File size: 19,370 Bytes
a7f82aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from __future__ import annotations

import enum
from typing import (
    Any,
    Dict,
    Iterable,
    Optional,
    Tuple,
)

import sys
if sys.version_info >= (3, 8):
    from typing import TypedDict
else:
    from typing_extensions import TypedDict

import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.interchange.buffer import _PyArrowBuffer


class DtypeKind(enum.IntEnum):
    """
    Integer enum for data types.

    Attributes
    ----------
    INT : int
        Matches to signed integer data type.
    UINT : int
        Matches to unsigned integer data type.
    FLOAT : int
        Matches to floating point data type.
    BOOL : int
        Matches to boolean data type.
    STRING : int
        Matches to string data type (UTF-8 encoded).
    DATETIME : int
        Matches to datetime data type.
    CATEGORICAL : int
        Matches to categorical data type.
    """

    INT = 0
    UINT = 1
    FLOAT = 2
    BOOL = 20
    STRING = 21  # UTF-8
    DATETIME = 22
    CATEGORICAL = 23


Dtype = Tuple[DtypeKind, int, str, str]  # see Column.dtype


_PYARROW_KINDS = {
    pa.int8(): (DtypeKind.INT, "c"),
    pa.int16(): (DtypeKind.INT, "s"),
    pa.int32(): (DtypeKind.INT, "i"),
    pa.int64(): (DtypeKind.INT, "l"),
    pa.uint8(): (DtypeKind.UINT, "C"),
    pa.uint16(): (DtypeKind.UINT, "S"),
    pa.uint32(): (DtypeKind.UINT, "I"),
    pa.uint64(): (DtypeKind.UINT, "L"),
    pa.float16(): (DtypeKind.FLOAT, "e"),
    pa.float32(): (DtypeKind.FLOAT, "f"),
    pa.float64(): (DtypeKind.FLOAT, "g"),
    pa.bool_(): (DtypeKind.BOOL, "b"),
    pa.string(): (DtypeKind.STRING, "u"),
    pa.large_string(): (DtypeKind.STRING, "U"),
}


class ColumnNullType(enum.IntEnum):
    """
    Integer enum for null type representation.

    Attributes
    ----------
    NON_NULLABLE : int
        Non-nullable column.
    USE_NAN : int
        Use explicit float NaN value.
    USE_SENTINEL : int
        Sentinel value besides NaN.
    USE_BITMASK : int
        The bit is set/unset representing a null on a certain position.
    USE_BYTEMASK : int
        The byte is set/unset representing a null on a certain position.
    """

    NON_NULLABLE = 0
    USE_NAN = 1
    USE_SENTINEL = 2
    USE_BITMASK = 3
    USE_BYTEMASK = 4


class ColumnBuffers(TypedDict):
    # first element is a buffer containing the column data;
    # second element is the data buffer's associated dtype
    data: Tuple[_PyArrowBuffer, Dtype]

    # first element is a buffer containing mask values indicating missing data;
    # second element is the mask value buffer's associated dtype.
    # None if the null representation is not a bit or byte mask
    validity: Optional[Tuple[_PyArrowBuffer, Dtype]]

    # first element is a buffer containing the offset values for
    # variable-size binary data (e.g., variable-length strings);
    # second element is the offsets buffer's associated dtype.
    # None if the data buffer does not have an associated offsets buffer
    offsets: Optional[Tuple[_PyArrowBuffer, Dtype]]


class CategoricalDescription(TypedDict):
    # whether the ordering of dictionary indices is semantically meaningful
    is_ordered: bool
    # whether a dictionary-style mapping of categorical values to other objects
    # exists
    is_dictionary: bool
    # Python-level only (e.g. ``{int: str}``).
    # None if not a dictionary-style categorical.
    categories: Optional[_PyArrowColumn]


class Endianness:
    """Enum indicating the byte-order of a data-type."""

    LITTLE = "<"
    BIG = ">"
    NATIVE = "="
    NA = "|"


class NoBufferPresent(Exception):
    """Exception to signal that there is no requested buffer."""


class _PyArrowColumn:
    """
    A column object, with only the methods and properties required by the
    interchange protocol defined.

    A column can contain one or more chunks. Each chunk can contain up to three
    buffers - a data buffer, a mask buffer (depending on null representation),
    and an offsets buffer (if variable-size binary; e.g., variable-length
    strings).

    TBD: Arrow has a separate "null" dtype, and has no separate mask concept.
         Instead, it seems to use "children" for both columns with a bit mask,
         and for nested dtypes. Unclear whether this is elegant or confusing.
         This design requires checking the null representation explicitly.

         The Arrow design requires checking:
         1. the ARROW_FLAG_NULLABLE (for sentinel values)
         2. if a column has two children, combined with one of those children
            having a null dtype.

         Making the mask concept explicit seems useful. One null dtype would
         not be enough to cover both bit and byte masks, so that would mean
         even more checking if we did it the Arrow way.

    TBD: there's also the "chunk" concept here, which is implicit in Arrow as
         multiple buffers per array (= column here). Semantically it may make
         sense to have both: chunks were meant for example for lazy evaluation
         of data which doesn't fit in memory, while multiple buffers per column
         could also come from doing a selection operation on a single
         contiguous buffer.

         Given these concepts, one would expect chunks to be all of the same
         size (say a 10,000 row dataframe could have 10 chunks of 1,000 rows),
         while multiple buffers could have data-dependent lengths. Not an issue
         in pandas if one column is backed by a single NumPy array, but in
         Arrow it seems possible.
         Are multiple chunks *and* multiple buffers per column necessary for
         the purposes of this interchange protocol, or must producers either
         reuse the chunk concept for this or copy the data?

    Note: this Column object can only be produced by ``__dataframe__``, so
          doesn't need its own version or ``__column__`` protocol.
    """

    def __init__(
        self, column: pa.Array | pa.ChunkedArray, allow_copy: bool = True
    ) -> None:
        """
        Handles PyArrow Arrays and ChunkedArrays.
        """
        # Store the column as a private attribute
        if isinstance(column, pa.ChunkedArray):
            if column.num_chunks == 1:
                column = column.chunk(0)
            else:
                if not allow_copy:
                    raise RuntimeError(
                        "Chunks will be combined and a copy is required which "
                        "is forbidden by allow_copy=False"
                    )
                column = column.combine_chunks()

        self._allow_copy = allow_copy

        if pa.types.is_boolean(column.type):
            if not allow_copy:
                raise RuntimeError(
                    "Boolean column will be casted to uint8 and a copy "
                    "is required which is forbidden by allow_copy=False"
                )
            self._dtype = self._dtype_from_arrowdtype(column.type, 8)
            self._col = pc.cast(column, pa.uint8())
        else:
            self._col = column
            dtype = self._col.type
            try:
                bit_width = dtype.bit_width
            except ValueError:
                # in case of a variable-length strings, considered as array
                # of bytes (8 bits)
                bit_width = 8
            self._dtype = self._dtype_from_arrowdtype(dtype, bit_width)

    def size(self) -> int:
        """
        Size of the column, in elements.

        Corresponds to DataFrame.num_rows() if column is a single chunk;
        equal to size of this current chunk otherwise.

        Is a method rather than a property because it may cause a (potentially
        expensive) computation for some dataframe implementations.
        """
        return len(self._col)

    @property
    def offset(self) -> int:
        """
        Offset of first element.

        May be > 0 if using chunks; for example for a column with N chunks of
        equal size M (only the last chunk may be shorter),
        ``offset = n * M``, ``n = 0 .. N-1``.
        """
        return self._col.offset

    @property
    def dtype(self) -> Tuple[DtypeKind, int, str, str]:
        """
        Dtype description as a tuple ``(kind, bit-width, format string,
        endianness)``.

        Bit-width : the number of bits as an integer
        Format string : data type description format string in Apache Arrow C
                        Data Interface format.
        Endianness : current only native endianness (``=``) is supported

        Notes:
            - Kind specifiers are aligned with DLPack where possible (hence the
              jump to 20, leave enough room for future extension)
            - Masks must be specified as boolean with either bit width 1 (for
              bit masks) or 8 (for byte masks).
            - Dtype width in bits was preferred over bytes
            - Endianness isn't too useful, but included now in case in the
              future we need to support non-native endianness
            - Went with Apache Arrow format strings over NumPy format strings
              because they're more complete from a dataframe perspective
            - Format strings are mostly useful for datetime specification, and
              for categoricals.
            - For categoricals, the format string describes the type of the
              categorical in the data buffer. In case of a separate encoding of
              the categorical (e.g. an integer to string mapping), this can
              be derived from ``self.describe_categorical``.
            - Data types not included: complex, Arrow-style null, binary,
              decimal, and nested (list, struct, map, union) dtypes.
        """
        return self._dtype

    def _dtype_from_arrowdtype(
        self, dtype: pa.DataType, bit_width: int
    ) -> Tuple[DtypeKind, int, str, str]:
        """
        See `self.dtype` for details.
        """
        # Note: 'c' (complex) not handled yet (not in array spec v1).
        #       'b', 'B' (bytes), 'S', 'a', (old-style string) 'V' (void)
        #       not handled datetime and timedelta both map to datetime
        #       (is timedelta handled?)

        if pa.types.is_timestamp(dtype):
            kind = DtypeKind.DATETIME
            ts = dtype.unit[0]
            tz = dtype.tz if dtype.tz else ""
            f_string = "ts{ts}:{tz}".format(ts=ts, tz=tz)
            return kind, bit_width, f_string, Endianness.NATIVE
        elif pa.types.is_dictionary(dtype):
            kind = DtypeKind.CATEGORICAL
            arr = self._col
            indices_dtype = arr.indices.type
            _, f_string = _PYARROW_KINDS.get(indices_dtype)
            return kind, bit_width, f_string, Endianness.NATIVE
        else:
            kind, f_string = _PYARROW_KINDS.get(dtype, (None, None))
            if kind is None:
                raise ValueError(
                    f"Data type {dtype} not supported by interchange protocol")

            return kind, bit_width, f_string, Endianness.NATIVE

    @property
    def describe_categorical(self) -> CategoricalDescription:
        """
        If the dtype is categorical, there are two options:
        - There are only values in the data buffer.
        - There is a separate non-categorical Column encoding categorical
          values.

        Raises TypeError if the dtype is not categorical

        Returns the dictionary with description on how to interpret the
        data buffer:
            - "is_ordered" : bool, whether the ordering of dictionary indices
                             is semantically meaningful.
            - "is_dictionary" : bool, whether a mapping of
                                categorical values to other objects exists
            - "categories" : Column representing the (implicit) mapping of
                             indices to category values (e.g. an array of
                             cat1, cat2, ...). None if not a dictionary-style
                             categorical.

        TBD: are there any other in-memory representations that are needed?
        """
        arr = self._col
        if not pa.types.is_dictionary(arr.type):
            raise TypeError(
                "describe_categorical only works on a column with "
                "categorical dtype!"
            )

        return {
            "is_ordered": self._col.type.ordered,
            "is_dictionary": True,
            "categories": _PyArrowColumn(arr.dictionary),
        }

    @property
    def describe_null(self) -> Tuple[ColumnNullType, Any]:
        """
        Return the missing value (or "null") representation the column dtype
        uses, as a tuple ``(kind, value)``.

        Value : if kind is "sentinel value", the actual value. If kind is a bit
        mask or a byte mask, the value (0 or 1) indicating a missing value.
        None otherwise.
        """
        # In case of no missing values, we need to set ColumnNullType to
        # non nullable as in the current __dataframe__ protocol bit/byte masks
        # cannot be None
        if self.null_count == 0:
            return ColumnNullType.NON_NULLABLE, None
        else:
            return ColumnNullType.USE_BITMASK, 0

    @property
    def null_count(self) -> int:
        """
        Number of null elements, if known.

        Note: Arrow uses -1 to indicate "unknown", but None seems cleaner.
        """
        arrow_null_count = self._col.null_count
        n = arrow_null_count if arrow_null_count != -1 else None
        return n

    @property
    def metadata(self) -> Dict[str, Any]:
        """
        The metadata for the column. See `DataFrame.metadata` for more details.
        """
        pass

    def num_chunks(self) -> int:
        """
        Return the number of chunks the column consists of.
        """
        return 1

    def get_chunks(
        self, n_chunks: Optional[int] = None
    ) -> Iterable[_PyArrowColumn]:
        """
        Return an iterator yielding the chunks.

        See `DataFrame.get_chunks` for details on ``n_chunks``.
        """
        if n_chunks and n_chunks > 1:
            chunk_size = self.size() // n_chunks
            if self.size() % n_chunks != 0:
                chunk_size += 1

            array = self._col
            i = 0
            for start in range(0, chunk_size * n_chunks, chunk_size):
                yield _PyArrowColumn(
                    array.slice(start, chunk_size), self._allow_copy
                )
                i += 1
        else:
            yield self

    def get_buffers(self) -> ColumnBuffers:
        """
        Return a dictionary containing the underlying buffers.

        The returned dictionary has the following contents:

            - "data": a two-element tuple whose first element is a buffer
                      containing the data and whose second element is the data
                      buffer's associated dtype.
            - "validity": a two-element tuple whose first element is a buffer
                          containing mask values indicating missing data and
                          whose second element is the mask value buffer's
                          associated dtype. None if the null representation is
                          not a bit or byte mask.
            - "offsets": a two-element tuple whose first element is a buffer
                         containing the offset values for variable-size binary
                         data (e.g., variable-length strings) and whose second
                         element is the offsets buffer's associated dtype. None
                         if the data buffer does not have an associated offsets
                         buffer.
        """
        buffers: ColumnBuffers = {
            "data": self._get_data_buffer(),
            "validity": None,
            "offsets": None,
        }

        try:
            buffers["validity"] = self._get_validity_buffer()
        except NoBufferPresent:
            pass

        try:
            buffers["offsets"] = self._get_offsets_buffer()
        except NoBufferPresent:
            pass

        return buffers

    def _get_data_buffer(
        self,
    ) -> Tuple[_PyArrowBuffer, Any]:  # Any is for self.dtype tuple
        """
        Return the buffer containing the data and the buffer's
        associated dtype.
        """
        array = self._col
        dtype = self.dtype

        # In case of dictionary arrays, use indices
        # to define a buffer, codes are transferred through
        # describe_categorical()
        if pa.types.is_dictionary(array.type):
            array = array.indices
            dtype = _PyArrowColumn(array).dtype

        n = len(array.buffers())
        if n == 2:
            return _PyArrowBuffer(array.buffers()[1]), dtype
        elif n == 3:
            return _PyArrowBuffer(array.buffers()[2]), dtype

    def _get_validity_buffer(self) -> Tuple[_PyArrowBuffer, Any]:
        """
        Return the buffer containing the mask values indicating missing data
        and the buffer's associated dtype.
        Raises NoBufferPresent if null representation is not a bit or byte
        mask.
        """
        # Define the dtype of the returned buffer
        dtype = (DtypeKind.BOOL, 1, "b", Endianness.NATIVE)
        array = self._col
        buff = array.buffers()[0]
        if buff:
            return _PyArrowBuffer(buff), dtype
        else:
            raise NoBufferPresent(
                "There are no missing values so "
                "does not have a separate mask")

    def _get_offsets_buffer(self) -> Tuple[_PyArrowBuffer, Any]:
        """
        Return the buffer containing the offset values for variable-size binary
        data (e.g., variable-length strings) and the buffer's associated dtype.
        Raises NoBufferPresent if the data buffer does not have an associated
        offsets buffer.
        """
        array = self._col
        n = len(array.buffers())
        if n == 2:
            raise NoBufferPresent(
                "This column has a fixed-length dtype so "
                "it does not have an offsets buffer"
            )
        elif n == 3:
            # Define the dtype of the returned buffer
            dtype = self._col.type
            if pa.types.is_large_string(dtype):
                dtype = (DtypeKind.INT, 64, "l", Endianness.NATIVE)
            else:
                dtype = (DtypeKind.INT, 32, "i", Endianness.NATIVE)
            return _PyArrowBuffer(array.buffers()[1]), dtype