File size: 23,001 Bytes
a1e6eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "datetime.h"
#include <algorithm>
#include <chrono>
#include <iomanip>
#include <regex>
#include <string_view>
#include "arrow/array.h"
#include "arrow/python/arrow_to_python_internal.h"
#include "arrow/python/common.h"
#include "arrow/python/helpers.h"
#include "arrow/python/platform.h"
#include "arrow/scalar.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/util/logging.h"
#include "arrow/util/regex.h"
#include "arrow/util/value_parsing.h"
namespace arrow {
using internal::RegexMatch;
namespace py {
namespace internal {
namespace {
bool MatchFixedOffset(const std::string& tz, std::string_view* sign,
std::string_view* hour, std::string_view* minute) {
static const std::regex regex("^([+-])(0[0-9]|1[0-9]|2[0-3]):([0-5][0-9])$");
if (tz.size() < 5) {
return false;
}
return RegexMatch(regex, tz, {sign, hour, minute});
}
constexpr char* NonConst(const char* st) {
// Hack for python versions < 3.7 where members of PyStruct members
// where non-const (C++ doesn't like assigning string literals to these types)
return const_cast<char*>(st);
}
static PyTypeObject MonthDayNanoTupleType = {};
static PyStructSequence_Field MonthDayNanoField[] = {
{NonConst("months"), NonConst("The number of months in the interval")},
{NonConst("days"), NonConst("The number days in the interval")},
{NonConst("nanoseconds"), NonConst("The number of nanoseconds in the interval")},
{nullptr, nullptr}};
static PyStructSequence_Desc MonthDayNanoTupleDesc = {
NonConst("MonthDayNano"),
NonConst("A calendar interval consisting of months, days and nanoseconds."),
MonthDayNanoField,
/*n_in_sequence=*/3};
} // namespace
#ifndef PYPY_VERSION
PyDateTime_CAPI* datetime_api = nullptr;
void InitDatetime() {
PyAcquireGIL lock;
datetime_api =
reinterpret_cast<PyDateTime_CAPI*>(PyCapsule_Import(PyDateTime_CAPSULE_NAME, 0));
if (datetime_api == nullptr) {
Py_FatalError("Could not import datetime C API");
}
}
#endif
// The following code is adapted from
// https://github.com/numpy/numpy/blob/main/numpy/core/src/multiarray/datetime.c
// Days per month, regular year and leap year
static int64_t _days_per_month_table[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
static bool is_leapyear(int64_t year) {
return (year & 0x3) == 0 && // year % 4 == 0
((year % 100) != 0 || (year % 400) == 0);
}
// Calculates the days offset from the 1970 epoch.
static int64_t get_days_from_date(int64_t date_year, int64_t date_month,
int64_t date_day) {
int64_t i, month;
int64_t year, days = 0;
int64_t* month_lengths;
year = date_year - 1970;
days = year * 365;
// Adjust for leap years
if (days >= 0) {
// 1968 is the closest leap year before 1970.
// Exclude the current year, so add 1.
year += 1;
// Add one day for each 4 years
days += year / 4;
// 1900 is the closest previous year divisible by 100
year += 68;
// Subtract one day for each 100 years
days -= year / 100;
// 1600 is the closest previous year divisible by 400
year += 300;
// Add one day for each 400 years
days += year / 400;
} else {
// 1972 is the closest later year after 1970.
// Include the current year, so subtract 2.
year -= 2;
// Subtract one day for each 4 years
days += year / 4;
// 2000 is the closest later year divisible by 100
year -= 28;
// Add one day for each 100 years
days -= year / 100;
// 2000 is also the closest later year divisible by 400
// Subtract one day for each 400 years
days += year / 400;
}
month_lengths = _days_per_month_table[is_leapyear(date_year)];
month = date_month - 1;
// Add the months
for (i = 0; i < month; ++i) {
days += month_lengths[i];
}
// Add the days
days += date_day - 1;
return days;
}
// Modifies '*days_' to be the day offset within the year,
// and returns the year.
static int64_t days_to_yearsdays(int64_t* days_) {
const int64_t days_per_400years = (400 * 365 + 100 - 4 + 1);
// Adjust so it's relative to the year 2000 (divisible by 400)
int64_t days = (*days_) - (365 * 30 + 7);
int64_t year;
// Break down the 400 year cycle to get the year and day within the year
if (days >= 0) {
year = 400 * (days / days_per_400years);
days = days % days_per_400years;
} else {
year = 400 * ((days - (days_per_400years - 1)) / days_per_400years);
days = days % days_per_400years;
if (days < 0) {
days += days_per_400years;
}
}
// Work out the year/day within the 400 year cycle
if (days >= 366) {
year += 100 * ((days - 1) / (100 * 365 + 25 - 1));
days = (days - 1) % (100 * 365 + 25 - 1);
if (days >= 365) {
year += 4 * ((days + 1) / (4 * 365 + 1));
days = (days + 1) % (4 * 365 + 1);
if (days >= 366) {
year += (days - 1) / 365;
days = (days - 1) % 365;
}
}
}
*days_ = days;
return year + 2000;
}
// Extracts the month and year and day number from a number of days
static void get_date_from_days(int64_t days, int64_t* date_year, int64_t* date_month,
int64_t* date_day) {
int64_t *month_lengths, i;
*date_year = days_to_yearsdays(&days);
month_lengths = _days_per_month_table[is_leapyear(*date_year)];
for (i = 0; i < 12; ++i) {
if (days < month_lengths[i]) {
*date_month = i + 1;
*date_day = days + 1;
return;
} else {
days -= month_lengths[i];
}
}
// Should never get here
return;
}
// Splitting time quantities, for example splitting total seconds into
// minutes and remaining seconds. After we run
// int64_t remaining = split_time(total, quotient, &next)
// we have
// total = next * quotient + remaining. Handles negative values by propagating
// them: If total is negative, next will be negative and remaining will
// always be non-negative.
static inline int64_t split_time(int64_t total, int64_t quotient, int64_t* next) {
int64_t r = total % quotient;
if (r < 0) {
*next = total / quotient - 1;
return r + quotient;
} else {
*next = total / quotient;
return r;
}
}
static inline Status PyTime_convert_int(int64_t val, const TimeUnit::type unit,
int64_t* hour, int64_t* minute, int64_t* second,
int64_t* microsecond) {
switch (unit) {
case TimeUnit::NANO:
if (val % 1000 != 0) {
return Status::Invalid("Value ", val, " has non-zero nanoseconds");
}
val /= 1000;
// fall through
case TimeUnit::MICRO:
*microsecond = split_time(val, 1000000LL, &val);
*second = split_time(val, 60, &val);
*minute = split_time(val, 60, hour);
break;
case TimeUnit::MILLI:
*microsecond = split_time(val, 1000, &val) * 1000;
// fall through
case TimeUnit::SECOND:
*second = split_time(val, 60, &val);
*minute = split_time(val, 60, hour);
break;
default:
break;
}
return Status::OK();
}
static inline Status PyDate_convert_int(int64_t val, const DateUnit unit, int64_t* year,
int64_t* month, int64_t* day) {
switch (unit) {
case DateUnit::MILLI:
val /= 86400000LL; // fall through
case DateUnit::DAY:
get_date_from_days(val, year, month, day);
default:
break;
}
return Status::OK();
}
PyObject* NewMonthDayNanoTupleType() {
if (MonthDayNanoTupleType.tp_name == nullptr) {
if (PyStructSequence_InitType2(&MonthDayNanoTupleType, &MonthDayNanoTupleDesc) != 0) {
Py_FatalError("Could not initialize MonthDayNanoTuple");
}
}
Py_INCREF(&MonthDayNanoTupleType);
return (PyObject*)&MonthDayNanoTupleType;
}
Status PyTime_from_int(int64_t val, const TimeUnit::type unit, PyObject** out) {
int64_t hour = 0, minute = 0, second = 0, microsecond = 0;
RETURN_NOT_OK(PyTime_convert_int(val, unit, &hour, &minute, &second, µsecond));
*out = PyTime_FromTime(static_cast<int32_t>(hour), static_cast<int32_t>(minute),
static_cast<int32_t>(second), static_cast<int32_t>(microsecond));
return Status::OK();
}
Status PyDate_from_int(int64_t val, const DateUnit unit, PyObject** out) {
int64_t year = 0, month = 0, day = 0;
RETURN_NOT_OK(PyDate_convert_int(val, unit, &year, &month, &day));
*out = PyDate_FromDate(static_cast<int32_t>(year), static_cast<int32_t>(month),
static_cast<int32_t>(day));
return Status::OK();
}
Status PyDateTime_from_int(int64_t val, const TimeUnit::type unit, PyObject** out) {
int64_t hour = 0, minute = 0, second = 0, microsecond = 0;
RETURN_NOT_OK(PyTime_convert_int(val, unit, &hour, &minute, &second, µsecond));
int64_t total_days = 0;
hour = split_time(hour, 24, &total_days);
int64_t year = 0, month = 0, day = 0;
get_date_from_days(total_days, &year, &month, &day);
*out = PyDateTime_FromDateAndTime(
static_cast<int32_t>(year), static_cast<int32_t>(month), static_cast<int32_t>(day),
static_cast<int32_t>(hour), static_cast<int32_t>(minute),
static_cast<int32_t>(second), static_cast<int32_t>(microsecond));
return Status::OK();
}
int64_t PyDate_to_days(PyDateTime_Date* pydate) {
return get_days_from_date(PyDateTime_GET_YEAR(pydate), PyDateTime_GET_MONTH(pydate),
PyDateTime_GET_DAY(pydate));
}
Result<int64_t> PyDateTime_utcoffset_s(PyObject* obj) {
// calculate offset from UTC timezone in seconds
// supports only PyDateTime_DateTime and PyDateTime_Time objects
OwnedRef pyoffset(PyObject_CallMethod(obj, "utcoffset", NULL));
RETURN_IF_PYERROR();
if (pyoffset.obj() != nullptr && pyoffset.obj() != Py_None) {
auto delta = reinterpret_cast<PyDateTime_Delta*>(pyoffset.obj());
return internal::PyDelta_to_s(delta);
} else {
return 0;
}
}
Result<std::string> PyTZInfo_utcoffset_hhmm(PyObject* pytzinfo) {
// attempt to convert timezone offset objects to "+/-{hh}:{mm}" format
OwnedRef pydelta_object(PyObject_CallMethod(pytzinfo, "utcoffset", "O", Py_None));
RETURN_IF_PYERROR();
if (!PyDelta_Check(pydelta_object.obj())) {
return Status::Invalid(
"Object returned by tzinfo.utcoffset(None) is not an instance of "
"datetime.timedelta");
}
auto pydelta = reinterpret_cast<PyDateTime_Delta*>(pydelta_object.obj());
// retrieve the offset as seconds
auto total_seconds = internal::PyDelta_to_s(pydelta);
// determine whether the offset is positive or negative
auto sign = (total_seconds < 0) ? "-" : "+";
total_seconds = abs(total_seconds);
// calculate offset components
int64_t hours, minutes, seconds;
seconds = split_time(total_seconds, 60, &minutes);
minutes = split_time(minutes, 60, &hours);
if (seconds > 0) {
// check there are no remaining seconds
return Status::Invalid("Offset must represent whole number of minutes");
}
// construct the timezone string
std::stringstream stream;
stream << sign << std::setfill('0') << std::setw(2) << hours << ":" << std::setfill('0')
<< std::setw(2) << minutes;
return stream.str();
}
// Converted from python. See https://github.com/apache/arrow/pull/7604
// for details.
Result<PyObject*> StringToTzinfo(const std::string& tz) {
std::string_view sign_str, hour_str, minute_str;
OwnedRef pytz;
OwnedRef zoneinfo;
OwnedRef datetime;
if (internal::ImportModule("pytz", &pytz).ok()) {
if (MatchFixedOffset(tz, &sign_str, &hour_str, &minute_str)) {
int sign = -1;
if (sign_str == "+") {
sign = 1;
}
OwnedRef fixed_offset;
RETURN_NOT_OK(internal::ImportFromModule(pytz.obj(), "FixedOffset", &fixed_offset));
uint32_t minutes, hours;
if (!::arrow::internal::ParseUnsigned(hour_str.data(), hour_str.size(), &hours) ||
!::arrow::internal::ParseUnsigned(minute_str.data(), minute_str.size(),
&minutes)) {
return Status::Invalid("Invalid timezone: ", tz);
}
OwnedRef total_minutes(PyLong_FromLong(
sign * ((static_cast<int>(hours) * 60) + static_cast<int>(minutes))));
RETURN_IF_PYERROR();
auto tzinfo =
PyObject_CallFunctionObjArgs(fixed_offset.obj(), total_minutes.obj(), NULL);
RETURN_IF_PYERROR();
return tzinfo;
}
OwnedRef timezone;
RETURN_NOT_OK(internal::ImportFromModule(pytz.obj(), "timezone", &timezone));
OwnedRef py_tz_string(
PyUnicode_FromStringAndSize(tz.c_str(), static_cast<Py_ssize_t>(tz.size())));
auto tzinfo = PyObject_CallFunctionObjArgs(timezone.obj(), py_tz_string.obj(), NULL);
RETURN_IF_PYERROR();
return tzinfo;
}
// catch fixed offset if pytz is not present
if (MatchFixedOffset(tz, &sign_str, &hour_str, &minute_str)) {
RETURN_NOT_OK(internal::ImportModule("datetime", &datetime));
int sign = -1;
if (sign_str == "+") {
sign = 1;
}
// import timezone and timedelta module to create a tzinfo object
OwnedRef class_timezone;
OwnedRef class_timedelta;
RETURN_NOT_OK(
internal::ImportFromModule(datetime.obj(), "timezone", &class_timezone));
RETURN_NOT_OK(
internal::ImportFromModule(datetime.obj(), "timedelta", &class_timedelta));
// check input
uint32_t minutes, hours;
if (!::arrow::internal::ParseUnsigned(hour_str.data(), hour_str.size(), &hours) ||
!::arrow::internal::ParseUnsigned(minute_str.data(), minute_str.size(),
&minutes)) {
return Status::Invalid("Invalid timezone: ", tz);
}
// save offset as a signed integer
OwnedRef total_minutes(PyLong_FromLong(
sign * ((static_cast<int>(hours) * 60) + static_cast<int>(minutes))));
// create zero integers for empty arguments in datetime.timedelta
OwnedRef zero(PyLong_FromLong(static_cast<int>(0)));
// call datetime.timedelta to get correct offset object for datetime.timezone
auto offset =
PyObject_CallFunctionObjArgs(class_timedelta.obj(), zero.obj(), zero.obj(),
zero.obj(), zero.obj(), total_minutes.obj(), NULL);
RETURN_IF_PYERROR();
// call datetime.timezone
auto tzinfo = PyObject_CallFunctionObjArgs(class_timezone.obj(), offset, NULL);
RETURN_IF_PYERROR();
return tzinfo;
}
// fallback on zoneinfo if tz is string and pytz is not present
if (internal::ImportModule("zoneinfo", &zoneinfo).ok()) {
OwnedRef class_zoneinfo;
RETURN_NOT_OK(
internal::ImportFromModule(zoneinfo.obj(), "ZoneInfo", &class_zoneinfo));
OwnedRef py_tz_string(
PyUnicode_FromStringAndSize(tz.c_str(), static_cast<Py_ssize_t>(tz.size())));
auto tzinfo =
PyObject_CallFunctionObjArgs(class_zoneinfo.obj(), py_tz_string.obj(), NULL);
RETURN_IF_PYERROR();
return tzinfo;
}
return Status::Invalid(
"Pytz package or Python>=3.8 for zoneinfo module must be installed.");
}
Result<std::string> TzinfoToString(PyObject* tzinfo) {
OwnedRef module_pytz; // import pytz
OwnedRef module_datetime; // import datetime
OwnedRef module_zoneinfo; // import zoneinfo
OwnedRef module_dateutil; // import dateutil
OwnedRef class_timezone; // from datetime import timezone
OwnedRef class_fixedoffset; // from pytz import _FixedOffset
OwnedRef class_basetzinfo; // from pytz import BaseTzInfo
OwnedRef class_zoneinfo; // from zoneinfo import ZoneInfo
OwnedRef class_tzfile; // from zoneinfo import tzfile
// import necessary modules
RETURN_NOT_OK(internal::ImportModule("datetime", &module_datetime));
// import necessary classes
RETURN_NOT_OK(
internal::ImportFromModule(module_datetime.obj(), "timezone", &class_timezone));
// check that it's a valid tzinfo object
if (!PyTZInfo_Check(tzinfo)) {
return Status::TypeError("Not an instance of datetime.tzinfo");
}
// if tzinfo is an instance of datetime.timezone return the
// HH:MM offset string representation
if (PyObject_IsInstance(tzinfo, class_timezone.obj())) {
// still recognize datetime.timezone.utc as UTC (instead of +00:00)
OwnedRef tzname_object(PyObject_CallMethod(tzinfo, "tzname", "O", Py_None));
RETURN_IF_PYERROR();
if (PyUnicode_Check(tzname_object.obj())) {
std::string result;
RETURN_NOT_OK(internal::PyUnicode_AsStdString(tzname_object.obj(), &result));
if (result == "UTC") {
return result;
}
}
return PyTZInfo_utcoffset_hhmm(tzinfo);
}
// Try to import pytz if it is available
if (internal::ImportModule("pytz", &module_pytz).ok()) {
RETURN_NOT_OK(internal::ImportFromModule(module_pytz.obj(), "_FixedOffset",
&class_fixedoffset));
RETURN_NOT_OK(
internal::ImportFromModule(module_pytz.obj(), "BaseTzInfo", &class_basetzinfo));
}
// if tzinfo is an instance of pytz._FixedOffset return the
// HH:MM offset string representation
if (module_pytz.obj() != nullptr &&
PyObject_IsInstance(tzinfo, class_fixedoffset.obj())) {
OwnedRef tzname_object(PyObject_CallMethod(tzinfo, "tzname", "O", Py_None));
RETURN_IF_PYERROR();
return PyTZInfo_utcoffset_hhmm(tzinfo);
}
// if pytz is installed and tzinfo is and instance of pytz.BaseTzInfo
if (module_pytz.obj() != nullptr &&
PyObject_IsInstance(tzinfo, class_basetzinfo.obj())) {
OwnedRef zone(PyObject_GetAttrString(tzinfo, "zone"));
RETURN_IF_PYERROR();
std::string result;
RETURN_NOT_OK(internal::PyUnicode_AsStdString(zone.obj(), &result));
return result;
}
// Try to import zoneinfo if it is available
if (internal::ImportModule("zoneinfo", &module_zoneinfo).ok()) {
RETURN_NOT_OK(
internal::ImportFromModule(module_zoneinfo.obj(), "ZoneInfo", &class_zoneinfo));
}
// if zoneinfo is installed and tzinfo is an instance of zoneinfo.ZoneInfo
if (module_zoneinfo.obj() != nullptr &&
PyObject_IsInstance(tzinfo, class_zoneinfo.obj())) {
OwnedRef key(PyObject_GetAttrString(tzinfo, "key"));
RETURN_IF_PYERROR();
std::string result;
RETURN_NOT_OK(internal::PyUnicode_AsStdString(key.obj(), &result));
return result;
}
// Try to import dateutil if it is available
if (internal::ImportModule("dateutil.tz", &module_dateutil).ok()) {
RETURN_NOT_OK(
internal::ImportFromModule(module_dateutil.obj(), "tzfile", &class_tzfile));
}
// if dateutil is installed and tzinfo is an instance of dateutil.tz.tzfile
if (module_dateutil.obj() != nullptr &&
PyObject_IsInstance(tzinfo, class_tzfile.obj())) {
OwnedRef _filename(PyObject_GetAttrString(tzinfo, "_filename"));
RETURN_IF_PYERROR();
std::string result;
RETURN_NOT_OK(internal::PyUnicode_AsStdString(_filename.obj(), &result));
// _filename returns a full path in general ('/usr/share/zoneinfo/Europe/Paris')
// or POSIX name on Windows ('Europe/Paris') - we need a substring in first case
std::size_t pos = result.find("zoneinfo/");
if (pos != std::string::npos) {
return result.substr(pos + 9);
}
return result;
}
// attempt to call tzinfo.tzname(None)
OwnedRef tzname_object(PyObject_CallMethod(tzinfo, "tzname", "O", Py_None));
RETURN_IF_PYERROR();
if (PyUnicode_Check(tzname_object.obj())) {
std::string result;
RETURN_NOT_OK(internal::PyUnicode_AsStdString(tzname_object.obj(), &result));
return result;
}
// fall back to HH:MM offset string representation based on tzinfo.utcoffset(None)
return PyTZInfo_utcoffset_hhmm(tzinfo);
}
PyObject* MonthDayNanoIntervalToNamedTuple(
const MonthDayNanoIntervalType::MonthDayNanos& interval) {
OwnedRef tuple(PyStructSequence_New(&MonthDayNanoTupleType));
if (ARROW_PREDICT_FALSE(tuple.obj() == nullptr)) {
return nullptr;
}
PyStructSequence_SetItem(tuple.obj(), /*pos=*/0, PyLong_FromLong(interval.months));
PyStructSequence_SetItem(tuple.obj(), /*pos=*/1, PyLong_FromLong(interval.days));
PyStructSequence_SetItem(tuple.obj(), /*pos=*/2,
PyLong_FromLongLong(interval.nanoseconds));
return tuple.detach();
}
namespace {
// Wrapper around a Python list object that mimics dereference and assignment
// operations.
struct PyListAssigner {
public:
explicit PyListAssigner(PyObject* list) : list_(list) { DCHECK(PyList_Check(list_)); }
PyListAssigner& operator*() { return *this; }
void operator=(PyObject* obj) {
if (ARROW_PREDICT_FALSE(PyList_SetItem(list_, current_index_, obj) == -1)) {
Py_FatalError("list did not have the correct preallocated size.");
}
}
PyListAssigner& operator++() {
current_index_++;
return *this;
}
PyListAssigner& operator+=(int64_t offset) {
current_index_ += offset;
return *this;
}
private:
PyObject* list_;
int64_t current_index_ = 0;
};
} // namespace
Result<PyObject*> MonthDayNanoIntervalArrayToPyList(
const MonthDayNanoIntervalArray& array) {
OwnedRef out_list(PyList_New(array.length()));
RETURN_IF_PYERROR();
PyListAssigner out_objects(out_list.obj());
auto& interval_array =
arrow::internal::checked_cast<const MonthDayNanoIntervalArray&>(array);
RETURN_NOT_OK(internal::WriteArrayObjects(
interval_array,
[&](const MonthDayNanoIntervalType::MonthDayNanos& interval, PyListAssigner& out) {
PyObject* tuple = internal::MonthDayNanoIntervalToNamedTuple(interval);
if (ARROW_PREDICT_FALSE(tuple == nullptr)) {
RETURN_IF_PYERROR();
}
*out = tuple;
return Status::OK();
},
out_objects));
return out_list.detach();
}
Result<PyObject*> MonthDayNanoIntervalScalarToPyObject(
const MonthDayNanoIntervalScalar& scalar) {
if (scalar.is_valid) {
return internal::MonthDayNanoIntervalToNamedTuple(scalar.value);
} else {
Py_INCREF(Py_None);
return Py_None;
}
}
} // namespace internal
} // namespace py
} // namespace arrow
|