File size: 24,320 Bytes
a1e6eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "arrow/python/inference.h"
#include "arrow/python/numpy_interop.h"
#include <datetime.h>
#include <algorithm>
#include <limits>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "arrow/scalar.h"
#include "arrow/status.h"
#include "arrow/util/decimal.h"
#include "arrow/util/logging.h"
#include "arrow/python/datetime.h"
#include "arrow/python/decimal.h"
#include "arrow/python/helpers.h"
#include "arrow/python/iterators.h"
#include "arrow/python/numpy_convert.h"
namespace arrow {
namespace py {
namespace {
// Assigns a tuple to interval_types_tuple containing the nametuple for
// MonthDayNanoIntervalType and if present dateutil's relativedelta and
// pandas DateOffset.
Status ImportPresentIntervalTypes(OwnedRefNoGIL* interval_types_tuple) {
OwnedRef relative_delta_module;
// These are Optional imports so swallow errors.
OwnedRef relative_delta_type;
// Try to import pandas to get types.
internal::InitPandasStaticData();
if (internal::ImportModule("dateutil.relativedelta", &relative_delta_module).ok()) {
RETURN_NOT_OK(internal::ImportFromModule(relative_delta_module.obj(), "relativedelta",
&relative_delta_type));
}
PyObject* date_offset_type = internal::BorrowPandasDataOffsetType();
interval_types_tuple->reset(
PyTuple_New(1 + (date_offset_type != nullptr ? 1 : 0) +
(relative_delta_type.obj() != nullptr ? 1 : 0)));
RETURN_IF_PYERROR();
int index = 0;
PyTuple_SetItem(interval_types_tuple->obj(), index++,
internal::NewMonthDayNanoTupleType());
RETURN_IF_PYERROR();
if (date_offset_type != nullptr) {
Py_XINCREF(date_offset_type);
PyTuple_SetItem(interval_types_tuple->obj(), index++, date_offset_type);
RETURN_IF_PYERROR();
}
if (relative_delta_type.obj() != nullptr) {
PyTuple_SetItem(interval_types_tuple->obj(), index++, relative_delta_type.detach());
RETURN_IF_PYERROR();
}
return Status::OK();
}
} // namespace
#define _NUMPY_UNIFY_NOOP(DTYPE) \
case NPY_##DTYPE: \
return OK;
#define _NUMPY_UNIFY_PROMOTE(DTYPE) \
case NPY_##DTYPE: \
current_type_num_ = dtype; \
current_dtype_ = descr; \
return OK;
#define _NUMPY_UNIFY_PROMOTE_TO(DTYPE, NEW_TYPE) \
case NPY_##DTYPE: \
current_type_num_ = NPY_##NEW_TYPE; \
current_dtype_ = PyArray_DescrFromType(current_type_num_); \
return OK;
// Form a consensus NumPy dtype to use for Arrow conversion for a
// collection of dtype objects observed one at a time
class NumPyDtypeUnifier {
public:
enum Action { OK, INVALID };
NumPyDtypeUnifier() : current_type_num_(-1), current_dtype_(nullptr) {}
Status InvalidMix(int new_dtype) {
return Status::Invalid("Cannot mix NumPy dtypes ",
GetNumPyTypeName(current_type_num_), " and ",
GetNumPyTypeName(new_dtype));
}
int Observe_BOOL(PyArray_Descr* descr, int dtype) { return INVALID; }
int Observe_INT8(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_PROMOTE(INT16);
_NUMPY_UNIFY_PROMOTE(INT32);
_NUMPY_UNIFY_PROMOTE(INT64);
_NUMPY_UNIFY_PROMOTE(FLOAT32);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_INT16(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(INT8);
_NUMPY_UNIFY_PROMOTE(INT32);
_NUMPY_UNIFY_PROMOTE(INT64);
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_PROMOTE(FLOAT32);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_INT32(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(INT8);
_NUMPY_UNIFY_NOOP(INT16);
_NUMPY_UNIFY_PROMOTE(INT32);
_NUMPY_UNIFY_PROMOTE(INT64);
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_NOOP(UINT16);
_NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_INT64(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(INT8);
_NUMPY_UNIFY_NOOP(INT16);
_NUMPY_UNIFY_NOOP(INT32);
_NUMPY_UNIFY_NOOP(INT64);
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_NOOP(UINT16);
_NUMPY_UNIFY_NOOP(UINT32);
_NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_UINT8(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_PROMOTE(UINT16);
_NUMPY_UNIFY_PROMOTE(UINT32);
_NUMPY_UNIFY_PROMOTE(UINT64);
_NUMPY_UNIFY_PROMOTE(FLOAT32);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_UINT16(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_PROMOTE(UINT32);
_NUMPY_UNIFY_PROMOTE(UINT64);
_NUMPY_UNIFY_PROMOTE(FLOAT32);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_UINT32(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_NOOP(UINT16);
_NUMPY_UNIFY_PROMOTE(UINT64);
_NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_UINT64(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_NOOP(UINT16);
_NUMPY_UNIFY_NOOP(UINT32);
_NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_FLOAT16(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_PROMOTE(FLOAT32);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_FLOAT32(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(INT8);
_NUMPY_UNIFY_NOOP(INT16);
_NUMPY_UNIFY_NOOP(INT32);
_NUMPY_UNIFY_NOOP(INT64);
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_NOOP(UINT16);
_NUMPY_UNIFY_NOOP(UINT32);
_NUMPY_UNIFY_NOOP(UINT64);
_NUMPY_UNIFY_PROMOTE(FLOAT64);
default:
return INVALID;
}
}
int Observe_FLOAT64(PyArray_Descr* descr, int dtype) {
switch (dtype) {
_NUMPY_UNIFY_NOOP(INT8);
_NUMPY_UNIFY_NOOP(INT16);
_NUMPY_UNIFY_NOOP(INT32);
_NUMPY_UNIFY_NOOP(INT64);
_NUMPY_UNIFY_NOOP(UINT8);
_NUMPY_UNIFY_NOOP(UINT16);
_NUMPY_UNIFY_NOOP(UINT32);
_NUMPY_UNIFY_NOOP(UINT64);
default:
return INVALID;
}
}
int Observe_DATETIME(PyArray_Descr* dtype_obj) {
// TODO: check that units are all the same
return OK;
}
Status Observe(PyArray_Descr* descr) {
int dtype = fix_numpy_type_num(descr->type_num);
if (current_type_num_ == -1) {
current_dtype_ = descr;
current_type_num_ = dtype;
return Status::OK();
} else if (current_type_num_ == dtype) {
return Status::OK();
}
#define OBSERVE_CASE(DTYPE) \
case NPY_##DTYPE: \
action = Observe_##DTYPE(descr, dtype); \
break;
int action = OK;
switch (current_type_num_) {
OBSERVE_CASE(BOOL);
OBSERVE_CASE(INT8);
OBSERVE_CASE(INT16);
OBSERVE_CASE(INT32);
OBSERVE_CASE(INT64);
OBSERVE_CASE(UINT8);
OBSERVE_CASE(UINT16);
OBSERVE_CASE(UINT32);
OBSERVE_CASE(UINT64);
OBSERVE_CASE(FLOAT16);
OBSERVE_CASE(FLOAT32);
OBSERVE_CASE(FLOAT64);
case NPY_DATETIME:
action = Observe_DATETIME(descr);
break;
default:
return Status::NotImplemented("Unsupported numpy type ", GetNumPyTypeName(dtype));
}
if (action == INVALID) {
return InvalidMix(dtype);
}
return Status::OK();
}
bool dtype_was_observed() const { return current_type_num_ != -1; }
PyArray_Descr* current_dtype() const { return current_dtype_; }
int current_type_num() const { return current_type_num_; }
private:
int current_type_num_;
PyArray_Descr* current_dtype_;
};
class TypeInferrer {
// A type inference visitor for Python values
public:
// \param validate_interval the number of elements to observe before checking
// whether the data is mixed type or has other problems. This helps avoid
// excess computation for each element while also making sure we "bail out"
// early with long sequences that may have problems up front
// \param make_unions permit mixed-type data by creating union types (not yet
// implemented)
explicit TypeInferrer(bool pandas_null_sentinels = false,
int64_t validate_interval = 100, bool make_unions = false)
: pandas_null_sentinels_(pandas_null_sentinels),
validate_interval_(validate_interval),
make_unions_(make_unions),
total_count_(0),
none_count_(0),
bool_count_(0),
int_count_(0),
date_count_(0),
time_count_(0),
timestamp_micro_count_(0),
duration_count_(0),
float_count_(0),
binary_count_(0),
unicode_count_(0),
decimal_count_(0),
list_count_(0),
struct_count_(0),
arrow_scalar_count_(0),
numpy_dtype_count_(0),
interval_count_(0),
max_decimal_metadata_(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min()),
decimal_type_() {
ARROW_CHECK_OK(internal::ImportDecimalType(&decimal_type_));
ARROW_CHECK_OK(ImportPresentIntervalTypes(&interval_types_));
}
/// \param[in] obj a Python object in the sequence
/// \param[out] keep_going if sufficient information has been gathered to
/// attempt to begin converting the sequence, *keep_going will be set to true
/// to signal to the calling visitor loop to terminate
Status Visit(PyObject* obj, bool* keep_going) {
++total_count_;
if (obj == Py_None || (pandas_null_sentinels_ && internal::PandasObjectIsNull(obj))) {
++none_count_;
} else if (PyBool_Check(obj)) {
++bool_count_;
*keep_going = make_unions_;
} else if (PyFloat_Check(obj)) {
++float_count_;
*keep_going = make_unions_;
} else if (internal::IsPyInteger(obj)) {
++int_count_;
} else if (PyDateTime_Check(obj)) {
// infer timezone from the first encountered datetime object
if (!timestamp_micro_count_) {
OwnedRef tzinfo(PyObject_GetAttrString(obj, "tzinfo"));
if (tzinfo.obj() != nullptr && tzinfo.obj() != Py_None) {
ARROW_ASSIGN_OR_RAISE(timezone_, internal::TzinfoToString(tzinfo.obj()));
}
}
++timestamp_micro_count_;
*keep_going = make_unions_;
} else if (PyDelta_Check(obj)) {
++duration_count_;
*keep_going = make_unions_;
} else if (PyDate_Check(obj)) {
++date_count_;
*keep_going = make_unions_;
} else if (PyTime_Check(obj)) {
++time_count_;
*keep_going = make_unions_;
} else if (internal::IsPyBinary(obj)) {
++binary_count_;
*keep_going = make_unions_;
} else if (PyUnicode_Check(obj)) {
++unicode_count_;
*keep_going = make_unions_;
} else if (arrow::py::is_scalar(obj)) {
RETURN_NOT_OK(VisitArrowScalar(obj, keep_going));
} else if (PyArray_CheckAnyScalarExact(obj)) {
RETURN_NOT_OK(VisitDType(PyArray_DescrFromScalar(obj), keep_going));
} else if (PySet_Check(obj) || (Py_TYPE(obj) == &PyDictValues_Type)) {
RETURN_NOT_OK(VisitSet(obj, keep_going));
} else if (PyArray_Check(obj)) {
RETURN_NOT_OK(VisitNdarray(obj, keep_going));
} else if (PyDict_Check(obj)) {
RETURN_NOT_OK(VisitDict(obj));
} else if (PyList_Check(obj) ||
(PyTuple_Check(obj) &&
!PyObject_IsInstance(obj, PyTuple_GetItem(interval_types_.obj(), 0)))) {
RETURN_NOT_OK(VisitList(obj, keep_going));
} else if (PyObject_IsInstance(obj, decimal_type_.obj())) {
RETURN_NOT_OK(max_decimal_metadata_.Update(obj));
++decimal_count_;
} else if (PyObject_IsInstance(obj, interval_types_.obj())) {
++interval_count_;
} else {
return internal::InvalidValue(obj,
"did not recognize Python value type when inferring "
"an Arrow data type");
}
if (total_count_ % validate_interval_ == 0) {
RETURN_NOT_OK(Validate());
}
return Status::OK();
}
// Infer value type from a sequence of values
Status VisitSequence(PyObject* obj, PyObject* mask = nullptr) {
if (mask == nullptr || mask == Py_None) {
return internal::VisitSequence(
obj, /*offset=*/0,
[this](PyObject* value, bool* keep_going) { return Visit(value, keep_going); });
} else {
return internal::VisitSequenceMasked(
obj, mask, /*offset=*/0,
[this](PyObject* value, uint8_t masked, bool* keep_going) {
if (!masked) {
return Visit(value, keep_going);
} else {
return Status::OK();
}
});
}
}
// Infer value type from a sequence of values
Status VisitIterable(PyObject* obj) {
return internal::VisitIterable(obj, [this](PyObject* value, bool* keep_going) {
return Visit(value, keep_going);
});
}
Status GetType(std::shared_ptr<DataType>* out) {
// TODO(wesm): handling forming unions
if (make_unions_) {
return Status::NotImplemented("Creating union types not yet supported");
}
RETURN_NOT_OK(Validate());
if (arrow_scalar_count_ > 0 && arrow_scalar_count_ + none_count_ != total_count_) {
return Status::Invalid(
"pyarrow scalars cannot be mixed "
"with other Python scalar values currently");
}
if (numpy_dtype_count_ > 0) {
// All NumPy scalars and Nones/nulls
if (numpy_dtype_count_ + none_count_ == total_count_) {
return NumPyDtypeToArrow(numpy_unifier_.current_dtype()).Value(out);
}
// The "bad path": data contains a mix of NumPy scalars and
// other kinds of scalars. Note this can happen innocuously
// because numpy.nan is not a NumPy scalar (it's a built-in
// PyFloat)
// TODO(ARROW-5564): Merge together type unification so this
// hack is not necessary
switch (numpy_unifier_.current_type_num()) {
case NPY_BOOL:
bool_count_ += numpy_dtype_count_;
break;
case NPY_INT8:
case NPY_INT16:
case NPY_INT32:
case NPY_INT64:
case NPY_UINT8:
case NPY_UINT16:
case NPY_UINT32:
case NPY_UINT64:
int_count_ += numpy_dtype_count_;
break;
case NPY_FLOAT32:
case NPY_FLOAT64:
float_count_ += numpy_dtype_count_;
break;
case NPY_DATETIME:
return Status::Invalid(
"numpy.datetime64 scalars cannot be mixed "
"with other Python scalar values currently");
}
}
if (list_count_) {
std::shared_ptr<DataType> value_type;
RETURN_NOT_OK(list_inferrer_->GetType(&value_type));
*out = list(value_type);
} else if (struct_count_) {
RETURN_NOT_OK(GetStructType(out));
} else if (decimal_count_) {
if (max_decimal_metadata_.precision() > Decimal128Type::kMaxPrecision) {
// the default constructor does not validate the precision and scale
ARROW_ASSIGN_OR_RAISE(*out,
Decimal256Type::Make(max_decimal_metadata_.precision(),
max_decimal_metadata_.scale()));
} else {
ARROW_ASSIGN_OR_RAISE(*out,
Decimal128Type::Make(max_decimal_metadata_.precision(),
max_decimal_metadata_.scale()));
}
} else if (float_count_) {
// Prioritize floats before integers
*out = float64();
} else if (int_count_) {
*out = int64();
} else if (date_count_) {
*out = date32();
} else if (time_count_) {
*out = time64(TimeUnit::MICRO);
} else if (timestamp_micro_count_) {
*out = timestamp(TimeUnit::MICRO, timezone_);
} else if (duration_count_) {
*out = duration(TimeUnit::MICRO);
} else if (bool_count_) {
*out = boolean();
} else if (binary_count_) {
*out = binary();
} else if (unicode_count_) {
*out = utf8();
} else if (interval_count_) {
*out = month_day_nano_interval();
} else if (arrow_scalar_count_) {
*out = scalar_type_;
} else {
*out = null();
}
return Status::OK();
}
int64_t total_count() const { return total_count_; }
protected:
Status Validate() const {
if (list_count_ > 0) {
if (list_count_ + none_count_ != total_count_) {
return Status::Invalid("cannot mix list and non-list, non-null values");
}
RETURN_NOT_OK(list_inferrer_->Validate());
} else if (struct_count_ > 0) {
if (struct_count_ + none_count_ != total_count_) {
return Status::Invalid("cannot mix struct and non-struct, non-null values");
}
for (const auto& it : struct_inferrers_) {
RETURN_NOT_OK(it.second.Validate());
}
}
return Status::OK();
}
Status VisitArrowScalar(PyObject* obj, bool* keep_going /* unused */) {
ARROW_ASSIGN_OR_RAISE(auto scalar, arrow::py::unwrap_scalar(obj));
// Check that all the scalar types for the sequence are the same
if (arrow_scalar_count_ > 0 && *scalar->type != *scalar_type_) {
return internal::InvalidValue(obj, "cannot mix scalars with different types");
}
scalar_type_ = scalar->type;
++arrow_scalar_count_;
return Status::OK();
}
Status VisitDType(PyArray_Descr* dtype, bool* keep_going) {
// Continue visiting dtypes for now.
// TODO(wesm): devise approach for unions
++numpy_dtype_count_;
*keep_going = true;
return numpy_unifier_.Observe(dtype);
}
Status VisitList(PyObject* obj, bool* keep_going /* unused */) {
if (!list_inferrer_) {
list_inferrer_.reset(
new TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_));
}
++list_count_;
return list_inferrer_->VisitSequence(obj);
}
Status VisitSet(PyObject* obj, bool* keep_going /* unused */) {
if (!list_inferrer_) {
list_inferrer_.reset(
new TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_));
}
++list_count_;
return list_inferrer_->VisitIterable(obj);
}
Status VisitNdarray(PyObject* obj, bool* keep_going) {
PyArray_Descr* dtype = PyArray_DESCR(reinterpret_cast<PyArrayObject*>(obj));
if (dtype->type_num == NPY_OBJECT) {
return VisitList(obj, keep_going);
}
// Not an object array: infer child Arrow type from dtype
if (!list_inferrer_) {
list_inferrer_.reset(
new TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_));
}
++list_count_;
// XXX(wesm): In ARROW-4324 I added accounting to check whether
// all of the non-null values have NumPy dtypes, but the
// total_count not being properly incremented here
++(*list_inferrer_).total_count_;
return list_inferrer_->VisitDType(dtype, keep_going);
}
Status VisitDict(PyObject* obj) {
PyObject* key_obj;
PyObject* value_obj;
Py_ssize_t pos = 0;
while (PyDict_Next(obj, &pos, &key_obj, &value_obj)) {
std::string key;
if (PyUnicode_Check(key_obj)) {
RETURN_NOT_OK(internal::PyUnicode_AsStdString(key_obj, &key));
} else if (PyBytes_Check(key_obj)) {
key = internal::PyBytes_AsStdString(key_obj);
} else {
return Status::TypeError("Expected dict key of type str or bytes, got '",
Py_TYPE(key_obj)->tp_name, "'");
}
// Get or create visitor for this key
auto it = struct_inferrers_.find(key);
if (it == struct_inferrers_.end()) {
it = struct_inferrers_
.insert(
std::make_pair(key, TypeInferrer(pandas_null_sentinels_,
validate_interval_, make_unions_)))
.first;
}
TypeInferrer* visitor = &it->second;
// We ignore termination signals from child visitors for now
//
// TODO(wesm): keep track of whether type inference has terminated for
// the child visitors to avoid doing unneeded work
bool keep_going = true;
RETURN_NOT_OK(visitor->Visit(value_obj, &keep_going));
}
// We do not terminate visiting dicts since we want the union of all
// observed keys
++struct_count_;
return Status::OK();
}
Status GetStructType(std::shared_ptr<DataType>* out) {
std::vector<std::shared_ptr<Field>> fields;
for (auto&& it : struct_inferrers_) {
std::shared_ptr<DataType> field_type;
RETURN_NOT_OK(it.second.GetType(&field_type));
fields.emplace_back(field(it.first, field_type));
}
*out = struct_(fields);
return Status::OK();
}
private:
bool pandas_null_sentinels_;
int64_t validate_interval_;
bool make_unions_;
int64_t total_count_;
int64_t none_count_;
int64_t bool_count_;
int64_t int_count_;
int64_t date_count_;
int64_t time_count_;
int64_t timestamp_micro_count_;
std::string timezone_;
int64_t duration_count_;
int64_t float_count_;
int64_t binary_count_;
int64_t unicode_count_;
int64_t decimal_count_;
int64_t list_count_;
int64_t struct_count_;
int64_t arrow_scalar_count_;
int64_t numpy_dtype_count_;
int64_t interval_count_;
std::unique_ptr<TypeInferrer> list_inferrer_;
std::map<std::string, TypeInferrer> struct_inferrers_;
std::shared_ptr<DataType> scalar_type_;
// If we observe a strongly-typed value in e.g. a NumPy array, we can store
// it here to skip the type counting logic above
NumPyDtypeUnifier numpy_unifier_;
internal::DecimalMetadata max_decimal_metadata_;
OwnedRefNoGIL decimal_type_;
OwnedRefNoGIL interval_types_;
};
// Non-exhaustive type inference
Result<std::shared_ptr<DataType>> InferArrowType(PyObject* obj, PyObject* mask,
bool pandas_null_sentinels) {
if (pandas_null_sentinels) {
// ARROW-842: If pandas is not installed then null checks will be less
// comprehensive, but that is okay.
internal::InitPandasStaticData();
}
std::shared_ptr<DataType> out_type;
TypeInferrer inferrer(pandas_null_sentinels);
RETURN_NOT_OK(inferrer.VisitSequence(obj, mask));
RETURN_NOT_OK(inferrer.GetType(&out_type));
if (out_type == nullptr) {
return Status::TypeError("Unable to determine data type");
} else {
return std::move(out_type);
}
}
ARROW_PYTHON_EXPORT
bool IsPyBool(PyObject* obj) { return internal::PyBoolScalar_Check(obj); }
ARROW_PYTHON_EXPORT
bool IsPyInt(PyObject* obj) { return internal::PyIntScalar_Check(obj); }
ARROW_PYTHON_EXPORT
bool IsPyFloat(PyObject* obj) { return internal::PyFloatScalar_Check(obj); }
} // namespace py
} // namespace arrow
|