File size: 15,941 Bytes
a1e6eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// helpers.h includes a NumPy header, so we include this first
#include "arrow/python/numpy_interop.h"
#include "arrow/python/helpers.h"
#include <cmath>
#include <limits>
#include <sstream>
#include <type_traits>
#include "arrow/python/common.h"
#include "arrow/python/decimal.h"
#include "arrow/type_fwd.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
namespace arrow {
using internal::checked_cast;
namespace py {
#define GET_PRIMITIVE_TYPE(NAME, FACTORY) \
case Type::NAME: \
return FACTORY()
std::shared_ptr<DataType> GetPrimitiveType(Type::type type) {
switch (type) {
case Type::NA:
return null();
GET_PRIMITIVE_TYPE(UINT8, uint8);
GET_PRIMITIVE_TYPE(INT8, int8);
GET_PRIMITIVE_TYPE(UINT16, uint16);
GET_PRIMITIVE_TYPE(INT16, int16);
GET_PRIMITIVE_TYPE(UINT32, uint32);
GET_PRIMITIVE_TYPE(INT32, int32);
GET_PRIMITIVE_TYPE(UINT64, uint64);
GET_PRIMITIVE_TYPE(INT64, int64);
GET_PRIMITIVE_TYPE(DATE32, date32);
GET_PRIMITIVE_TYPE(DATE64, date64);
GET_PRIMITIVE_TYPE(BOOL, boolean);
GET_PRIMITIVE_TYPE(HALF_FLOAT, float16);
GET_PRIMITIVE_TYPE(FLOAT, float32);
GET_PRIMITIVE_TYPE(DOUBLE, float64);
GET_PRIMITIVE_TYPE(BINARY, binary);
GET_PRIMITIVE_TYPE(STRING, utf8);
GET_PRIMITIVE_TYPE(LARGE_BINARY, large_binary);
GET_PRIMITIVE_TYPE(LARGE_STRING, large_utf8);
GET_PRIMITIVE_TYPE(BINARY_VIEW, binary_view);
GET_PRIMITIVE_TYPE(STRING_VIEW, utf8_view);
GET_PRIMITIVE_TYPE(INTERVAL_MONTH_DAY_NANO, month_day_nano_interval);
default:
return nullptr;
}
}
PyObject* PyHalf_FromHalf(npy_half value) {
PyObject* result = PyArrayScalar_New(Half);
if (result != NULL) {
PyArrayScalar_ASSIGN(result, Half, value);
}
return result;
}
Status PyFloat_AsHalf(PyObject* obj, npy_half* out) {
if (PyArray_IsScalar(obj, Half)) {
*out = PyArrayScalar_VAL(obj, Half);
return Status::OK();
} else {
// XXX: cannot use npy_double_to_half() without linking with Numpy
return Status::TypeError("Expected np.float16 instance");
}
}
namespace internal {
std::string PyBytes_AsStdString(PyObject* obj) {
DCHECK(PyBytes_Check(obj));
return std::string(PyBytes_AS_STRING(obj), PyBytes_GET_SIZE(obj));
}
Status PyUnicode_AsStdString(PyObject* obj, std::string* out) {
DCHECK(PyUnicode_Check(obj));
Py_ssize_t size;
// The utf-8 representation is cached on the unicode object
const char* data = PyUnicode_AsUTF8AndSize(obj, &size);
RETURN_IF_PYERROR();
*out = std::string(data, size);
return Status::OK();
}
std::string PyObject_StdStringRepr(PyObject* obj) {
OwnedRef unicode_ref(PyObject_Repr(obj));
OwnedRef bytes_ref;
if (unicode_ref) {
bytes_ref.reset(
PyUnicode_AsEncodedString(unicode_ref.obj(), "utf8", "backslashreplace"));
}
if (!bytes_ref) {
PyErr_Clear();
std::stringstream ss;
ss << "<object of type '" << Py_TYPE(obj)->tp_name << "' repr() failed>";
return ss.str();
}
return PyBytes_AsStdString(bytes_ref.obj());
}
Status PyObject_StdStringStr(PyObject* obj, std::string* out) {
OwnedRef string_ref(PyObject_Str(obj));
RETURN_IF_PYERROR();
return PyUnicode_AsStdString(string_ref.obj(), out);
}
Result<bool> IsModuleImported(const std::string& module_name) {
// PyImport_GetModuleDict returns with a borrowed reference
OwnedRef key(PyUnicode_FromString(module_name.c_str()));
auto is_imported = PyDict_Contains(PyImport_GetModuleDict(), key.obj());
RETURN_IF_PYERROR();
return is_imported;
}
Status ImportModule(const std::string& module_name, OwnedRef* ref) {
PyObject* module = PyImport_ImportModule(module_name.c_str());
RETURN_IF_PYERROR();
ref->reset(module);
return Status::OK();
}
Status ImportFromModule(PyObject* module, const std::string& name, OwnedRef* ref) {
PyObject* attr = PyObject_GetAttrString(module, name.c_str());
RETURN_IF_PYERROR();
ref->reset(attr);
return Status::OK();
}
namespace {
Status IntegerOverflowStatus(PyObject* obj, const std::string& overflow_message) {
if (overflow_message.empty()) {
std::string obj_as_stdstring;
RETURN_NOT_OK(PyObject_StdStringStr(obj, &obj_as_stdstring));
return Status::Invalid("Value ", obj_as_stdstring,
" too large to fit in C integer type");
} else {
return Status::Invalid(overflow_message);
}
}
Result<OwnedRef> PyObjectToPyInt(PyObject* obj) {
// Try to call __index__ or __int__ on `obj`
// (starting from Python 3.10, the latter isn't done anymore by PyLong_AsLong*).
OwnedRef ref(PyNumber_Index(obj));
if (ref) {
return std::move(ref);
}
PyErr_Clear();
const auto nb = Py_TYPE(obj)->tp_as_number;
if (nb && nb->nb_int) {
ref.reset(nb->nb_int(obj));
if (!ref) {
RETURN_IF_PYERROR();
}
DCHECK(ref);
return std::move(ref);
}
return Status::TypeError(
"object of type ",
PyObject_StdStringRepr(reinterpret_cast<PyObject*>(Py_TYPE(obj))),
" cannot be converted to int");
}
// Extract C signed int from Python object
template <typename Int, enable_if_t<std::is_signed<Int>::value, Int> = 0>
Status CIntFromPythonImpl(PyObject* obj, Int* out, const std::string& overflow_message) {
static_assert(sizeof(Int) <= sizeof(long long), // NOLINT
"integer type larger than long long");
OwnedRef ref;
if (!PyLong_Check(obj)) {
ARROW_ASSIGN_OR_RAISE(ref, PyObjectToPyInt(obj));
obj = ref.obj();
}
if (sizeof(Int) > sizeof(long)) { // NOLINT
const auto value = PyLong_AsLongLong(obj);
if (ARROW_PREDICT_FALSE(value == -1)) {
RETURN_IF_PYERROR();
}
if (ARROW_PREDICT_FALSE(value < std::numeric_limits<Int>::min() ||
value > std::numeric_limits<Int>::max())) {
return IntegerOverflowStatus(obj, overflow_message);
}
*out = static_cast<Int>(value);
} else {
const auto value = PyLong_AsLong(obj);
if (ARROW_PREDICT_FALSE(value == -1)) {
RETURN_IF_PYERROR();
}
if (ARROW_PREDICT_FALSE(value < std::numeric_limits<Int>::min() ||
value > std::numeric_limits<Int>::max())) {
return IntegerOverflowStatus(obj, overflow_message);
}
*out = static_cast<Int>(value);
}
return Status::OK();
}
// Extract C unsigned int from Python object
template <typename Int, enable_if_t<std::is_unsigned<Int>::value, Int> = 0>
Status CIntFromPythonImpl(PyObject* obj, Int* out, const std::string& overflow_message) {
static_assert(sizeof(Int) <= sizeof(unsigned long long), // NOLINT
"integer type larger than unsigned long long");
OwnedRef ref;
if (!PyLong_Check(obj)) {
ARROW_ASSIGN_OR_RAISE(ref, PyObjectToPyInt(obj));
obj = ref.obj();
}
if (sizeof(Int) > sizeof(unsigned long)) { // NOLINT
const auto value = PyLong_AsUnsignedLongLong(obj);
if (ARROW_PREDICT_FALSE(value == static_cast<decltype(value)>(-1))) {
RETURN_IF_PYERROR();
}
if (ARROW_PREDICT_FALSE(value > std::numeric_limits<Int>::max())) {
return IntegerOverflowStatus(obj, overflow_message);
}
*out = static_cast<Int>(value);
} else {
const auto value = PyLong_AsUnsignedLong(obj);
if (ARROW_PREDICT_FALSE(value == static_cast<decltype(value)>(-1))) {
RETURN_IF_PYERROR();
}
if (ARROW_PREDICT_FALSE(value > std::numeric_limits<Int>::max())) {
return IntegerOverflowStatus(obj, overflow_message);
}
*out = static_cast<Int>(value);
}
return Status::OK();
}
} // namespace
template <typename Int>
Status CIntFromPython(PyObject* obj, Int* out, const std::string& overflow_message) {
if (PyBool_Check(obj)) {
return Status::TypeError("Expected integer, got bool");
}
return CIntFromPythonImpl(obj, out, overflow_message);
}
template Status CIntFromPython(PyObject*, int8_t*, const std::string&);
template Status CIntFromPython(PyObject*, int16_t*, const std::string&);
template Status CIntFromPython(PyObject*, int32_t*, const std::string&);
template Status CIntFromPython(PyObject*, int64_t*, const std::string&);
template Status CIntFromPython(PyObject*, uint8_t*, const std::string&);
template Status CIntFromPython(PyObject*, uint16_t*, const std::string&);
template Status CIntFromPython(PyObject*, uint32_t*, const std::string&);
template Status CIntFromPython(PyObject*, uint64_t*, const std::string&);
inline bool MayHaveNaN(PyObject* obj) {
// Some core types can be very quickly type-checked and do not allow NaN values
const int64_t non_nan_tpflags = Py_TPFLAGS_LONG_SUBCLASS | Py_TPFLAGS_LIST_SUBCLASS |
Py_TPFLAGS_TUPLE_SUBCLASS | Py_TPFLAGS_BYTES_SUBCLASS |
Py_TPFLAGS_UNICODE_SUBCLASS | Py_TPFLAGS_DICT_SUBCLASS |
Py_TPFLAGS_BASE_EXC_SUBCLASS | Py_TPFLAGS_TYPE_SUBCLASS;
return !PyType_HasFeature(Py_TYPE(obj), non_nan_tpflags);
}
bool PyFloat_IsNaN(PyObject* obj) {
return PyFloat_Check(obj) && std::isnan(PyFloat_AsDouble(obj));
}
namespace {
static bool pandas_static_initialized = false;
// Once initialized, these variables hold borrowed references to Pandas static data.
// We should not use OwnedRef here because Python destructors would be
// called on a finalized interpreter.
static PyObject* pandas_NA = nullptr;
static PyObject* pandas_NaT = nullptr;
static PyObject* pandas_Timedelta = nullptr;
static PyObject* pandas_Timestamp = nullptr;
static PyTypeObject* pandas_NaTType = nullptr;
static PyObject* pandas_DateOffset = nullptr;
} // namespace
void InitPandasStaticData() {
// NOTE: This is called with the GIL held. We needn't (and shouldn't,
// to avoid deadlocks) use an additional C++ lock (ARROW-10519).
if (pandas_static_initialized) {
return;
}
OwnedRef pandas;
// Import pandas
Status s = ImportModule("pandas", &pandas);
if (!s.ok()) {
return;
}
// Since ImportModule can release the GIL, another thread could have
// already initialized the static data.
if (pandas_static_initialized) {
return;
}
OwnedRef ref;
// set NaT sentinel and its type
if (ImportFromModule(pandas.obj(), "NaT", &ref).ok()) {
pandas_NaT = ref.obj();
// PyObject_Type returns a new reference but we trust that pandas.NaT will
// outlive our use of this PyObject*
pandas_NaTType = Py_TYPE(ref.obj());
}
// retain a reference to Timedelta
if (ImportFromModule(pandas.obj(), "Timedelta", &ref).ok()) {
pandas_Timedelta = ref.obj();
}
// retain a reference to Timestamp
if (ImportFromModule(pandas.obj(), "Timestamp", &ref).ok()) {
pandas_Timestamp = ref.obj();
}
// if pandas.NA exists, retain a reference to it
if (ImportFromModule(pandas.obj(), "NA", &ref).ok()) {
pandas_NA = ref.obj();
}
// Import DateOffset type
if (ImportFromModule(pandas.obj(), "DateOffset", &ref).ok()) {
pandas_DateOffset = ref.obj();
}
pandas_static_initialized = true;
}
bool PandasObjectIsNull(PyObject* obj) {
if (!MayHaveNaN(obj)) {
return false;
}
if (obj == Py_None) {
return true;
}
if (PyFloat_IsNaN(obj) || (pandas_NA && obj == pandas_NA) ||
(pandas_NaTType && PyObject_TypeCheck(obj, pandas_NaTType)) ||
(internal::PyDecimal_Check(obj) && internal::PyDecimal_ISNAN(obj))) {
return true;
}
return false;
}
bool IsPandasTimedelta(PyObject* obj) {
return pandas_Timedelta && PyObject_IsInstance(obj, pandas_Timedelta);
}
bool IsPandasTimestamp(PyObject* obj) {
return pandas_Timestamp && PyObject_IsInstance(obj, pandas_Timestamp);
}
PyObject* BorrowPandasDataOffsetType() { return pandas_DateOffset; }
Status InvalidValue(PyObject* obj, const std::string& why) {
auto obj_as_str = PyObject_StdStringRepr(obj);
return Status::Invalid("Could not convert ", std::move(obj_as_str), " with type ",
Py_TYPE(obj)->tp_name, ": ", why);
}
Status InvalidType(PyObject* obj, const std::string& why) {
auto obj_as_str = PyObject_StdStringRepr(obj);
return Status::TypeError("Could not convert ", std::move(obj_as_str), " with type ",
Py_TYPE(obj)->tp_name, ": ", why);
}
Status UnboxIntegerAsInt64(PyObject* obj, int64_t* out) {
if (PyLong_Check(obj)) {
int overflow = 0;
*out = PyLong_AsLongLongAndOverflow(obj, &overflow);
if (overflow) {
return Status::Invalid("PyLong is too large to fit int64");
}
} else if (PyArray_IsScalar(obj, Byte)) {
*out = reinterpret_cast<PyByteScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, UByte)) {
*out = reinterpret_cast<PyUByteScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, Short)) {
*out = reinterpret_cast<PyShortScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, UShort)) {
*out = reinterpret_cast<PyUShortScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, Int)) {
*out = reinterpret_cast<PyIntScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, UInt)) {
*out = reinterpret_cast<PyUIntScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, Long)) {
*out = reinterpret_cast<PyLongScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, ULong)) {
*out = reinterpret_cast<PyULongScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, LongLong)) {
*out = reinterpret_cast<PyLongLongScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, Int64)) {
*out = reinterpret_cast<PyInt64ScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, ULongLong)) {
*out = reinterpret_cast<PyULongLongScalarObject*>(obj)->obval;
} else if (PyArray_IsScalar(obj, UInt64)) {
*out = reinterpret_cast<PyUInt64ScalarObject*>(obj)->obval;
} else {
return Status::Invalid("Integer scalar type not recognized");
}
return Status::OK();
}
Status IntegerScalarToDoubleSafe(PyObject* obj, double* out) {
int64_t value = 0;
RETURN_NOT_OK(UnboxIntegerAsInt64(obj, &value));
constexpr int64_t kDoubleMax = 1LL << 53;
constexpr int64_t kDoubleMin = -(1LL << 53);
if (value < kDoubleMin || value > kDoubleMax) {
return Status::Invalid("Integer value ", value, " is outside of the range exactly",
" representable by a IEEE 754 double precision value");
}
*out = static_cast<double>(value);
return Status::OK();
}
Status IntegerScalarToFloat32Safe(PyObject* obj, float* out) {
int64_t value = 0;
RETURN_NOT_OK(UnboxIntegerAsInt64(obj, &value));
constexpr int64_t kFloatMax = 1LL << 24;
constexpr int64_t kFloatMin = -(1LL << 24);
if (value < kFloatMin || value > kFloatMax) {
return Status::Invalid("Integer value ", value, " is outside of the range exactly",
" representable by a IEEE 754 single precision value");
}
*out = static_cast<float>(value);
return Status::OK();
}
void DebugPrint(PyObject* obj) {
std::string repr = PyObject_StdStringRepr(obj);
PySys_WriteStderr("%s\n", repr.c_str());
}
} // namespace internal
} // namespace py
} // namespace arrow
|