File size: 32,307 Bytes
9eff8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <atomic>
#include <cmath>
#include <functional>
#include <memory>
#include <optional>
#include <type_traits>
#include <utility>
#include <vector>

#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/type_traits.h"
#include "arrow/util/config.h"
#include "arrow/util/functional.h"
#include "arrow/util/macros.h"
#include "arrow/util/tracing.h"
#include "arrow/util/type_fwd.h"
#include "arrow/util/visibility.h"

namespace arrow {

template <typename>
struct EnsureFuture;

namespace detail {

template <typename>
struct is_future : std::false_type {};

template <typename T>
struct is_future<Future<T>> : std::true_type {};

template <typename Signature, typename Enable = void>
struct result_of;

template <typename Fn, typename... A>
struct result_of<Fn(A...),
                 internal::void_t<decltype(std::declval<Fn>()(std::declval<A>()...))>> {
  using type = decltype(std::declval<Fn>()(std::declval<A>()...));
};

template <typename Signature>
using result_of_t = typename result_of<Signature>::type;

// Helper to find the synchronous counterpart for a Future
template <typename T>
struct SyncType {
  using type = Result<T>;
};

template <>
struct SyncType<internal::Empty> {
  using type = Status;
};

template <typename Fn>
using first_arg_is_status =
    std::is_same<typename std::decay<internal::call_traits::argument_type<0, Fn>>::type,
                 Status>;

template <typename Fn, typename Then, typename Else,
          typename Count = internal::call_traits::argument_count<Fn>>
using if_has_no_args = typename std::conditional<Count::value == 0, Then, Else>::type;

/// Creates a callback that can be added to a future to mark a `dest` future finished
template <typename Source, typename Dest, bool SourceEmpty = Source::is_empty,
          bool DestEmpty = Dest::is_empty>
struct MarkNextFinished {};

/// If the source and dest are both empty we can pass on the status
template <typename Source, typename Dest>
struct MarkNextFinished<Source, Dest, true, true> {
  void operator()(const Status& status) && { next.MarkFinished(status); }
  Dest next;
};

/// If the source is not empty but the dest is then we can take the
/// status out of the result
template <typename Source, typename Dest>
struct MarkNextFinished<Source, Dest, false, true> {
  void operator()(const Result<typename Source::ValueType>& res) && {
    next.MarkFinished(internal::Empty::ToResult(res.status()));
  }
  Dest next;
};

/// If neither are empty we pass on the result
template <typename Source, typename Dest>
struct MarkNextFinished<Source, Dest, false, false> {
  void operator()(const Result<typename Source::ValueType>& res) && {
    next.MarkFinished(res);
  }
  Dest next;
};

/// Helper that contains information about how to apply a continuation
struct ContinueFuture {
  template <typename Return>
  struct ForReturnImpl;

  template <typename Return>
  using ForReturn = typename ForReturnImpl<Return>::type;

  template <typename Signature>
  using ForSignature = ForReturn<result_of_t<Signature>>;

  // If the callback returns void then we return Future<> that always finishes OK.
  template <typename ContinueFunc, typename... Args,
            typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
            typename NextFuture = ForReturn<ContinueResult>>
  typename std::enable_if<std::is_void<ContinueResult>::value>::type operator()(
      NextFuture next, ContinueFunc&& f, Args&&... a) const {
    std::forward<ContinueFunc>(f)(std::forward<Args>(a)...);
    next.MarkFinished();
  }

  /// If the callback returns a non-future then we return Future<T>
  /// and mark the future finished with the callback result.  It will get promoted
  /// to Result<T> as part of MarkFinished if it isn't already.
  ///
  /// If the callback returns Status and we return Future<> then also send the callback
  /// result as-is to the destination future.
  template <typename ContinueFunc, typename... Args,
            typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
            typename NextFuture = ForReturn<ContinueResult>>
  typename std::enable_if<
      !std::is_void<ContinueResult>::value && !is_future<ContinueResult>::value &&
      (!NextFuture::is_empty || std::is_same<ContinueResult, Status>::value)>::type
  operator()(NextFuture next, ContinueFunc&& f, Args&&... a) const {
    next.MarkFinished(std::forward<ContinueFunc>(f)(std::forward<Args>(a)...));
  }

  /// If the callback returns a Result and the next future is Future<> then we mark
  /// the future finished with the callback result.
  ///
  /// It may seem odd that the next future is Future<> when the callback returns a
  /// result but this can occur if the OnFailure callback returns a result while the
  /// OnSuccess callback is void/Status (e.g. you would get this calling the one-arg
  /// version of Then with an OnSuccess callback that returns void)
  template <typename ContinueFunc, typename... Args,
            typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
            typename NextFuture = ForReturn<ContinueResult>>
  typename std::enable_if<!std::is_void<ContinueResult>::value &&
                          !is_future<ContinueResult>::value && NextFuture::is_empty &&
                          !std::is_same<ContinueResult, Status>::value>::type
  operator()(NextFuture next, ContinueFunc&& f, Args&&... a) const {
    next.MarkFinished(std::forward<ContinueFunc>(f)(std::forward<Args>(a)...).status());
  }

  /// If the callback returns a Future<T> then we return Future<T>.  We create a new
  /// future and add a callback to the future given to us by the user that forwards the
  /// result to the future we just created
  template <typename ContinueFunc, typename... Args,
            typename ContinueResult = result_of_t<ContinueFunc && (Args && ...)>,
            typename NextFuture = ForReturn<ContinueResult>>
  typename std::enable_if<is_future<ContinueResult>::value>::type operator()(
      NextFuture next, ContinueFunc&& f, Args&&... a) const {
    ContinueResult signal_to_complete_next =
        std::forward<ContinueFunc>(f)(std::forward<Args>(a)...);
    MarkNextFinished<ContinueResult, NextFuture> callback{std::move(next)};
    signal_to_complete_next.AddCallback(std::move(callback));
  }

  /// Helpers to conditionally ignore arguments to ContinueFunc
  template <typename ContinueFunc, typename NextFuture, typename... Args>
  void IgnoringArgsIf(std::true_type, NextFuture&& next, ContinueFunc&& f,
                      Args&&...) const {
    operator()(std::forward<NextFuture>(next), std::forward<ContinueFunc>(f));
  }
  template <typename ContinueFunc, typename NextFuture, typename... Args>
  void IgnoringArgsIf(std::false_type, NextFuture&& next, ContinueFunc&& f,
                      Args&&... a) const {
    operator()(std::forward<NextFuture>(next), std::forward<ContinueFunc>(f),
               std::forward<Args>(a)...);
  }
};

/// Helper struct which tells us what kind of Future gets returned from `Then` based on
/// the return type of the OnSuccess callback
template <>
struct ContinueFuture::ForReturnImpl<void> {
  using type = Future<>;
};

template <>
struct ContinueFuture::ForReturnImpl<Status> {
  using type = Future<>;
};

template <typename R>
struct ContinueFuture::ForReturnImpl {
  using type = Future<R>;
};

template <typename T>
struct ContinueFuture::ForReturnImpl<Result<T>> {
  using type = Future<T>;
};

template <typename T>
struct ContinueFuture::ForReturnImpl<Future<T>> {
  using type = Future<T>;
};

}  // namespace detail

/// A Future's execution or completion status
enum class FutureState : int8_t { PENDING, SUCCESS, FAILURE };

inline bool IsFutureFinished(FutureState state) { return state != FutureState::PENDING; }

/// \brief Describe whether the callback should be scheduled or run synchronously
enum class ShouldSchedule {
  /// Always run the callback synchronously (the default)
  Never = 0,
  /// Schedule a new task only if the future is not finished when the
  /// callback is added
  IfUnfinished = 1,
  /// Always schedule the callback as a new task
  Always = 2,
  /// Schedule a new task only if it would run on an executor other than
  /// the specified executor.
  IfDifferentExecutor = 3,
};

/// \brief Options that control how a continuation is run
struct CallbackOptions {
  /// Describe whether the callback should be run synchronously or scheduled
  ShouldSchedule should_schedule = ShouldSchedule::Never;
  /// If the callback is scheduled then this is the executor it should be scheduled
  /// on.  If this is NULL then should_schedule must be Never
  internal::Executor* executor = NULLPTR;

  static CallbackOptions Defaults() { return {}; }
};

// Untyped private implementation
class ARROW_EXPORT FutureImpl : public std::enable_shared_from_this<FutureImpl> {
 public:
  FutureImpl();
  virtual ~FutureImpl() = default;

  FutureState state() { return state_.load(); }

  static std::unique_ptr<FutureImpl> Make();
  static std::unique_ptr<FutureImpl> MakeFinished(FutureState state);

#ifdef ARROW_WITH_OPENTELEMETRY
  void SetSpan(util::tracing::Span* span) { span_ = span; }
#endif

  // Future API
  void MarkFinished();
  void MarkFailed();
  void Wait();
  bool Wait(double seconds);
  template <typename ValueType>
  Result<ValueType>* CastResult() const {
    return static_cast<Result<ValueType>*>(result_.get());
  }

  using Callback = internal::FnOnce<void(const FutureImpl& impl)>;
  void AddCallback(Callback callback, CallbackOptions opts);
  bool TryAddCallback(const std::function<Callback()>& callback_factory,
                      CallbackOptions opts);

  std::atomic<FutureState> state_{FutureState::PENDING};

  // Type erased storage for arbitrary results
  // XXX small objects could be stored inline instead of boxed in a pointer
  using Storage = std::unique_ptr<void, void (*)(void*)>;
  Storage result_{NULLPTR, NULLPTR};

  struct CallbackRecord {
    Callback callback;
    CallbackOptions options;
  };
  std::vector<CallbackRecord> callbacks_;
#ifdef ARROW_WITH_OPENTELEMETRY
  util::tracing::Span* span_ = NULLPTR;
#endif
};

// ---------------------------------------------------------------------
// Public API

/// \brief EXPERIMENTAL A std::future-like class with more functionality.
///
/// A Future represents the results of a past or future computation.
/// The Future API has two sides: a producer side and a consumer side.
///
/// The producer API allows creating a Future and setting its result or
/// status, possibly after running a computation function.
///
/// The consumer API allows querying a Future's current state, wait for it
/// to complete, and composing futures with callbacks.
template <typename T>
class [[nodiscard]] Future {
 public:
  using ValueType = T;
  using SyncType = typename detail::SyncType<T>::type;
  static constexpr bool is_empty = std::is_same<T, internal::Empty>::value;
  // The default constructor creates an invalid Future.  Use Future::Make()
  // for a valid Future.  This constructor is mostly for the convenience
  // of being able to presize a vector of Futures.
  Future() = default;

#ifdef ARROW_WITH_OPENTELEMETRY
  void SetSpan(util::tracing::Span* span) { impl_->SetSpan(span); }
#endif

  // Consumer API

  bool is_valid() const { return impl_ != NULLPTR; }

  /// \brief Return the Future's current state
  ///
  /// A return value of PENDING is only indicative, as the Future can complete
  /// concurrently.  A return value of FAILURE or SUCCESS is definitive, though.
  FutureState state() const {
    CheckValid();
    return impl_->state();
  }

  /// \brief Whether the Future is finished
  ///
  /// A false return value is only indicative, as the Future can complete
  /// concurrently.  A true return value is definitive, though.
  bool is_finished() const {
    CheckValid();
    return IsFutureFinished(impl_->state());
  }

  /// \brief Wait for the Future to complete and return its Result
  const Result<ValueType>& result() const& {
    Wait();
    return *GetResult();
  }

  /// \brief Returns an rvalue to the result.  This method is potentially unsafe
  ///
  /// The future is not the unique owner of the result, copies of a future will
  /// also point to the same result.  You must make sure that no other copies
  /// of the future exist.  Attempts to add callbacks after you move the result
  /// will result in undefined behavior.
  Result<ValueType>&& MoveResult() {
    Wait();
    return std::move(*GetResult());
  }

  /// \brief Wait for the Future to complete and return its Status
  const Status& status() const { return result().status(); }

  /// \brief Future<T> is convertible to Future<>, which views only the
  /// Status of the original. Marking the returned Future Finished is not supported.
  explicit operator Future<>() const {
    Future<> status_future;
    status_future.impl_ = impl_;
    return status_future;
  }

  /// \brief Wait for the Future to complete
  void Wait() const {
    CheckValid();
    impl_->Wait();
  }

  /// \brief Wait for the Future to complete, or for the timeout to expire
  ///
  /// `true` is returned if the Future completed, `false` if the timeout expired.
  /// Note a `false` value is only indicative, as the Future can complete
  /// concurrently.
  bool Wait(double seconds) const {
    CheckValid();
    return impl_->Wait(seconds);
  }

  // Producer API

  /// \brief Producer API: mark Future finished
  ///
  /// The Future's result is set to `res`.
  void MarkFinished(Result<ValueType> res) { DoMarkFinished(std::move(res)); }

  /// \brief Mark a Future<> completed with the provided Status.
  template <typename E = ValueType, typename = typename std::enable_if<
                                        std::is_same<E, internal::Empty>::value>::type>
  void MarkFinished(Status s = Status::OK()) {
    return DoMarkFinished(E::ToResult(std::move(s)));
  }

  /// \brief Producer API: instantiate a valid Future
  ///
  /// The Future's state is initialized with PENDING.  If you are creating a future with
  /// this method you must ensure that future is eventually completed (with success or
  /// failure).  Creating a future, returning it, and never completing the future can lead
  /// to memory leaks (for example, see Loop).
  static Future Make() {
    Future fut;
    fut.impl_ = FutureImpl::Make();
    return fut;
  }

  /// \brief Producer API: instantiate a finished Future
  static Future<ValueType> MakeFinished(Result<ValueType> res) {
    Future<ValueType> fut;
    fut.InitializeFromResult(std::move(res));
    return fut;
  }

  /// \brief Make a finished Future<> with the provided Status.
  template <typename E = ValueType, typename = typename std::enable_if<
                                        std::is_same<E, internal::Empty>::value>::type>
  static Future<> MakeFinished(Status s = Status::OK()) {
    return MakeFinished(E::ToResult(std::move(s)));
  }

  struct WrapResultOnComplete {
    template <typename OnComplete>
    struct Callback {
      void operator()(const FutureImpl& impl) && {
        std::move(on_complete)(*impl.CastResult<ValueType>());
      }
      OnComplete on_complete;
    };
  };

  struct WrapStatusyOnComplete {
    template <typename OnComplete>
    struct Callback {
      static_assert(std::is_same<internal::Empty, ValueType>::value,
                    "Only callbacks for Future<> should accept Status and not Result");

      void operator()(const FutureImpl& impl) && {
        std::move(on_complete)(impl.CastResult<ValueType>()->status());
      }
      OnComplete on_complete;
    };
  };

  template <typename OnComplete>
  using WrapOnComplete = typename std::conditional<
      detail::first_arg_is_status<OnComplete>::value, WrapStatusyOnComplete,
      WrapResultOnComplete>::type::template Callback<OnComplete>;

  /// \brief Consumer API: Register a callback to run when this future completes
  ///
  /// The callback should receive the result of the future (const Result<T>&)
  /// For a void or statusy future this should be (const Status&)
  ///
  /// There is no guarantee to the order in which callbacks will run.  In
  /// particular, callbacks added while the future is being marked complete
  /// may be executed immediately, ahead of, or even the same time as, other
  /// callbacks that have been previously added.
  ///
  /// WARNING: callbacks may hold arbitrary references, including cyclic references.
  /// Since callbacks will only be destroyed after they are invoked, this can lead to
  /// memory leaks if a Future is never marked finished (abandoned):
  ///
  /// {
  ///     auto fut = Future<>::Make();
  ///     fut.AddCallback([fut]() {});
  /// }
  ///
  /// In this example `fut` falls out of scope but is not destroyed because it holds a
  /// cyclic reference to itself through the callback.
  template <typename OnComplete, typename Callback = WrapOnComplete<OnComplete>>
  void AddCallback(OnComplete on_complete,
                   CallbackOptions opts = CallbackOptions::Defaults()) const {
    // We know impl_ will not be dangling when invoking callbacks because at least one
    // thread will be waiting for MarkFinished to return. Thus it's safe to keep a
    // weak reference to impl_ here
    impl_->AddCallback(Callback{std::move(on_complete)}, opts);
  }

  /// \brief Overload of AddCallback that will return false instead of running
  /// synchronously
  ///
  /// This overload will guarantee the callback is never run synchronously.  If the future
  /// is already finished then it will simply return false.  This can be useful to avoid
  /// stack overflow in a situation where you have recursive Futures.  For an example
  /// see the Loop function
  ///
  /// Takes in a callback factory function to allow moving callbacks (the factory function
  /// will only be called if the callback can successfully be added)
  ///
  /// Returns true if a callback was actually added and false if the callback failed
  /// to add because the future was marked complete.
  template <typename CallbackFactory,
            typename OnComplete = detail::result_of_t<CallbackFactory()>,
            typename Callback = WrapOnComplete<OnComplete>>
  bool TryAddCallback(CallbackFactory callback_factory,
                      CallbackOptions opts = CallbackOptions::Defaults()) const {
    return impl_->TryAddCallback([&]() { return Callback{callback_factory()}; }, opts);
  }

  template <typename OnSuccess, typename OnFailure>
  struct ThenOnComplete {
    static constexpr bool has_no_args =
        internal::call_traits::argument_count<OnSuccess>::value == 0;

    using ContinuedFuture = detail::ContinueFuture::ForSignature<
        detail::if_has_no_args<OnSuccess, OnSuccess && (), OnSuccess && (const T&)>>;

    static_assert(
        std::is_same<detail::ContinueFuture::ForSignature<OnFailure && (const Status&)>,
                     ContinuedFuture>::value,
        "OnSuccess and OnFailure must continue with the same future type");

    struct DummyOnSuccess {
      void operator()(const T&);
    };
    using OnSuccessArg = typename std::decay<internal::call_traits::argument_type<
        0, detail::if_has_no_args<OnSuccess, DummyOnSuccess, OnSuccess>>>::type;

    static_assert(
        !std::is_same<OnSuccessArg, typename EnsureResult<OnSuccessArg>::type>::value,
        "OnSuccess' argument should not be a Result");

    void operator()(const Result<T>& result) && {
      detail::ContinueFuture continue_future;
      if (ARROW_PREDICT_TRUE(result.ok())) {
        // move on_failure to a(n immediately destroyed) temporary to free its resources
        ARROW_UNUSED(OnFailure(std::move(on_failure)));
        continue_future.IgnoringArgsIf(
            detail::if_has_no_args<OnSuccess, std::true_type, std::false_type>{},
            std::move(next), std::move(on_success), result.ValueOrDie());
      } else {
        ARROW_UNUSED(OnSuccess(std::move(on_success)));
        continue_future(std::move(next), std::move(on_failure), result.status());
      }
    }

    OnSuccess on_success;
    OnFailure on_failure;
    ContinuedFuture next;
  };

  template <typename OnSuccess>
  struct PassthruOnFailure {
    using ContinuedFuture = detail::ContinueFuture::ForSignature<
        detail::if_has_no_args<OnSuccess, OnSuccess && (), OnSuccess && (const T&)>>;

    Result<typename ContinuedFuture::ValueType> operator()(const Status& s) { return s; }
  };

  /// \brief Consumer API: Register a continuation to run when this future completes
  ///
  /// The continuation will run in the same thread that called MarkFinished (whatever
  /// callback is registered with this function will run before MarkFinished returns).
  /// Avoid long-running callbacks in favor of submitting a task to an Executor and
  /// returning the future.
  ///
  /// Two callbacks are supported:
  /// - OnSuccess, called with the result (const ValueType&) on successful completion.
  ///              for an empty future this will be called with nothing ()
  /// - OnFailure, called with the error (const Status&) on failed completion.
  ///              This callback is optional and defaults to a passthru of any errors.
  ///
  /// Then() returns a Future whose ValueType is derived from the return type of the
  /// callbacks. If a callback returns:
  /// - void, a Future<> will be returned which will completes successfully as soon
  ///   as the callback runs.
  /// - Status, a Future<> will be returned which will complete with the returned Status
  ///   as soon as the callback runs.
  /// - V or Result<V>, a Future<V> will be returned which will complete with the result
  ///   of invoking the callback as soon as the callback runs.
  /// - Future<V>, a Future<V> will be returned which will be marked complete when the
  ///   future returned by the callback completes (and will complete with the same
  ///   result).
  ///
  /// The continued Future type must be the same for both callbacks.
  ///
  /// Note that OnFailure can swallow errors, allowing continued Futures to successfully
  /// complete even if this Future fails.
  ///
  /// If this future is already completed then the callback will be run immediately
  /// and the returned future may already be marked complete.
  ///
  /// See AddCallback for general considerations when writing callbacks.
  template <typename OnSuccess, typename OnFailure = PassthruOnFailure<OnSuccess>,
            typename OnComplete = ThenOnComplete<OnSuccess, OnFailure>,
            typename ContinuedFuture = typename OnComplete::ContinuedFuture>
  ContinuedFuture Then(OnSuccess on_success, OnFailure on_failure = {},
                       CallbackOptions options = CallbackOptions::Defaults()) const {
    auto next = ContinuedFuture::Make();
    AddCallback(OnComplete{std::forward<OnSuccess>(on_success),
                           std::forward<OnFailure>(on_failure), next},
                options);
    return next;
  }

  /// \brief Implicit constructor to create a finished future from a value
  Future(ValueType val) : Future() {  // NOLINT runtime/explicit
    impl_ = FutureImpl::MakeFinished(FutureState::SUCCESS);
    SetResult(std::move(val));
  }

  /// \brief Implicit constructor to create a future from a Result, enabling use
  ///     of macros like ARROW_ASSIGN_OR_RAISE.
  Future(Result<ValueType> res) : Future() {  // NOLINT runtime/explicit
    if (ARROW_PREDICT_TRUE(res.ok())) {
      impl_ = FutureImpl::MakeFinished(FutureState::SUCCESS);
    } else {
      impl_ = FutureImpl::MakeFinished(FutureState::FAILURE);
    }
    SetResult(std::move(res));
  }

  /// \brief Implicit constructor to create a future from a Status, enabling use
  ///     of macros like ARROW_RETURN_NOT_OK.
  Future(Status s)  // NOLINT runtime/explicit
      : Future(Result<ValueType>(std::move(s))) {}

 protected:
  void InitializeFromResult(Result<ValueType> res) {
    if (ARROW_PREDICT_TRUE(res.ok())) {
      impl_ = FutureImpl::MakeFinished(FutureState::SUCCESS);
    } else {
      impl_ = FutureImpl::MakeFinished(FutureState::FAILURE);
    }
    SetResult(std::move(res));
  }

  void Initialize() { impl_ = FutureImpl::Make(); }

  Result<ValueType>* GetResult() const { return impl_->CastResult<ValueType>(); }

  void SetResult(Result<ValueType> res) {
    impl_->result_ = {new Result<ValueType>(std::move(res)),
                      [](void* p) { delete static_cast<Result<ValueType>*>(p); }};
  }

  void DoMarkFinished(Result<ValueType> res) {
    SetResult(std::move(res));

    if (ARROW_PREDICT_TRUE(GetResult()->ok())) {
      impl_->MarkFinished();
    } else {
      impl_->MarkFailed();
    }
  }

  void CheckValid() const {
#ifndef NDEBUG
    if (!is_valid()) {
      Status::Invalid("Invalid Future (default-initialized?)").Abort();
    }
#endif
  }

  explicit Future(std::shared_ptr<FutureImpl> impl) : impl_(std::move(impl)) {}

  std::shared_ptr<FutureImpl> impl_;

  friend struct detail::ContinueFuture;

  template <typename U>
  friend class Future;
  friend class WeakFuture<T>;

  FRIEND_TEST(FutureRefTest, ChainRemoved);
  FRIEND_TEST(FutureRefTest, TailRemoved);
  FRIEND_TEST(FutureRefTest, HeadRemoved);
};

template <typename T>
typename Future<T>::SyncType FutureToSync(const Future<T>& fut) {
  return fut.result();
}

template <>
inline typename Future<internal::Empty>::SyncType FutureToSync<internal::Empty>(
    const Future<internal::Empty>& fut) {
  return fut.status();
}

template <>
inline Future<>::Future(Status s) : Future(internal::Empty::ToResult(std::move(s))) {}

template <typename T>
class WeakFuture {
 public:
  explicit WeakFuture(const Future<T>& future) : impl_(future.impl_) {}

  Future<T> get() { return Future<T>{impl_.lock()}; }

 private:
  std::weak_ptr<FutureImpl> impl_;
};

/// \defgroup future-utilities Functions for working with Futures
/// @{

/// If a Result<Future> holds an error instead of a Future, construct a finished Future
/// holding that error.
template <typename T>
static Future<T> DeferNotOk(Result<Future<T>> maybe_future) {
  if (ARROW_PREDICT_FALSE(!maybe_future.ok())) {
    return Future<T>::MakeFinished(std::move(maybe_future).status());
  }
  return std::move(maybe_future).MoveValueUnsafe();
}

/// \brief Create a Future which completes when all of `futures` complete.
///
/// The future's result is a vector of the results of `futures`.
/// Note that this future will never be marked "failed"; failed results
/// will be stored in the result vector alongside successful results.
template <typename T>
Future<std::vector<Result<T>>> All(std::vector<Future<T>> futures) {
  struct State {
    explicit State(std::vector<Future<T>> f)
        : futures(std::move(f)), n_remaining(futures.size()) {}

    std::vector<Future<T>> futures;
    std::atomic<size_t> n_remaining;
  };

  if (futures.size() == 0) {
    return {std::vector<Result<T>>{}};
  }

  auto state = std::make_shared<State>(std::move(futures));

  auto out = Future<std::vector<Result<T>>>::Make();
  for (const Future<T>& future : state->futures) {
    future.AddCallback([state, out](const Result<T>&) mutable {
      if (state->n_remaining.fetch_sub(1) != 1) return;

      std::vector<Result<T>> results(state->futures.size());
      for (size_t i = 0; i < results.size(); ++i) {
        results[i] = state->futures[i].result();
      }
      out.MarkFinished(std::move(results));
    });
  }
  return out;
}

/// \brief Create a Future which completes when all of `futures` complete.
///
/// The future will be marked complete if all `futures` complete
/// successfully. Otherwise, it will be marked failed with the status of
/// the first failing future.
ARROW_EXPORT
Future<> AllComplete(const std::vector<Future<>>& futures);

/// \brief Create a Future which completes when all of `futures` complete.
///
/// The future will finish with an ok status if all `futures` finish with
/// an ok status. Otherwise, it will be marked failed with the status of
/// one of the failing futures.
///
/// Unlike AllComplete this Future will not complete immediately when a
/// failure occurs.  It will wait until all futures have finished.
ARROW_EXPORT
Future<> AllFinished(const std::vector<Future<>>& futures);

/// @}

struct Continue {
  template <typename T>
  operator std::optional<T>() && {  // NOLINT explicit
    return {};
  }
};

template <typename T = internal::Empty>
std::optional<T> Break(T break_value = {}) {
  return std::optional<T>{std::move(break_value)};
}

template <typename T = internal::Empty>
using ControlFlow = std::optional<T>;

/// \brief Loop through an asynchronous sequence
///
/// \param[in] iterate A generator of Future<ControlFlow<BreakValue>>. On completion
/// of each yielded future the resulting ControlFlow will be examined. A Break will
/// terminate the loop, while a Continue will re-invoke `iterate`.
///
/// \return A future which will complete when a Future returned by iterate completes with
/// a Break
template <typename Iterate,
          typename Control = typename detail::result_of_t<Iterate()>::ValueType,
          typename BreakValueType = typename Control::value_type>
Future<BreakValueType> Loop(Iterate iterate) {
  struct Callback {
    bool CheckForTermination(const Result<Control>& control_res) {
      if (!control_res.ok()) {
        break_fut.MarkFinished(control_res.status());
        return true;
      }
      if (control_res->has_value()) {
        break_fut.MarkFinished(**control_res);
        return true;
      }
      return false;
    }

    void operator()(const Result<Control>& maybe_control) && {
      if (CheckForTermination(maybe_control)) return;

      auto control_fut = iterate();
      while (true) {
        if (control_fut.TryAddCallback([this]() { return *this; })) {
          // Adding a callback succeeded; control_fut was not finished
          // and we must wait to CheckForTermination.
          return;
        }
        // Adding a callback failed; control_fut was finished and we
        // can CheckForTermination immediately. This also avoids recursion and potential
        // stack overflow.
        if (CheckForTermination(control_fut.result())) return;

        control_fut = iterate();
      }
    }

    Iterate iterate;

    // If the future returned by control_fut is never completed then we will be hanging on
    // to break_fut forever even if the listener has given up listening on it.  Instead we
    // rely on the fact that a producer (the caller of Future<>::Make) is always
    // responsible for completing the futures they create.
    // TODO: Could avoid this kind of situation with "future abandonment" similar to mesos
    Future<BreakValueType> break_fut;
  };

  auto break_fut = Future<BreakValueType>::Make();
  auto control_fut = iterate();
  control_fut.AddCallback(Callback{std::move(iterate), break_fut});

  return break_fut;
}

inline Future<> ToFuture(Status status) {
  return Future<>::MakeFinished(std::move(status));
}

template <typename T>
Future<T> ToFuture(T value) {
  return Future<T>::MakeFinished(std::move(value));
}

template <typename T>
Future<T> ToFuture(Result<T> maybe_value) {
  return Future<T>::MakeFinished(std::move(maybe_value));
}

template <typename T>
Future<T> ToFuture(Future<T> fut) {
  return std::move(fut);
}

template <typename T>
struct EnsureFuture {
  using type = decltype(ToFuture(std::declval<T>()));
};

}  // namespace arrow