File size: 32,307 Bytes
9eff8f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <atomic>
#include <cmath>
#include <functional>
#include <memory>
#include <optional>
#include <type_traits>
#include <utility>
#include <vector>
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/type_traits.h"
#include "arrow/util/config.h"
#include "arrow/util/functional.h"
#include "arrow/util/macros.h"
#include "arrow/util/tracing.h"
#include "arrow/util/type_fwd.h"
#include "arrow/util/visibility.h"
namespace arrow {
template <typename>
struct EnsureFuture;
namespace detail {
template <typename>
struct is_future : std::false_type {};
template <typename T>
struct is_future<Future<T>> : std::true_type {};
template <typename Signature, typename Enable = void>
struct result_of;
template <typename Fn, typename... A>
struct result_of<Fn(A...),
internal::void_t<decltype(std::declval<Fn>()(std::declval<A>()...))>> {
using type = decltype(std::declval<Fn>()(std::declval<A>()...));
};
template <typename Signature>
using result_of_t = typename result_of<Signature>::type;
// Helper to find the synchronous counterpart for a Future
template <typename T>
struct SyncType {
using type = Result<T>;
};
template <>
struct SyncType<internal::Empty> {
using type = Status;
};
template <typename Fn>
using first_arg_is_status =
std::is_same<typename std::decay<internal::call_traits::argument_type<0, Fn>>::type,
Status>;
template <typename Fn, typename Then, typename Else,
typename Count = internal::call_traits::argument_count<Fn>>
using if_has_no_args = typename std::conditional<Count::value == 0, Then, Else>::type;
/// Creates a callback that can be added to a future to mark a `dest` future finished
template <typename Source, typename Dest, bool SourceEmpty = Source::is_empty,
bool DestEmpty = Dest::is_empty>
struct MarkNextFinished {};
/// If the source and dest are both empty we can pass on the status
template <typename Source, typename Dest>
struct MarkNextFinished<Source, Dest, true, true> {
void operator()(const Status& status) && { next.MarkFinished(status); }
Dest next;
};
/// If the source is not empty but the dest is then we can take the
/// status out of the result
template <typename Source, typename Dest>
struct MarkNextFinished<Source, Dest, false, true> {
void operator()(const Result<typename Source::ValueType>& res) && {
next.MarkFinished(internal::Empty::ToResult(res.status()));
}
Dest next;
};
/// If neither are empty we pass on the result
template <typename Source, typename Dest>
struct MarkNextFinished<Source, Dest, false, false> {
void operator()(const Result<typename Source::ValueType>& res) && {
next.MarkFinished(res);
}
Dest next;
};
/// Helper that contains information about how to apply a continuation
struct ContinueFuture {
template <typename Return>
struct ForReturnImpl;
template <typename Return>
using ForReturn = typename ForReturnImpl<Return>::type;
template <typename Signature>
using ForSignature = ForReturn<result_of_t<Signature>>;
// If the callback returns void then we return Future<> that always finishes OK.
template <typename ContinueFunc, typename... Args,
typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
typename NextFuture = ForReturn<ContinueResult>>
typename std::enable_if<std::is_void<ContinueResult>::value>::type operator()(
NextFuture next, ContinueFunc&& f, Args&&... a) const {
std::forward<ContinueFunc>(f)(std::forward<Args>(a)...);
next.MarkFinished();
}
/// If the callback returns a non-future then we return Future<T>
/// and mark the future finished with the callback result. It will get promoted
/// to Result<T> as part of MarkFinished if it isn't already.
///
/// If the callback returns Status and we return Future<> then also send the callback
/// result as-is to the destination future.
template <typename ContinueFunc, typename... Args,
typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
typename NextFuture = ForReturn<ContinueResult>>
typename std::enable_if<
!std::is_void<ContinueResult>::value && !is_future<ContinueResult>::value &&
(!NextFuture::is_empty || std::is_same<ContinueResult, Status>::value)>::type
operator()(NextFuture next, ContinueFunc&& f, Args&&... a) const {
next.MarkFinished(std::forward<ContinueFunc>(f)(std::forward<Args>(a)...));
}
/// If the callback returns a Result and the next future is Future<> then we mark
/// the future finished with the callback result.
///
/// It may seem odd that the next future is Future<> when the callback returns a
/// result but this can occur if the OnFailure callback returns a result while the
/// OnSuccess callback is void/Status (e.g. you would get this calling the one-arg
/// version of Then with an OnSuccess callback that returns void)
template <typename ContinueFunc, typename... Args,
typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
typename NextFuture = ForReturn<ContinueResult>>
typename std::enable_if<!std::is_void<ContinueResult>::value &&
!is_future<ContinueResult>::value && NextFuture::is_empty &&
!std::is_same<ContinueResult, Status>::value>::type
operator()(NextFuture next, ContinueFunc&& f, Args&&... a) const {
next.MarkFinished(std::forward<ContinueFunc>(f)(std::forward<Args>(a)...).status());
}
/// If the callback returns a Future<T> then we return Future<T>. We create a new
/// future and add a callback to the future given to us by the user that forwards the
/// result to the future we just created
template <typename ContinueFunc, typename... Args,
typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
typename NextFuture = ForReturn<ContinueResult>>
typename std::enable_if<is_future<ContinueResult>::value>::type operator()(
NextFuture next, ContinueFunc&& f, Args&&... a) const {
ContinueResult signal_to_complete_next =
std::forward<ContinueFunc>(f)(std::forward<Args>(a)...);
MarkNextFinished<ContinueResult, NextFuture> callback{std::move(next)};
signal_to_complete_next.AddCallback(std::move(callback));
}
/// Helpers to conditionally ignore arguments to ContinueFunc
template <typename ContinueFunc, typename NextFuture, typename... Args>
void IgnoringArgsIf(std::true_type, NextFuture&& next, ContinueFunc&& f,
Args&&...) const {
operator()(std::forward<NextFuture>(next), std::forward<ContinueFunc>(f));
}
template <typename ContinueFunc, typename NextFuture, typename... Args>
void IgnoringArgsIf(std::false_type, NextFuture&& next, ContinueFunc&& f,
Args&&... a) const {
operator()(std::forward<NextFuture>(next), std::forward<ContinueFunc>(f),
std::forward<Args>(a)...);
}
};
/// Helper struct which tells us what kind of Future gets returned from `Then` based on
/// the return type of the OnSuccess callback
template <>
struct ContinueFuture::ForReturnImpl<void> {
using type = Future<>;
};
template <>
struct ContinueFuture::ForReturnImpl<Status> {
using type = Future<>;
};
template <typename R>
struct ContinueFuture::ForReturnImpl {
using type = Future<R>;
};
template <typename T>
struct ContinueFuture::ForReturnImpl<Result<T>> {
using type = Future<T>;
};
template <typename T>
struct ContinueFuture::ForReturnImpl<Future<T>> {
using type = Future<T>;
};
} // namespace detail
/// A Future's execution or completion status
enum class FutureState : int8_t { PENDING, SUCCESS, FAILURE };
inline bool IsFutureFinished(FutureState state) { return state != FutureState::PENDING; }
/// \brief Describe whether the callback should be scheduled or run synchronously
enum class ShouldSchedule {
/// Always run the callback synchronously (the default)
Never = 0,
/// Schedule a new task only if the future is not finished when the
/// callback is added
IfUnfinished = 1,
/// Always schedule the callback as a new task
Always = 2,
/// Schedule a new task only if it would run on an executor other than
/// the specified executor.
IfDifferentExecutor = 3,
};
/// \brief Options that control how a continuation is run
struct CallbackOptions {
/// Describe whether the callback should be run synchronously or scheduled
ShouldSchedule should_schedule = ShouldSchedule::Never;
/// If the callback is scheduled then this is the executor it should be scheduled
/// on. If this is NULL then should_schedule must be Never
internal::Executor* executor = NULLPTR;
static CallbackOptions Defaults() { return {}; }
};
// Untyped private implementation
class ARROW_EXPORT FutureImpl : public std::enable_shared_from_this<FutureImpl> {
public:
FutureImpl();
virtual ~FutureImpl() = default;
FutureState state() { return state_.load(); }
static std::unique_ptr<FutureImpl> Make();
static std::unique_ptr<FutureImpl> MakeFinished(FutureState state);
#ifdef ARROW_WITH_OPENTELEMETRY
void SetSpan(util::tracing::Span* span) { span_ = span; }
#endif
// Future API
void MarkFinished();
void MarkFailed();
void Wait();
bool Wait(double seconds);
template <typename ValueType>
Result<ValueType>* CastResult() const {
return static_cast<Result<ValueType>*>(result_.get());
}
using Callback = internal::FnOnce<void(const FutureImpl& impl)>;
void AddCallback(Callback callback, CallbackOptions opts);
bool TryAddCallback(const std::function<Callback()>& callback_factory,
CallbackOptions opts);
std::atomic<FutureState> state_{FutureState::PENDING};
// Type erased storage for arbitrary results
// XXX small objects could be stored inline instead of boxed in a pointer
using Storage = std::unique_ptr<void, void (*)(void*)>;
Storage result_{NULLPTR, NULLPTR};
struct CallbackRecord {
Callback callback;
CallbackOptions options;
};
std::vector<CallbackRecord> callbacks_;
#ifdef ARROW_WITH_OPENTELEMETRY
util::tracing::Span* span_ = NULLPTR;
#endif
};
// ---------------------------------------------------------------------
// Public API
/// \brief EXPERIMENTAL A std::future-like class with more functionality.
///
/// A Future represents the results of a past or future computation.
/// The Future API has two sides: a producer side and a consumer side.
///
/// The producer API allows creating a Future and setting its result or
/// status, possibly after running a computation function.
///
/// The consumer API allows querying a Future's current state, wait for it
/// to complete, and composing futures with callbacks.
template <typename T>
class [[nodiscard]] Future {
public:
using ValueType = T;
using SyncType = typename detail::SyncType<T>::type;
static constexpr bool is_empty = std::is_same<T, internal::Empty>::value;
// The default constructor creates an invalid Future. Use Future::Make()
// for a valid Future. This constructor is mostly for the convenience
// of being able to presize a vector of Futures.
Future() = default;
#ifdef ARROW_WITH_OPENTELEMETRY
void SetSpan(util::tracing::Span* span) { impl_->SetSpan(span); }
#endif
// Consumer API
bool is_valid() const { return impl_ != NULLPTR; }
/// \brief Return the Future's current state
///
/// A return value of PENDING is only indicative, as the Future can complete
/// concurrently. A return value of FAILURE or SUCCESS is definitive, though.
FutureState state() const {
CheckValid();
return impl_->state();
}
/// \brief Whether the Future is finished
///
/// A false return value is only indicative, as the Future can complete
/// concurrently. A true return value is definitive, though.
bool is_finished() const {
CheckValid();
return IsFutureFinished(impl_->state());
}
/// \brief Wait for the Future to complete and return its Result
const Result<ValueType>& result() const& {
Wait();
return *GetResult();
}
/// \brief Returns an rvalue to the result. This method is potentially unsafe
///
/// The future is not the unique owner of the result, copies of a future will
/// also point to the same result. You must make sure that no other copies
/// of the future exist. Attempts to add callbacks after you move the result
/// will result in undefined behavior.
Result<ValueType>&& MoveResult() {
Wait();
return std::move(*GetResult());
}
/// \brief Wait for the Future to complete and return its Status
const Status& status() const { return result().status(); }
/// \brief Future<T> is convertible to Future<>, which views only the
/// Status of the original. Marking the returned Future Finished is not supported.
explicit operator Future<>() const {
Future<> status_future;
status_future.impl_ = impl_;
return status_future;
}
/// \brief Wait for the Future to complete
void Wait() const {
CheckValid();
impl_->Wait();
}
/// \brief Wait for the Future to complete, or for the timeout to expire
///
/// `true` is returned if the Future completed, `false` if the timeout expired.
/// Note a `false` value is only indicative, as the Future can complete
/// concurrently.
bool Wait(double seconds) const {
CheckValid();
return impl_->Wait(seconds);
}
// Producer API
/// \brief Producer API: mark Future finished
///
/// The Future's result is set to `res`.
void MarkFinished(Result<ValueType> res) { DoMarkFinished(std::move(res)); }
/// \brief Mark a Future<> completed with the provided Status.
template <typename E = ValueType, typename = typename std::enable_if<
std::is_same<E, internal::Empty>::value>::type>
void MarkFinished(Status s = Status::OK()) {
return DoMarkFinished(E::ToResult(std::move(s)));
}
/// \brief Producer API: instantiate a valid Future
///
/// The Future's state is initialized with PENDING. If you are creating a future with
/// this method you must ensure that future is eventually completed (with success or
/// failure). Creating a future, returning it, and never completing the future can lead
/// to memory leaks (for example, see Loop).
static Future Make() {
Future fut;
fut.impl_ = FutureImpl::Make();
return fut;
}
/// \brief Producer API: instantiate a finished Future
static Future<ValueType> MakeFinished(Result<ValueType> res) {
Future<ValueType> fut;
fut.InitializeFromResult(std::move(res));
return fut;
}
/// \brief Make a finished Future<> with the provided Status.
template <typename E = ValueType, typename = typename std::enable_if<
std::is_same<E, internal::Empty>::value>::type>
static Future<> MakeFinished(Status s = Status::OK()) {
return MakeFinished(E::ToResult(std::move(s)));
}
struct WrapResultOnComplete {
template <typename OnComplete>
struct Callback {
void operator()(const FutureImpl& impl) && {
std::move(on_complete)(*impl.CastResult<ValueType>());
}
OnComplete on_complete;
};
};
struct WrapStatusyOnComplete {
template <typename OnComplete>
struct Callback {
static_assert(std::is_same<internal::Empty, ValueType>::value,
"Only callbacks for Future<> should accept Status and not Result");
void operator()(const FutureImpl& impl) && {
std::move(on_complete)(impl.CastResult<ValueType>()->status());
}
OnComplete on_complete;
};
};
template <typename OnComplete>
using WrapOnComplete = typename std::conditional<
detail::first_arg_is_status<OnComplete>::value, WrapStatusyOnComplete,
WrapResultOnComplete>::type::template Callback<OnComplete>;
/// \brief Consumer API: Register a callback to run when this future completes
///
/// The callback should receive the result of the future (const Result<T>&)
/// For a void or statusy future this should be (const Status&)
///
/// There is no guarantee to the order in which callbacks will run. In
/// particular, callbacks added while the future is being marked complete
/// may be executed immediately, ahead of, or even the same time as, other
/// callbacks that have been previously added.
///
/// WARNING: callbacks may hold arbitrary references, including cyclic references.
/// Since callbacks will only be destroyed after they are invoked, this can lead to
/// memory leaks if a Future is never marked finished (abandoned):
///
/// {
/// auto fut = Future<>::Make();
/// fut.AddCallback([fut]() {});
/// }
///
/// In this example `fut` falls out of scope but is not destroyed because it holds a
/// cyclic reference to itself through the callback.
template <typename OnComplete, typename Callback = WrapOnComplete<OnComplete>>
void AddCallback(OnComplete on_complete,
CallbackOptions opts = CallbackOptions::Defaults()) const {
// We know impl_ will not be dangling when invoking callbacks because at least one
// thread will be waiting for MarkFinished to return. Thus it's safe to keep a
// weak reference to impl_ here
impl_->AddCallback(Callback{std::move(on_complete)}, opts);
}
/// \brief Overload of AddCallback that will return false instead of running
/// synchronously
///
/// This overload will guarantee the callback is never run synchronously. If the future
/// is already finished then it will simply return false. This can be useful to avoid
/// stack overflow in a situation where you have recursive Futures. For an example
/// see the Loop function
///
/// Takes in a callback factory function to allow moving callbacks (the factory function
/// will only be called if the callback can successfully be added)
///
/// Returns true if a callback was actually added and false if the callback failed
/// to add because the future was marked complete.
template <typename CallbackFactory,
typename OnComplete = detail::result_of_t<CallbackFactory()>,
typename Callback = WrapOnComplete<OnComplete>>
bool TryAddCallback(CallbackFactory callback_factory,
CallbackOptions opts = CallbackOptions::Defaults()) const {
return impl_->TryAddCallback([&]() { return Callback{callback_factory()}; }, opts);
}
template <typename OnSuccess, typename OnFailure>
struct ThenOnComplete {
static constexpr bool has_no_args =
internal::call_traits::argument_count<OnSuccess>::value == 0;
using ContinuedFuture = detail::ContinueFuture::ForSignature<
detail::if_has_no_args<OnSuccess, OnSuccess && (), OnSuccess && (const T&)>>;
static_assert(
std::is_same<detail::ContinueFuture::ForSignature<OnFailure && (const Status&)>,
ContinuedFuture>::value,
"OnSuccess and OnFailure must continue with the same future type");
struct DummyOnSuccess {
void operator()(const T&);
};
using OnSuccessArg = typename std::decay<internal::call_traits::argument_type<
0, detail::if_has_no_args<OnSuccess, DummyOnSuccess, OnSuccess>>>::type;
static_assert(
!std::is_same<OnSuccessArg, typename EnsureResult<OnSuccessArg>::type>::value,
"OnSuccess' argument should not be a Result");
void operator()(const Result<T>& result) && {
detail::ContinueFuture continue_future;
if (ARROW_PREDICT_TRUE(result.ok())) {
// move on_failure to a(n immediately destroyed) temporary to free its resources
ARROW_UNUSED(OnFailure(std::move(on_failure)));
continue_future.IgnoringArgsIf(
detail::if_has_no_args<OnSuccess, std::true_type, std::false_type>{},
std::move(next), std::move(on_success), result.ValueOrDie());
} else {
ARROW_UNUSED(OnSuccess(std::move(on_success)));
continue_future(std::move(next), std::move(on_failure), result.status());
}
}
OnSuccess on_success;
OnFailure on_failure;
ContinuedFuture next;
};
template <typename OnSuccess>
struct PassthruOnFailure {
using ContinuedFuture = detail::ContinueFuture::ForSignature<
detail::if_has_no_args<OnSuccess, OnSuccess && (), OnSuccess && (const T&)>>;
Result<typename ContinuedFuture::ValueType> operator()(const Status& s) { return s; }
};
/// \brief Consumer API: Register a continuation to run when this future completes
///
/// The continuation will run in the same thread that called MarkFinished (whatever
/// callback is registered with this function will run before MarkFinished returns).
/// Avoid long-running callbacks in favor of submitting a task to an Executor and
/// returning the future.
///
/// Two callbacks are supported:
/// - OnSuccess, called with the result (const ValueType&) on successful completion.
/// for an empty future this will be called with nothing ()
/// - OnFailure, called with the error (const Status&) on failed completion.
/// This callback is optional and defaults to a passthru of any errors.
///
/// Then() returns a Future whose ValueType is derived from the return type of the
/// callbacks. If a callback returns:
/// - void, a Future<> will be returned which will completes successfully as soon
/// as the callback runs.
/// - Status, a Future<> will be returned which will complete with the returned Status
/// as soon as the callback runs.
/// - V or Result<V>, a Future<V> will be returned which will complete with the result
/// of invoking the callback as soon as the callback runs.
/// - Future<V>, a Future<V> will be returned which will be marked complete when the
/// future returned by the callback completes (and will complete with the same
/// result).
///
/// The continued Future type must be the same for both callbacks.
///
/// Note that OnFailure can swallow errors, allowing continued Futures to successfully
/// complete even if this Future fails.
///
/// If this future is already completed then the callback will be run immediately
/// and the returned future may already be marked complete.
///
/// See AddCallback for general considerations when writing callbacks.
template <typename OnSuccess, typename OnFailure = PassthruOnFailure<OnSuccess>,
typename OnComplete = ThenOnComplete<OnSuccess, OnFailure>,
typename ContinuedFuture = typename OnComplete::ContinuedFuture>
ContinuedFuture Then(OnSuccess on_success, OnFailure on_failure = {},
CallbackOptions options = CallbackOptions::Defaults()) const {
auto next = ContinuedFuture::Make();
AddCallback(OnComplete{std::forward<OnSuccess>(on_success),
std::forward<OnFailure>(on_failure), next},
options);
return next;
}
/// \brief Implicit constructor to create a finished future from a value
Future(ValueType val) : Future() { // NOLINT runtime/explicit
impl_ = FutureImpl::MakeFinished(FutureState::SUCCESS);
SetResult(std::move(val));
}
/// \brief Implicit constructor to create a future from a Result, enabling use
/// of macros like ARROW_ASSIGN_OR_RAISE.
Future(Result<ValueType> res) : Future() { // NOLINT runtime/explicit
if (ARROW_PREDICT_TRUE(res.ok())) {
impl_ = FutureImpl::MakeFinished(FutureState::SUCCESS);
} else {
impl_ = FutureImpl::MakeFinished(FutureState::FAILURE);
}
SetResult(std::move(res));
}
/// \brief Implicit constructor to create a future from a Status, enabling use
/// of macros like ARROW_RETURN_NOT_OK.
Future(Status s) // NOLINT runtime/explicit
: Future(Result<ValueType>(std::move(s))) {}
protected:
void InitializeFromResult(Result<ValueType> res) {
if (ARROW_PREDICT_TRUE(res.ok())) {
impl_ = FutureImpl::MakeFinished(FutureState::SUCCESS);
} else {
impl_ = FutureImpl::MakeFinished(FutureState::FAILURE);
}
SetResult(std::move(res));
}
void Initialize() { impl_ = FutureImpl::Make(); }
Result<ValueType>* GetResult() const { return impl_->CastResult<ValueType>(); }
void SetResult(Result<ValueType> res) {
impl_->result_ = {new Result<ValueType>(std::move(res)),
[](void* p) { delete static_cast<Result<ValueType>*>(p); }};
}
void DoMarkFinished(Result<ValueType> res) {
SetResult(std::move(res));
if (ARROW_PREDICT_TRUE(GetResult()->ok())) {
impl_->MarkFinished();
} else {
impl_->MarkFailed();
}
}
void CheckValid() const {
#ifndef NDEBUG
if (!is_valid()) {
Status::Invalid("Invalid Future (default-initialized?)").Abort();
}
#endif
}
explicit Future(std::shared_ptr<FutureImpl> impl) : impl_(std::move(impl)) {}
std::shared_ptr<FutureImpl> impl_;
friend struct detail::ContinueFuture;
template <typename U>
friend class Future;
friend class WeakFuture<T>;
FRIEND_TEST(FutureRefTest, ChainRemoved);
FRIEND_TEST(FutureRefTest, TailRemoved);
FRIEND_TEST(FutureRefTest, HeadRemoved);
};
template <typename T>
typename Future<T>::SyncType FutureToSync(const Future<T>& fut) {
return fut.result();
}
template <>
inline typename Future<internal::Empty>::SyncType FutureToSync<internal::Empty>(
const Future<internal::Empty>& fut) {
return fut.status();
}
template <>
inline Future<>::Future(Status s) : Future(internal::Empty::ToResult(std::move(s))) {}
template <typename T>
class WeakFuture {
public:
explicit WeakFuture(const Future<T>& future) : impl_(future.impl_) {}
Future<T> get() { return Future<T>{impl_.lock()}; }
private:
std::weak_ptr<FutureImpl> impl_;
};
/// \defgroup future-utilities Functions for working with Futures
/// @{
/// If a Result<Future> holds an error instead of a Future, construct a finished Future
/// holding that error.
template <typename T>
static Future<T> DeferNotOk(Result<Future<T>> maybe_future) {
if (ARROW_PREDICT_FALSE(!maybe_future.ok())) {
return Future<T>::MakeFinished(std::move(maybe_future).status());
}
return std::move(maybe_future).MoveValueUnsafe();
}
/// \brief Create a Future which completes when all of `futures` complete.
///
/// The future's result is a vector of the results of `futures`.
/// Note that this future will never be marked "failed"; failed results
/// will be stored in the result vector alongside successful results.
template <typename T>
Future<std::vector<Result<T>>> All(std::vector<Future<T>> futures) {
struct State {
explicit State(std::vector<Future<T>> f)
: futures(std::move(f)), n_remaining(futures.size()) {}
std::vector<Future<T>> futures;
std::atomic<size_t> n_remaining;
};
if (futures.size() == 0) {
return {std::vector<Result<T>>{}};
}
auto state = std::make_shared<State>(std::move(futures));
auto out = Future<std::vector<Result<T>>>::Make();
for (const Future<T>& future : state->futures) {
future.AddCallback([state, out](const Result<T>&) mutable {
if (state->n_remaining.fetch_sub(1) != 1) return;
std::vector<Result<T>> results(state->futures.size());
for (size_t i = 0; i < results.size(); ++i) {
results[i] = state->futures[i].result();
}
out.MarkFinished(std::move(results));
});
}
return out;
}
/// \brief Create a Future which completes when all of `futures` complete.
///
/// The future will be marked complete if all `futures` complete
/// successfully. Otherwise, it will be marked failed with the status of
/// the first failing future.
ARROW_EXPORT
Future<> AllComplete(const std::vector<Future<>>& futures);
/// \brief Create a Future which completes when all of `futures` complete.
///
/// The future will finish with an ok status if all `futures` finish with
/// an ok status. Otherwise, it will be marked failed with the status of
/// one of the failing futures.
///
/// Unlike AllComplete this Future will not complete immediately when a
/// failure occurs. It will wait until all futures have finished.
ARROW_EXPORT
Future<> AllFinished(const std::vector<Future<>>& futures);
/// @}
struct Continue {
template <typename T>
operator std::optional<T>() && { // NOLINT explicit
return {};
}
};
template <typename T = internal::Empty>
std::optional<T> Break(T break_value = {}) {
return std::optional<T>{std::move(break_value)};
}
template <typename T = internal::Empty>
using ControlFlow = std::optional<T>;
/// \brief Loop through an asynchronous sequence
///
/// \param[in] iterate A generator of Future<ControlFlow<BreakValue>>. On completion
/// of each yielded future the resulting ControlFlow will be examined. A Break will
/// terminate the loop, while a Continue will re-invoke `iterate`.
///
/// \return A future which will complete when a Future returned by iterate completes with
/// a Break
template <typename Iterate,
typename Control = typename detail::result_of_t<Iterate()>::ValueType,
typename BreakValueType = typename Control::value_type>
Future<BreakValueType> Loop(Iterate iterate) {
struct Callback {
bool CheckForTermination(const Result<Control>& control_res) {
if (!control_res.ok()) {
break_fut.MarkFinished(control_res.status());
return true;
}
if (control_res->has_value()) {
break_fut.MarkFinished(**control_res);
return true;
}
return false;
}
void operator()(const Result<Control>& maybe_control) && {
if (CheckForTermination(maybe_control)) return;
auto control_fut = iterate();
while (true) {
if (control_fut.TryAddCallback([this]() { return *this; })) {
// Adding a callback succeeded; control_fut was not finished
// and we must wait to CheckForTermination.
return;
}
// Adding a callback failed; control_fut was finished and we
// can CheckForTermination immediately. This also avoids recursion and potential
// stack overflow.
if (CheckForTermination(control_fut.result())) return;
control_fut = iterate();
}
}
Iterate iterate;
// If the future returned by control_fut is never completed then we will be hanging on
// to break_fut forever even if the listener has given up listening on it. Instead we
// rely on the fact that a producer (the caller of Future<>::Make) is always
// responsible for completing the futures they create.
// TODO: Could avoid this kind of situation with "future abandonment" similar to mesos
Future<BreakValueType> break_fut;
};
auto break_fut = Future<BreakValueType>::Make();
auto control_fut = iterate();
control_fut.AddCallback(Callback{std::move(iterate), break_fut});
return break_fut;
}
inline Future<> ToFuture(Status status) {
return Future<>::MakeFinished(std::move(status));
}
template <typename T>
Future<T> ToFuture(T value) {
return Future<T>::MakeFinished(std::move(value));
}
template <typename T>
Future<T> ToFuture(Result<T> maybe_value) {
return Future<T>::MakeFinished(std::move(maybe_value));
}
template <typename T>
Future<T> ToFuture(Future<T> fut) {
return std::move(fut);
}
template <typename T>
struct EnsureFuture {
using type = decltype(ToFuture(std::declval<T>()));
};
} // namespace arrow
|