File size: 18,945 Bytes
a1e6eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#include "arrow/python/deserialize.h"

#include "arrow/python/numpy_interop.h"

#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <numpy/arrayobject.h>
#include <numpy/arrayscalars.h>

#include "arrow/array.h"
#include "arrow/io/interfaces.h"
#include "arrow/io/memory.h"
#include "arrow/ipc/options.h"
#include "arrow/ipc/reader.h"
#include "arrow/ipc/util.h"
#include "arrow/ipc/writer.h"
#include "arrow/table.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
#include "arrow/util/value_parsing.h"

#include "arrow/python/common.h"
#include "arrow/python/datetime.h"
#include "arrow/python/helpers.h"
#include "arrow/python/numpy_convert.h"
#include "arrow/python/pyarrow.h"
#include "arrow/python/serialize.h"

namespace arrow {

using internal::checked_cast;
using internal::ParseValue;

namespace py {

Status CallDeserializeCallback(PyObject* context, PyObject* value,
                               PyObject** deserialized_object);

Status DeserializeTuple(PyObject* context, const Array& array, int64_t start_idx,
                        int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                        PyObject** out);

Status DeserializeList(PyObject* context, const Array& array, int64_t start_idx,
                       int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                       PyObject** out);

Status DeserializeSet(PyObject* context, const Array& array, int64_t start_idx,
                      int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                      PyObject** out);

Status DeserializeDict(PyObject* context, const Array& array, int64_t start_idx,
                       int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                       PyObject** out) {
  const auto& data = checked_cast<const StructArray&>(array);
  OwnedRef keys, vals;
  OwnedRef result(PyDict_New());
  RETURN_IF_PYERROR();

  DCHECK_EQ(2, data.num_fields());

  RETURN_NOT_OK(DeserializeList(context, *data.field(0), start_idx, stop_idx, base, blobs,
                                keys.ref()));
  RETURN_NOT_OK(DeserializeList(context, *data.field(1), start_idx, stop_idx, base, blobs,
                                vals.ref()));
  for (int64_t i = start_idx; i < stop_idx; ++i) {
    // PyDict_SetItem behaves differently from PyList_SetItem and PyTuple_SetItem.
    // The latter two steal references whereas PyDict_SetItem does not. So we need
    // to make sure the reference count is decremented by letting the OwnedRef
    // go out of scope at the end.
    int ret = PyDict_SetItem(result.obj(), PyList_GET_ITEM(keys.obj(), i - start_idx),
                             PyList_GET_ITEM(vals.obj(), i - start_idx));
    if (ret != 0) {
      return ConvertPyError();
    }
  }
  static PyObject* py_type = PyUnicode_FromString("_pytype_");
  if (PyDict_Contains(result.obj(), py_type)) {
    RETURN_NOT_OK(CallDeserializeCallback(context, result.obj(), out));
  } else {
    *out = result.detach();
  }
  return Status::OK();
}

Status DeserializeArray(int32_t index, PyObject* base, const SerializedPyObject& blobs,
                        PyObject** out) {
  RETURN_NOT_OK(py::TensorToNdarray(blobs.ndarrays[index], base, out));
  // Mark the array as immutable
  OwnedRef flags(PyObject_GetAttrString(*out, "flags"));
  if (flags.obj() == NULL) {
    return ConvertPyError();
  }
  if (PyObject_SetAttrString(flags.obj(), "writeable", Py_False) < 0) {
    return ConvertPyError();
  }
  return Status::OK();
}

Status GetValue(PyObject* context, const Array& arr, int64_t index, int8_t type,
                PyObject* base, const SerializedPyObject& blobs, PyObject** result) {
  switch (type) {
    case PythonType::NONE:
      Py_INCREF(Py_None);
      *result = Py_None;
      return Status::OK();
    case PythonType::BOOL:
      *result = PyBool_FromLong(checked_cast<const BooleanArray&>(arr).Value(index));
      return Status::OK();
    case PythonType::PY2INT:
    case PythonType::INT: {
      *result = PyLong_FromSsize_t(checked_cast<const Int64Array&>(arr).Value(index));
      return Status::OK();
    }
    case PythonType::BYTES: {
      auto view = checked_cast<const BinaryArray&>(arr).GetView(index);
      *result = PyBytes_FromStringAndSize(view.data(), view.length());
      return CheckPyError();
    }
    case PythonType::STRING: {
      auto view = checked_cast<const StringArray&>(arr).GetView(index);
      *result = PyUnicode_FromStringAndSize(view.data(), view.length());
      return CheckPyError();
    }
    case PythonType::HALF_FLOAT: {
      *result = PyHalf_FromHalf(checked_cast<const HalfFloatArray&>(arr).Value(index));
      RETURN_IF_PYERROR();
      return Status::OK();
    }
    case PythonType::FLOAT:
      *result = PyFloat_FromDouble(checked_cast<const FloatArray&>(arr).Value(index));
      return Status::OK();
    case PythonType::DOUBLE:
      *result = PyFloat_FromDouble(checked_cast<const DoubleArray&>(arr).Value(index));
      return Status::OK();
    case PythonType::DATE64: {
      RETURN_NOT_OK(internal::PyDateTime_from_int(
          checked_cast<const Date64Array&>(arr).Value(index), TimeUnit::MICRO, result));
      RETURN_IF_PYERROR();
      return Status::OK();
    }
    case PythonType::LIST: {
      const auto& l = checked_cast<const ListArray&>(arr);
      return DeserializeList(context, *l.values(), l.value_offset(index),
                             l.value_offset(index + 1), base, blobs, result);
    }
    case PythonType::DICT: {
      const auto& l = checked_cast<const ListArray&>(arr);
      return DeserializeDict(context, *l.values(), l.value_offset(index),
                             l.value_offset(index + 1), base, blobs, result);
    }
    case PythonType::TUPLE: {
      const auto& l = checked_cast<const ListArray&>(arr);
      return DeserializeTuple(context, *l.values(), l.value_offset(index),
                              l.value_offset(index + 1), base, blobs, result);
    }
    case PythonType::SET: {
      const auto& l = checked_cast<const ListArray&>(arr);
      return DeserializeSet(context, *l.values(), l.value_offset(index),
                            l.value_offset(index + 1), base, blobs, result);
    }
    case PythonType::TENSOR: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      *result = wrap_tensor(blobs.tensors[ref]);
      return Status::OK();
    }
    case PythonType::SPARSECOOTENSOR: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      const std::shared_ptr<SparseCOOTensor>& sparse_coo_tensor =
          arrow::internal::checked_pointer_cast<SparseCOOTensor>(
              blobs.sparse_tensors[ref]);
      *result = wrap_sparse_coo_tensor(sparse_coo_tensor);
      return Status::OK();
    }
    case PythonType::SPARSECSRMATRIX: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      const std::shared_ptr<SparseCSRMatrix>& sparse_csr_matrix =
          arrow::internal::checked_pointer_cast<SparseCSRMatrix>(
              blobs.sparse_tensors[ref]);
      *result = wrap_sparse_csr_matrix(sparse_csr_matrix);
      return Status::OK();
    }
    case PythonType::SPARSECSCMATRIX: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      const std::shared_ptr<SparseCSCMatrix>& sparse_csc_matrix =
          arrow::internal::checked_pointer_cast<SparseCSCMatrix>(
              blobs.sparse_tensors[ref]);
      *result = wrap_sparse_csc_matrix(sparse_csc_matrix);
      return Status::OK();
    }
    case PythonType::SPARSECSFTENSOR: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      const std::shared_ptr<SparseCSFTensor>& sparse_csf_tensor =
          arrow::internal::checked_pointer_cast<SparseCSFTensor>(
              blobs.sparse_tensors[ref]);
      *result = wrap_sparse_csf_tensor(sparse_csf_tensor);
      return Status::OK();
    }
    case PythonType::NDARRAY: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      return DeserializeArray(ref, base, blobs, result);
    }
    case PythonType::BUFFER: {
      int32_t ref = checked_cast<const Int32Array&>(arr).Value(index);
      *result = wrap_buffer(blobs.buffers[ref]);
      return Status::OK();
    }
    default: {
      ARROW_CHECK(false) << "union tag " << type << "' not recognized";
    }
  }
  return Status::OK();
}

Status GetPythonTypes(const UnionArray& data, std::vector<int8_t>* result) {
  ARROW_CHECK(result != nullptr);
  auto type = data.type();
  for (int i = 0; i < type->num_fields(); ++i) {
    int8_t tag = 0;
    const std::string& data = type->field(i)->name();
    if (!ParseValue<Int8Type>(data.c_str(), data.size(), &tag)) {
      return Status::SerializationError("Cannot convert string: \"",
                                        type->field(i)->name(), "\" to int8_t");
    }
    result->push_back(tag);
  }
  return Status::OK();
}

template <typename CreateSequenceFn, typename SetItemFn>
Status DeserializeSequence(PyObject* context, const Array& array, int64_t start_idx,
                           int64_t stop_idx, PyObject* base,
                           const SerializedPyObject& blobs,
                           CreateSequenceFn&& create_sequence, SetItemFn&& set_item,
                           PyObject** out) {
  const auto& data = checked_cast<const DenseUnionArray&>(array);
  OwnedRef result(create_sequence(stop_idx - start_idx));
  RETURN_IF_PYERROR();
  const int8_t* type_codes = data.raw_type_codes();
  const int32_t* value_offsets = data.raw_value_offsets();
  std::vector<int8_t> python_types;
  RETURN_NOT_OK(GetPythonTypes(data, &python_types));
  for (int64_t i = start_idx; i < stop_idx; ++i) {
    const int64_t offset = value_offsets[i];
    const uint8_t type = type_codes[i];
    PyObject* value;
    RETURN_NOT_OK(GetValue(context, *data.field(type), offset, python_types[type], base,
                           blobs, &value));
    RETURN_NOT_OK(set_item(result.obj(), i - start_idx, value));
  }
  *out = result.detach();
  return Status::OK();
}

Status DeserializeList(PyObject* context, const Array& array, int64_t start_idx,
                       int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                       PyObject** out) {
  return DeserializeSequence(
      context, array, start_idx, stop_idx, base, blobs,
      [](int64_t size) { return PyList_New(size); },
      [](PyObject* seq, int64_t index, PyObject* item) {
        PyList_SET_ITEM(seq, index, item);
        return Status::OK();
      },
      out);
}

Status DeserializeTuple(PyObject* context, const Array& array, int64_t start_idx,
                        int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                        PyObject** out) {
  return DeserializeSequence(
      context, array, start_idx, stop_idx, base, blobs,
      [](int64_t size) { return PyTuple_New(size); },
      [](PyObject* seq, int64_t index, PyObject* item) {
        PyTuple_SET_ITEM(seq, index, item);
        return Status::OK();
      },
      out);
}

Status DeserializeSet(PyObject* context, const Array& array, int64_t start_idx,
                      int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs,
                      PyObject** out) {
  return DeserializeSequence(
      context, array, start_idx, stop_idx, base, blobs,
      [](int64_t size) { return PySet_New(nullptr); },
      [](PyObject* seq, int64_t index, PyObject* item) {
        int err = PySet_Add(seq, item);
        Py_DECREF(item);
        if (err < 0) {
          RETURN_IF_PYERROR();
        }
        return Status::OK();
      },
      out);
}

Status ReadSerializedObject(io::RandomAccessFile* src, SerializedPyObject* out) {
  int32_t num_tensors;
  int32_t num_sparse_tensors;
  int32_t num_ndarrays;
  int32_t num_buffers;

  // Read number of tensors
  RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_tensors)));
  RETURN_NOT_OK(
      src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_sparse_tensors)));
  RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_ndarrays)));
  RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast<uint8_t*>(&num_buffers)));

  // Align stream to 8-byte offset
  RETURN_NOT_OK(ipc::AlignStream(src, ipc::kArrowIpcAlignment));
  std::shared_ptr<RecordBatchReader> reader;
  ARROW_ASSIGN_OR_RAISE(reader, ipc::RecordBatchStreamReader::Open(src));
  RETURN_NOT_OK(reader->ReadNext(&out->batch));

  /// Skip EOS marker
  RETURN_NOT_OK(src->Advance(4));

  /// Align stream so tensor bodies are 64-byte aligned
  RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment));

  for (int i = 0; i < num_tensors; ++i) {
    std::shared_ptr<Tensor> tensor;
    ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(src));
    RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment));
    out->tensors.push_back(tensor);
  }

  for (int i = 0; i < num_sparse_tensors; ++i) {
    std::shared_ptr<SparseTensor> sparse_tensor;
    ARROW_ASSIGN_OR_RAISE(sparse_tensor, ipc::ReadSparseTensor(src));
    RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment));
    out->sparse_tensors.push_back(sparse_tensor);
  }

  for (int i = 0; i < num_ndarrays; ++i) {
    std::shared_ptr<Tensor> ndarray;
    ARROW_ASSIGN_OR_RAISE(ndarray, ipc::ReadTensor(src));
    RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment));
    out->ndarrays.push_back(ndarray);
  }

  ARROW_ASSIGN_OR_RAISE(int64_t offset, src->Tell());
  for (int i = 0; i < num_buffers; ++i) {
    int64_t size;
    RETURN_NOT_OK(src->ReadAt(offset, sizeof(int64_t), &size));
    offset += sizeof(int64_t);
    ARROW_ASSIGN_OR_RAISE(auto buffer, src->ReadAt(offset, size));
    out->buffers.push_back(buffer);
    offset += size;
  }

  return Status::OK();
}

Status DeserializeObject(PyObject* context, const SerializedPyObject& obj, PyObject* base,
                         PyObject** out) {
  PyAcquireGIL lock;
  return DeserializeList(context, *obj.batch->column(0), 0, obj.batch->num_rows(), base,
                         obj, out);
}

Status GetSerializedFromComponents(int num_tensors,
                                   const SparseTensorCounts& num_sparse_tensors,
                                   int num_ndarrays, int num_buffers, PyObject* data,
                                   SerializedPyObject* out) {
  PyAcquireGIL gil;
  const Py_ssize_t data_length = PyList_Size(data);
  RETURN_IF_PYERROR();

  const Py_ssize_t expected_data_length = 1 + num_tensors * 2 +
                                          num_sparse_tensors.num_total_buffers() +
                                          num_ndarrays * 2 + num_buffers;
  if (data_length != expected_data_length) {
    return Status::Invalid("Invalid number of buffers in data");
  }

  auto GetBuffer = [&data](Py_ssize_t index, std::shared_ptr<Buffer>* out) {
    ARROW_CHECK_LE(index, PyList_Size(data));
    PyObject* py_buf = PyList_GET_ITEM(data, index);
    return unwrap_buffer(py_buf).Value(out);
  };

  Py_ssize_t buffer_index = 0;

  // Read the union batch describing object structure
  {
    std::shared_ptr<Buffer> data_buffer;
    RETURN_NOT_OK(GetBuffer(buffer_index++, &data_buffer));
    gil.release();
    io::BufferReader buf_reader(data_buffer);
    std::shared_ptr<RecordBatchReader> reader;
    ARROW_ASSIGN_OR_RAISE(reader, ipc::RecordBatchStreamReader::Open(&buf_reader));
    RETURN_NOT_OK(reader->ReadNext(&out->batch));
    gil.acquire();
  }

  // Zero-copy reconstruct tensors
  for (int i = 0; i < num_tensors; ++i) {
    std::shared_ptr<Buffer> metadata;
    std::shared_ptr<Buffer> body;
    std::shared_ptr<Tensor> tensor;
    RETURN_NOT_OK(GetBuffer(buffer_index++, &metadata));
    RETURN_NOT_OK(GetBuffer(buffer_index++, &body));

    ipc::Message message(metadata, body);

    ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(message));
    out->tensors.emplace_back(std::move(tensor));
  }

  // Zero-copy reconstruct sparse tensors
  for (int i = 0, n = num_sparse_tensors.num_total_tensors(); i < n; ++i) {
    ipc::IpcPayload payload;
    RETURN_NOT_OK(GetBuffer(buffer_index++, &payload.metadata));

    ARROW_ASSIGN_OR_RAISE(
        size_t num_bodies,
        ipc::internal::ReadSparseTensorBodyBufferCount(*payload.metadata));

    payload.body_buffers.reserve(num_bodies);
    for (size_t i = 0; i < num_bodies; ++i) {
      std::shared_ptr<Buffer> body;
      RETURN_NOT_OK(GetBuffer(buffer_index++, &body));
      payload.body_buffers.emplace_back(body);
    }

    std::shared_ptr<SparseTensor> sparse_tensor;
    ARROW_ASSIGN_OR_RAISE(sparse_tensor, ipc::internal::ReadSparseTensorPayload(payload));
    out->sparse_tensors.emplace_back(std::move(sparse_tensor));
  }

  // Zero-copy reconstruct tensors for numpy ndarrays
  for (int i = 0; i < num_ndarrays; ++i) {
    std::shared_ptr<Buffer> metadata;
    std::shared_ptr<Buffer> body;
    std::shared_ptr<Tensor> tensor;
    RETURN_NOT_OK(GetBuffer(buffer_index++, &metadata));
    RETURN_NOT_OK(GetBuffer(buffer_index++, &body));

    ipc::Message message(metadata, body);

    ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(message));
    out->ndarrays.emplace_back(std::move(tensor));
  }

  // Unwrap and append buffers
  for (int i = 0; i < num_buffers; ++i) {
    std::shared_ptr<Buffer> buffer;
    RETURN_NOT_OK(GetBuffer(buffer_index++, &buffer));
    out->buffers.emplace_back(std::move(buffer));
  }

  return Status::OK();
}

Status DeserializeNdarray(const SerializedPyObject& object,
                          std::shared_ptr<Tensor>* out) {
  if (object.ndarrays.size() != 1) {
    return Status::Invalid("Object is not an Ndarray");
  }
  *out = object.ndarrays[0];
  return Status::OK();
}

Status NdarrayFromBuffer(std::shared_ptr<Buffer> src, std::shared_ptr<Tensor>* out) {
  io::BufferReader reader(src);
  SerializedPyObject object;
  RETURN_NOT_OK(ReadSerializedObject(&reader, &object));
  return DeserializeNdarray(object, out);
}

}  // namespace py
}  // namespace arrow