File size: 4,370 Bytes
a1e6eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#include "ipc.h"

#include <memory>

#include "arrow/compute/cast.h"
#include "arrow/python/pyarrow.h"

namespace arrow {
namespace py {

PyRecordBatchReader::PyRecordBatchReader() {}

Status PyRecordBatchReader::Init(std::shared_ptr<Schema> schema, PyObject* iterable) {
  schema_ = std::move(schema);

  iterator_.reset(PyObject_GetIter(iterable));
  return CheckPyError();
}

std::shared_ptr<Schema> PyRecordBatchReader::schema() const { return schema_; }

Status PyRecordBatchReader::ReadNext(std::shared_ptr<RecordBatch>* batch) {
  PyAcquireGIL lock;

  if (!iterator_) {
    // End of stream
    batch->reset();
    return Status::OK();
  }

  OwnedRef py_batch(PyIter_Next(iterator_.obj()));
  if (!py_batch) {
    RETURN_IF_PYERROR();
    // End of stream
    batch->reset();
    iterator_.reset();
    return Status::OK();
  }

  return unwrap_batch(py_batch.obj()).Value(batch);
}

Result<std::shared_ptr<RecordBatchReader>> PyRecordBatchReader::Make(
    std::shared_ptr<Schema> schema, PyObject* iterable) {
  auto reader = std::shared_ptr<PyRecordBatchReader>(new PyRecordBatchReader());
  RETURN_NOT_OK(reader->Init(std::move(schema), iterable));
  return reader;
}

CastingRecordBatchReader::CastingRecordBatchReader() = default;

Status CastingRecordBatchReader::Init(std::shared_ptr<RecordBatchReader> parent,
                                      std::shared_ptr<Schema> schema) {
  std::shared_ptr<Schema> src = parent->schema();

  // The check for names has already been done in Python where it's easier to
  // generate a nice error message.
  int num_fields = schema->num_fields();
  if (src->num_fields() != num_fields) {
    return Status::Invalid("Number of fields not equal");
  }

  // Ensure all columns can be cast before succeeding
  for (int i = 0; i < num_fields; i++) {
    if (!compute::CanCast(*src->field(i)->type(), *schema->field(i)->type())) {
      return Status::TypeError("Field ", i, " cannot be cast from ",
                               src->field(i)->type()->ToString(), " to ",
                               schema->field(i)->type()->ToString());
    }
  }

  parent_ = std::move(parent);
  schema_ = std::move(schema);

  return Status::OK();
}

std::shared_ptr<Schema> CastingRecordBatchReader::schema() const { return schema_; }

Status CastingRecordBatchReader::ReadNext(std::shared_ptr<RecordBatch>* batch) {
  std::shared_ptr<RecordBatch> out;
  ARROW_RETURN_NOT_OK(parent_->ReadNext(&out));
  if (!out) {
    batch->reset();
    return Status::OK();
  }

  auto num_columns = out->num_columns();
  auto options = compute::CastOptions::Safe();
  ArrayVector columns(num_columns);
  for (int i = 0; i < num_columns; i++) {
    const Array& src = *out->column(i);
    if (!schema_->field(i)->nullable() && src.null_count() > 0) {
      return Status::Invalid(
          "Can't cast array that contains nulls to non-nullable field at index ", i);
    }

    ARROW_ASSIGN_OR_RAISE(columns[i],
                          compute::Cast(src, schema_->field(i)->type(), options));
  }

  *batch = RecordBatch::Make(schema_, out->num_rows(), std::move(columns));
  return Status::OK();
}

Result<std::shared_ptr<RecordBatchReader>> CastingRecordBatchReader::Make(
    std::shared_ptr<RecordBatchReader> parent, std::shared_ptr<Schema> schema) {
  auto reader = std::shared_ptr<CastingRecordBatchReader>(new CastingRecordBatchReader());
  ARROW_RETURN_NOT_OK(reader->Init(parent, schema));
  return reader;
}

Status CastingRecordBatchReader::Close() { return parent_->Close(); }

}  // namespace py
}  // namespace arrow