File size: 8,848 Bytes
a1e6eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <algorithm>
#include <limits>
#include "arrow/python/common.h"
#include "arrow/python/decimal.h"
#include "arrow/python/helpers.h"
#include "arrow/type_fwd.h"
#include "arrow/util/decimal.h"
#include "arrow/util/logging.h"
namespace arrow {
namespace py {
namespace internal {
Status ImportDecimalType(OwnedRef* decimal_type) {
OwnedRef decimal_module;
RETURN_NOT_OK(ImportModule("decimal", &decimal_module));
RETURN_NOT_OK(ImportFromModule(decimal_module.obj(), "Decimal", decimal_type));
return Status::OK();
}
Status PythonDecimalToString(PyObject* python_decimal, std::string* out) {
// Call Python's str(decimal_object)
return PyObject_StdStringStr(python_decimal, out);
}
// \brief Infer the precision and scale of a Python decimal.Decimal instance
// \param python_decimal[in] An instance of decimal.Decimal
// \param precision[out] The value of the inferred precision
// \param scale[out] The value of the inferred scale
// \return The status of the operation
static Status InferDecimalPrecisionAndScale(PyObject* python_decimal, int32_t* precision,
int32_t* scale) {
DCHECK_NE(python_decimal, NULLPTR);
DCHECK_NE(precision, NULLPTR);
DCHECK_NE(scale, NULLPTR);
// TODO(phillipc): Make sure we perform PyDecimal_Check(python_decimal) as a DCHECK
OwnedRef as_tuple(PyObject_CallMethod(python_decimal, const_cast<char*>("as_tuple"),
const_cast<char*>("")));
RETURN_IF_PYERROR();
DCHECK(PyTuple_Check(as_tuple.obj()));
OwnedRef digits(PyObject_GetAttrString(as_tuple.obj(), "digits"));
RETURN_IF_PYERROR();
DCHECK(PyTuple_Check(digits.obj()));
const auto num_digits = static_cast<int32_t>(PyTuple_Size(digits.obj()));
RETURN_IF_PYERROR();
OwnedRef py_exponent(PyObject_GetAttrString(as_tuple.obj(), "exponent"));
RETURN_IF_PYERROR();
DCHECK(IsPyInteger(py_exponent.obj()));
const auto exponent = static_cast<int32_t>(PyLong_AsLong(py_exponent.obj()));
RETURN_IF_PYERROR();
if (exponent < 0) {
// If exponent > num_digits, we have a number with leading zeros
// such as 0.01234. Ensure we have enough precision for leading zeros
// (which are not included in num_digits).
*precision = std::max(num_digits, -exponent);
*scale = -exponent;
} else {
// Trailing zeros are not included in num_digits, need to add to precision.
// Note we don't generate negative scales as they are poorly supported
// in non-Arrow systems.
*precision = num_digits + exponent;
*scale = 0;
}
return Status::OK();
}
PyObject* DecimalFromString(PyObject* decimal_constructor,
const std::string& decimal_string) {
DCHECK_NE(decimal_constructor, nullptr);
auto string_size = decimal_string.size();
DCHECK_GT(string_size, 0);
auto string_bytes = decimal_string.c_str();
DCHECK_NE(string_bytes, nullptr);
return PyObject_CallFunction(decimal_constructor, const_cast<char*>("s#"), string_bytes,
static_cast<Py_ssize_t>(string_size));
}
namespace {
template <typename ArrowDecimal>
Status DecimalFromStdString(const std::string& decimal_string,
const DecimalType& arrow_type, ArrowDecimal* out) {
int32_t inferred_precision;
int32_t inferred_scale;
RETURN_NOT_OK(ArrowDecimal::FromString(decimal_string, out, &inferred_precision,
&inferred_scale));
const int32_t precision = arrow_type.precision();
const int32_t scale = arrow_type.scale();
if (scale != inferred_scale) {
DCHECK_NE(out, NULLPTR);
ARROW_ASSIGN_OR_RAISE(*out, out->Rescale(inferred_scale, scale));
}
auto inferred_scale_delta = inferred_scale - scale;
if (ARROW_PREDICT_FALSE((inferred_precision - inferred_scale_delta) > precision)) {
return Status::Invalid(
"Decimal type with precision ", inferred_precision,
" does not fit into precision inferred from first array element: ", precision);
}
return Status::OK();
}
template <typename ArrowDecimal>
Status InternalDecimalFromPythonDecimal(PyObject* python_decimal,
const DecimalType& arrow_type,
ArrowDecimal* out) {
DCHECK_NE(python_decimal, NULLPTR);
DCHECK_NE(out, NULLPTR);
std::string string;
RETURN_NOT_OK(PythonDecimalToString(python_decimal, &string));
return DecimalFromStdString(string, arrow_type, out);
}
template <typename ArrowDecimal>
Status InternalDecimalFromPyObject(PyObject* obj, const DecimalType& arrow_type,
ArrowDecimal* out) {
DCHECK_NE(obj, NULLPTR);
DCHECK_NE(out, NULLPTR);
if (IsPyInteger(obj)) {
// TODO: add a fast path for small-ish ints
std::string string;
RETURN_NOT_OK(PyObject_StdStringStr(obj, &string));
return DecimalFromStdString(string, arrow_type, out);
} else if (PyDecimal_Check(obj)) {
return InternalDecimalFromPythonDecimal<ArrowDecimal>(obj, arrow_type, out);
} else {
return Status::TypeError("int or Decimal object expected, got ",
Py_TYPE(obj)->tp_name);
}
}
} // namespace
Status DecimalFromPythonDecimal(PyObject* python_decimal, const DecimalType& arrow_type,
Decimal128* out) {
return InternalDecimalFromPythonDecimal(python_decimal, arrow_type, out);
}
Status DecimalFromPyObject(PyObject* obj, const DecimalType& arrow_type,
Decimal128* out) {
return InternalDecimalFromPyObject(obj, arrow_type, out);
}
Status DecimalFromPythonDecimal(PyObject* python_decimal, const DecimalType& arrow_type,
Decimal256* out) {
return InternalDecimalFromPythonDecimal(python_decimal, arrow_type, out);
}
Status DecimalFromPyObject(PyObject* obj, const DecimalType& arrow_type,
Decimal256* out) {
return InternalDecimalFromPyObject(obj, arrow_type, out);
}
bool PyDecimal_Check(PyObject* obj) {
static OwnedRef decimal_type;
if (!decimal_type.obj()) {
ARROW_CHECK_OK(ImportDecimalType(&decimal_type));
DCHECK(PyType_Check(decimal_type.obj()));
}
// PyObject_IsInstance() is slower as it has to check for virtual subclasses
const int result =
PyType_IsSubtype(Py_TYPE(obj), reinterpret_cast<PyTypeObject*>(decimal_type.obj()));
ARROW_CHECK_NE(result, -1) << " error during PyType_IsSubtype check";
return result == 1;
}
bool PyDecimal_ISNAN(PyObject* obj) {
DCHECK(PyDecimal_Check(obj)) << "obj is not an instance of decimal.Decimal";
OwnedRef is_nan(
PyObject_CallMethod(obj, const_cast<char*>("is_nan"), const_cast<char*>("")));
return PyObject_IsTrue(is_nan.obj()) == 1;
}
DecimalMetadata::DecimalMetadata()
: DecimalMetadata(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min()) {}
DecimalMetadata::DecimalMetadata(int32_t precision, int32_t scale)
: precision_(precision), scale_(scale) {}
Status DecimalMetadata::Update(int32_t suggested_precision, int32_t suggested_scale) {
const int32_t current_scale = scale_;
scale_ = std::max(current_scale, suggested_scale);
const int32_t current_precision = precision_;
if (current_precision == std::numeric_limits<int32_t>::min()) {
precision_ = suggested_precision;
} else {
auto num_digits = std::max(current_precision - current_scale,
suggested_precision - suggested_scale);
precision_ = std::max(num_digits + scale_, current_precision);
}
return Status::OK();
}
Status DecimalMetadata::Update(PyObject* object) {
bool is_decimal = PyDecimal_Check(object);
if (ARROW_PREDICT_FALSE(!is_decimal || PyDecimal_ISNAN(object))) {
return Status::OK();
}
int32_t precision = 0;
int32_t scale = 0;
RETURN_NOT_OK(InferDecimalPrecisionAndScale(object, &precision, &scale));
return Update(precision, scale);
}
} // namespace internal
} // namespace py
} // namespace arrow
|