typename F, typename R, typename... A>
static std::integral_constant<int, sizeof...(A)> argument_count_impl(R (F::*)(A...)
const);
template <typename F, typename R, typename... A>
static std::integral_constant<int, sizeof...(A)> argument_count_impl(R (F::*)(A...) &&);
/// bool constant indicating whether F is a callable with more than one possible
/// signature. Will be true_type for objects which define multiple operator() or which
/// define a template operator()
template <typename F>
using is_overloaded =
decltype(is_overloaded_impl<typename std::decay<F>::type>(NULLPTR));
template <typename F, typename T = void>
using enable_if_overloaded = typename std::enable_if<is_overloaded<F>::value, T>::type;
template <typename F, typename T = void>
using disable_if_overloaded =
typename std::enable_if<!is_overloaded<F>::value, T>::type;
/// If F is not overloaded, the argument types of its call operator can be
/// extracted via call_traits::argument_type<Index, F>
template <std::size_t I, typename F>
using argument_type = decltype(argument_type_impl<I>(&std::decay<F>::type::operator()));
template <typename F>
using argument_count = decltype(argument_count_impl(&std::decay<F>::type::operator()));
template <typename F>
using return_type = decltype(return_type_impl(&std::decay<F>::type::operator()));
template <typename F, typename T, typename RT = T>
using enable_if_return =
typename std::enable_if<std::is_same<return_type<F>, T>::value, RT>;
template <typename T, typename R = void>
using enable_if_empty = typename std::enable_if<std::is_same<T, Empty>::value, R>::type;
template <typename T, typename R = void>
using enable_if_not_empty =
typename std::enable_if<!std::is_same<T, Empty>::value, R>::type;
};
/// A type erased callable object which may only be invoked once.
/// It can be constructed from any lambda which matches the provided call signature.
/// Invoking it results in destruction of the lambda, freeing any state/references
/// immediately. Invoking a default constructed FnOnce or one which has already been
/// invoked will segfault.
template <typename Signature>
class FnOnce;
template <typename R, typename... A>
class FnOnce<R(A...)> {
public:
FnOnce() = default;
template <typename Fn,
typename = typename std::enable_if<std::is_convertible<
decltype(std::declval<Fn&&>()(std::declval<A>()...)), R>::value>::type>
FnOnce(Fn fn) : impl_(new FnImpl<Fn>(std::move(fn))) { // NOLINT runtime/explicit
}
explicit operator bool() const { return impl_ != NULLPTR; }
R operator()(A... a) && {
auto bye = std::move(impl_);
return bye->invoke(std::forward<A&&>(a)...);
}
private:
struct Impl {
virtual ~Impl() = default;
virtual R invoke(A&&... a) = 0;
};
template <typename Fn>
struct FnImpl : Impl {
explicit FnImpl(Fn fn) : fn_(std::move(fn)) {}
R invoke(A&&... a) override { return std::move(fn_)(std::forward<A&&>(a)...); }
Fn fn_;
};
std::unique_ptr<Impl> impl_;
};
} // namespace internal
} // namespace arrow
|