File size: 42,056 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import UserList
import io
import pathlib
import pytest
import socket
import threading
import weakref
import numpy as np
import pyarrow as pa
from pyarrow.tests.util import changed_environ, invoke_script
try:
from pandas.testing import assert_frame_equal
import pandas as pd
except ImportError:
pass
class IpcFixture:
write_stats = None
def __init__(self, sink_factory=lambda: io.BytesIO()):
self._sink_factory = sink_factory
self.sink = self.get_sink()
def get_sink(self):
return self._sink_factory()
def get_source(self):
return self.sink.getvalue()
def write_batches(self, num_batches=5, as_table=False):
nrows = 5
schema = pa.schema([('one', pa.float64()), ('two', pa.utf8())])
writer = self._get_writer(self.sink, schema)
batches = []
for i in range(num_batches):
batch = pa.record_batch(
[np.random.randn(nrows),
['foo', None, 'bar', 'bazbaz', 'qux']],
schema=schema)
batches.append(batch)
if as_table:
table = pa.Table.from_batches(batches)
writer.write_table(table)
else:
for batch in batches:
writer.write_batch(batch)
self.write_stats = writer.stats
writer.close()
return batches
class FileFormatFixture(IpcFixture):
is_file = True
options = None
def _get_writer(self, sink, schema):
return pa.ipc.new_file(sink, schema, options=self.options)
def _check_roundtrip(self, as_table=False):
batches = self.write_batches(as_table=as_table)
file_contents = pa.BufferReader(self.get_source())
reader = pa.ipc.open_file(file_contents)
assert reader.num_record_batches == len(batches)
for i, batch in enumerate(batches):
# it works. Must convert back to DataFrame
batch = reader.get_batch(i)
assert batches[i].equals(batch)
assert reader.schema.equals(batches[0].schema)
assert isinstance(reader.stats, pa.ipc.ReadStats)
assert isinstance(self.write_stats, pa.ipc.WriteStats)
assert tuple(reader.stats) == tuple(self.write_stats)
class StreamFormatFixture(IpcFixture):
# ARROW-6474, for testing writing old IPC protocol with 4-byte prefix
use_legacy_ipc_format = False
# ARROW-9395, for testing writing old metadata version
options = None
is_file = False
def _get_writer(self, sink, schema):
return pa.ipc.new_stream(
sink,
schema,
use_legacy_format=self.use_legacy_ipc_format,
options=self.options,
)
class MessageFixture(IpcFixture):
def _get_writer(self, sink, schema):
return pa.RecordBatchStreamWriter(sink, schema)
@pytest.fixture
def ipc_fixture():
return IpcFixture()
@pytest.fixture
def file_fixture():
return FileFormatFixture()
@pytest.fixture
def stream_fixture():
return StreamFormatFixture()
@pytest.fixture(params=[
pytest.param(
'file_fixture',
id='File Format'
),
pytest.param(
'stream_fixture',
id='Stream Format'
)
])
def format_fixture(request):
return request.getfixturevalue(request.param)
def test_empty_file():
buf = b''
with pytest.raises(pa.ArrowInvalid):
pa.ipc.open_file(pa.BufferReader(buf))
def test_file_simple_roundtrip(file_fixture):
file_fixture._check_roundtrip(as_table=False)
def test_file_write_table(file_fixture):
file_fixture._check_roundtrip(as_table=True)
@pytest.mark.parametrize("sink_factory", [
lambda: io.BytesIO(),
lambda: pa.BufferOutputStream()
])
def test_file_read_all(sink_factory):
fixture = FileFormatFixture(sink_factory)
batches = fixture.write_batches()
file_contents = pa.BufferReader(fixture.get_source())
reader = pa.ipc.open_file(file_contents)
result = reader.read_all()
expected = pa.Table.from_batches(batches)
assert result.equals(expected)
def test_open_file_from_buffer(file_fixture):
# ARROW-2859; APIs accept the buffer protocol
file_fixture.write_batches()
source = file_fixture.get_source()
reader1 = pa.ipc.open_file(source)
reader2 = pa.ipc.open_file(pa.BufferReader(source))
reader3 = pa.RecordBatchFileReader(source)
result1 = reader1.read_all()
result2 = reader2.read_all()
result3 = reader3.read_all()
assert result1.equals(result2)
assert result1.equals(result3)
st1 = reader1.stats
assert st1.num_messages == 6
assert st1.num_record_batches == 5
assert reader2.stats == st1
assert reader3.stats == st1
@pytest.mark.pandas
def test_file_read_pandas(file_fixture):
frames = [batch.to_pandas() for batch in file_fixture.write_batches()]
file_contents = pa.BufferReader(file_fixture.get_source())
reader = pa.ipc.open_file(file_contents)
result = reader.read_pandas()
expected = pd.concat(frames).reset_index(drop=True)
assert_frame_equal(result, expected)
def test_file_pathlib(file_fixture, tmpdir):
file_fixture.write_batches()
source = file_fixture.get_source()
path = tmpdir.join('file.arrow').strpath
with open(path, 'wb') as f:
f.write(source)
t1 = pa.ipc.open_file(pathlib.Path(path)).read_all()
t2 = pa.ipc.open_file(pa.OSFile(path)).read_all()
assert t1.equals(t2)
def test_empty_stream():
buf = io.BytesIO(b'')
with pytest.raises(pa.ArrowInvalid):
pa.ipc.open_stream(buf)
@pytest.mark.pandas
def test_read_year_month_nano_interval(tmpdir):
"""ARROW-15783: Verify to_pandas works for interval types.
Interval types require static structures to be enabled. This test verifies
that they are when no other library functions are invoked.
"""
mdn_interval_type = pa.month_day_nano_interval()
schema = pa.schema([pa.field('nums', mdn_interval_type)])
path = tmpdir.join('file.arrow').strpath
with pa.OSFile(path, 'wb') as sink:
with pa.ipc.new_file(sink, schema) as writer:
interval_array = pa.array([(1, 2, 3)], type=mdn_interval_type)
batch = pa.record_batch([interval_array], schema)
writer.write(batch)
invoke_script('read_record_batch.py', path)
@pytest.mark.pandas
def test_stream_categorical_roundtrip(stream_fixture):
df = pd.DataFrame({
'one': np.random.randn(5),
'two': pd.Categorical(['foo', np.nan, 'bar', 'foo', 'foo'],
categories=['foo', 'bar'],
ordered=True)
})
batch = pa.RecordBatch.from_pandas(df)
with stream_fixture._get_writer(stream_fixture.sink, batch.schema) as wr:
wr.write_batch(batch)
table = (pa.ipc.open_stream(pa.BufferReader(stream_fixture.get_source()))
.read_all())
assert_frame_equal(table.to_pandas(), df)
def test_open_stream_from_buffer(stream_fixture):
# ARROW-2859
stream_fixture.write_batches()
source = stream_fixture.get_source()
reader1 = pa.ipc.open_stream(source)
reader2 = pa.ipc.open_stream(pa.BufferReader(source))
reader3 = pa.RecordBatchStreamReader(source)
result1 = reader1.read_all()
result2 = reader2.read_all()
result3 = reader3.read_all()
assert result1.equals(result2)
assert result1.equals(result3)
st1 = reader1.stats
assert st1.num_messages == 6
assert st1.num_record_batches == 5
assert reader2.stats == st1
assert reader3.stats == st1
assert tuple(st1) == tuple(stream_fixture.write_stats)
@pytest.mark.parametrize('options', [
pa.ipc.IpcReadOptions(),
pa.ipc.IpcReadOptions(use_threads=False),
])
def test_open_stream_options(stream_fixture, options):
stream_fixture.write_batches()
source = stream_fixture.get_source()
reader = pa.ipc.open_stream(source, options=options)
reader.read_all()
st = reader.stats
assert st.num_messages == 6
assert st.num_record_batches == 5
assert tuple(st) == tuple(stream_fixture.write_stats)
def test_open_stream_with_wrong_options(stream_fixture):
stream_fixture.write_batches()
source = stream_fixture.get_source()
with pytest.raises(TypeError):
pa.ipc.open_stream(source, options=True)
@pytest.mark.parametrize('options', [
pa.ipc.IpcReadOptions(),
pa.ipc.IpcReadOptions(use_threads=False),
])
def test_open_file_options(file_fixture, options):
file_fixture.write_batches()
source = file_fixture.get_source()
reader = pa.ipc.open_file(source, options=options)
reader.read_all()
st = reader.stats
assert st.num_messages == 6
assert st.num_record_batches == 5
def test_open_file_with_wrong_options(file_fixture):
file_fixture.write_batches()
source = file_fixture.get_source()
with pytest.raises(TypeError):
pa.ipc.open_file(source, options=True)
@pytest.mark.pandas
def test_stream_write_dispatch(stream_fixture):
# ARROW-1616
df = pd.DataFrame({
'one': np.random.randn(5),
'two': pd.Categorical(['foo', np.nan, 'bar', 'foo', 'foo'],
categories=['foo', 'bar'],
ordered=True)
})
table = pa.Table.from_pandas(df, preserve_index=False)
batch = pa.RecordBatch.from_pandas(df, preserve_index=False)
with stream_fixture._get_writer(stream_fixture.sink, table.schema) as wr:
wr.write(table)
wr.write(batch)
table = (pa.ipc.open_stream(pa.BufferReader(stream_fixture.get_source()))
.read_all())
assert_frame_equal(table.to_pandas(),
pd.concat([df, df], ignore_index=True))
@pytest.mark.pandas
def test_stream_write_table_batches(stream_fixture):
# ARROW-504
df = pd.DataFrame({
'one': np.random.randn(20),
})
b1 = pa.RecordBatch.from_pandas(df[:10], preserve_index=False)
b2 = pa.RecordBatch.from_pandas(df, preserve_index=False)
table = pa.Table.from_batches([b1, b2, b1])
with stream_fixture._get_writer(stream_fixture.sink, table.schema) as wr:
wr.write_table(table, max_chunksize=15)
batches = list(pa.ipc.open_stream(stream_fixture.get_source()))
assert list(map(len, batches)) == [10, 15, 5, 10]
result_table = pa.Table.from_batches(batches)
assert_frame_equal(result_table.to_pandas(),
pd.concat([df[:10], df, df[:10]],
ignore_index=True))
@pytest.mark.parametrize('use_legacy_ipc_format', [False, True])
def test_stream_simple_roundtrip(stream_fixture, use_legacy_ipc_format):
stream_fixture.use_legacy_ipc_format = use_legacy_ipc_format
batches = stream_fixture.write_batches()
file_contents = pa.BufferReader(stream_fixture.get_source())
reader = pa.ipc.open_stream(file_contents)
assert reader.schema.equals(batches[0].schema)
total = 0
for i, next_batch in enumerate(reader):
assert next_batch.equals(batches[i])
total += 1
assert total == len(batches)
with pytest.raises(StopIteration):
reader.read_next_batch()
@pytest.mark.zstd
def test_compression_roundtrip():
sink = io.BytesIO()
values = np.random.randint(0, 3, 10000)
table = pa.Table.from_arrays([values], names=["values"])
options = pa.ipc.IpcWriteOptions(compression='zstd')
with pa.ipc.RecordBatchFileWriter(
sink, table.schema, options=options) as writer:
writer.write_table(table)
len1 = len(sink.getvalue())
sink2 = io.BytesIO()
codec = pa.Codec('zstd', compression_level=5)
options = pa.ipc.IpcWriteOptions(compression=codec)
with pa.ipc.RecordBatchFileWriter(
sink2, table.schema, options=options) as writer:
writer.write_table(table)
len2 = len(sink2.getvalue())
# In theory len2 should be less than len1 but for this test we just want
# to ensure compression_level is being correctly passed down to the C++
# layer so we don't really care if it makes it worse or better
assert len2 != len1
t1 = pa.ipc.open_file(sink).read_all()
t2 = pa.ipc.open_file(sink2).read_all()
assert t1 == t2
def test_write_options():
options = pa.ipc.IpcWriteOptions()
assert options.allow_64bit is False
assert options.use_legacy_format is False
assert options.metadata_version == pa.ipc.MetadataVersion.V5
options.allow_64bit = True
assert options.allow_64bit is True
options.use_legacy_format = True
assert options.use_legacy_format is True
options.metadata_version = pa.ipc.MetadataVersion.V4
assert options.metadata_version == pa.ipc.MetadataVersion.V4
for value in ('V5', 42):
with pytest.raises((TypeError, ValueError)):
options.metadata_version = value
assert options.compression is None
for value in ['lz4', 'zstd']:
if pa.Codec.is_available(value):
options.compression = value
assert options.compression == value
options.compression = value.upper()
assert options.compression == value
options.compression = None
assert options.compression is None
with pytest.raises(TypeError):
options.compression = 0
assert options.use_threads is True
options.use_threads = False
assert options.use_threads is False
if pa.Codec.is_available('lz4'):
options = pa.ipc.IpcWriteOptions(
metadata_version=pa.ipc.MetadataVersion.V4,
allow_64bit=True,
use_legacy_format=True,
compression='lz4',
use_threads=False)
assert options.metadata_version == pa.ipc.MetadataVersion.V4
assert options.allow_64bit is True
assert options.use_legacy_format is True
assert options.compression == 'lz4'
assert options.use_threads is False
def test_write_options_legacy_exclusive(stream_fixture):
with pytest.raises(
ValueError,
match="provide at most one of options and use_legacy_format"):
stream_fixture.use_legacy_ipc_format = True
stream_fixture.options = pa.ipc.IpcWriteOptions()
stream_fixture.write_batches()
@pytest.mark.parametrize('options', [
pa.ipc.IpcWriteOptions(),
pa.ipc.IpcWriteOptions(allow_64bit=True),
pa.ipc.IpcWriteOptions(use_legacy_format=True),
pa.ipc.IpcWriteOptions(metadata_version=pa.ipc.MetadataVersion.V4),
pa.ipc.IpcWriteOptions(use_legacy_format=True,
metadata_version=pa.ipc.MetadataVersion.V4),
])
def test_stream_options_roundtrip(stream_fixture, options):
stream_fixture.use_legacy_ipc_format = None
stream_fixture.options = options
batches = stream_fixture.write_batches()
file_contents = pa.BufferReader(stream_fixture.get_source())
message = pa.ipc.read_message(stream_fixture.get_source())
assert message.metadata_version == options.metadata_version
reader = pa.ipc.open_stream(file_contents)
assert reader.schema.equals(batches[0].schema)
total = 0
for i, next_batch in enumerate(reader):
assert next_batch.equals(batches[i])
total += 1
assert total == len(batches)
with pytest.raises(StopIteration):
reader.read_next_batch()
def test_read_options():
options = pa.ipc.IpcReadOptions()
assert options.use_threads is True
assert options.ensure_native_endian is True
assert options.included_fields == []
options.ensure_native_endian = False
assert options.ensure_native_endian is False
options.use_threads = False
assert options.use_threads is False
options.included_fields = [0, 1]
assert options.included_fields == [0, 1]
with pytest.raises(TypeError):
options.included_fields = None
options = pa.ipc.IpcReadOptions(
use_threads=False, ensure_native_endian=False,
included_fields=[1]
)
assert options.use_threads is False
assert options.ensure_native_endian is False
assert options.included_fields == [1]
def test_read_options_included_fields(stream_fixture):
options1 = pa.ipc.IpcReadOptions()
options2 = pa.ipc.IpcReadOptions(included_fields=[1])
table = pa.Table.from_arrays([pa.array(['foo', 'bar', 'baz', 'qux']),
pa.array([1, 2, 3, 4])],
names=['a', 'b'])
with stream_fixture._get_writer(stream_fixture.sink, table.schema) as wr:
wr.write_table(table)
source = stream_fixture.get_source()
reader1 = pa.ipc.open_stream(source, options=options1)
reader2 = pa.ipc.open_stream(
source, options=options2, memory_pool=pa.system_memory_pool())
result1 = reader1.read_all()
result2 = reader2.read_all()
assert result1.num_columns == 2
assert result2.num_columns == 1
expected = pa.Table.from_arrays([pa.array([1, 2, 3, 4])], names=["b"])
assert result2 == expected
assert result1 == table
def test_dictionary_delta(format_fixture):
ty = pa.dictionary(pa.int8(), pa.utf8())
data = [["foo", "foo", None],
["foo", "bar", "foo"], # potential delta
["foo", "bar"], # nothing new
["foo", None, "bar", "quux"], # potential delta
["bar", "quux"], # replacement
]
batches = [
pa.RecordBatch.from_arrays([pa.array(v, type=ty)], names=['dicts'])
for v in data]
batches_delta_only = batches[:4]
schema = batches[0].schema
def write_batches(batches, as_table=False):
with format_fixture._get_writer(pa.MockOutputStream(),
schema) as writer:
if as_table:
table = pa.Table.from_batches(batches)
writer.write_table(table)
else:
for batch in batches:
writer.write_batch(batch)
return writer.stats
if format_fixture.is_file:
# File format cannot handle replacement
with pytest.raises(pa.ArrowInvalid):
write_batches(batches)
# File format cannot handle delta if emit_deltas
# is not provided
with pytest.raises(pa.ArrowInvalid):
write_batches(batches_delta_only)
else:
st = write_batches(batches)
assert st.num_record_batches == 5
assert st.num_dictionary_batches == 4
assert st.num_replaced_dictionaries == 3
assert st.num_dictionary_deltas == 0
format_fixture.use_legacy_ipc_format = None
format_fixture.options = pa.ipc.IpcWriteOptions(
emit_dictionary_deltas=True)
if format_fixture.is_file:
# File format cannot handle replacement
with pytest.raises(pa.ArrowInvalid):
write_batches(batches)
else:
st = write_batches(batches)
assert st.num_record_batches == 5
assert st.num_dictionary_batches == 4
assert st.num_replaced_dictionaries == 1
assert st.num_dictionary_deltas == 2
st = write_batches(batches_delta_only)
assert st.num_record_batches == 4
assert st.num_dictionary_batches == 3
assert st.num_replaced_dictionaries == 0
assert st.num_dictionary_deltas == 2
format_fixture.options = pa.ipc.IpcWriteOptions(
unify_dictionaries=True
)
st = write_batches(batches, as_table=True)
assert st.num_record_batches == 5
if format_fixture.is_file:
assert st.num_dictionary_batches == 1
assert st.num_replaced_dictionaries == 0
assert st.num_dictionary_deltas == 0
else:
assert st.num_dictionary_batches == 4
assert st.num_replaced_dictionaries == 3
assert st.num_dictionary_deltas == 0
def test_envvar_set_legacy_ipc_format():
schema = pa.schema([pa.field('foo', pa.int32())])
writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema)
assert not writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V5
writer = pa.ipc.new_file(pa.BufferOutputStream(), schema)
assert not writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V5
with changed_environ('ARROW_PRE_0_15_IPC_FORMAT', '1'):
writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema)
assert writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V5
writer = pa.ipc.new_file(pa.BufferOutputStream(), schema)
assert writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V5
with changed_environ('ARROW_PRE_1_0_METADATA_VERSION', '1'):
writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema)
assert not writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V4
writer = pa.ipc.new_file(pa.BufferOutputStream(), schema)
assert not writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V4
with changed_environ('ARROW_PRE_1_0_METADATA_VERSION', '1'):
with changed_environ('ARROW_PRE_0_15_IPC_FORMAT', '1'):
writer = pa.ipc.new_stream(pa.BufferOutputStream(), schema)
assert writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V4
writer = pa.ipc.new_file(pa.BufferOutputStream(), schema)
assert writer._use_legacy_format
assert writer._metadata_version == pa.ipc.MetadataVersion.V4
def test_stream_read_all(stream_fixture):
batches = stream_fixture.write_batches()
file_contents = pa.BufferReader(stream_fixture.get_source())
reader = pa.ipc.open_stream(file_contents)
result = reader.read_all()
expected = pa.Table.from_batches(batches)
assert result.equals(expected)
@pytest.mark.pandas
def test_stream_read_pandas(stream_fixture):
frames = [batch.to_pandas() for batch in stream_fixture.write_batches()]
file_contents = stream_fixture.get_source()
reader = pa.ipc.open_stream(file_contents)
result = reader.read_pandas()
expected = pd.concat(frames).reset_index(drop=True)
assert_frame_equal(result, expected)
@pytest.fixture
def example_messages(stream_fixture):
batches = stream_fixture.write_batches()
file_contents = stream_fixture.get_source()
buf_reader = pa.BufferReader(file_contents)
reader = pa.MessageReader.open_stream(buf_reader)
return batches, list(reader)
def test_message_ctors_no_segfault():
with pytest.raises(TypeError):
repr(pa.Message())
with pytest.raises(TypeError):
repr(pa.MessageReader())
def test_message_reader(example_messages):
_, messages = example_messages
assert len(messages) == 6
assert messages[0].type == 'schema'
assert isinstance(messages[0].metadata, pa.Buffer)
assert isinstance(messages[0].body, pa.Buffer)
assert messages[0].metadata_version == pa.MetadataVersion.V5
for msg in messages[1:]:
assert msg.type == 'record batch'
assert isinstance(msg.metadata, pa.Buffer)
assert isinstance(msg.body, pa.Buffer)
assert msg.metadata_version == pa.MetadataVersion.V5
def test_message_serialize_read_message(example_messages):
_, messages = example_messages
msg = messages[0]
buf = msg.serialize()
reader = pa.BufferReader(buf.to_pybytes() * 2)
restored = pa.ipc.read_message(buf)
restored2 = pa.ipc.read_message(reader)
restored3 = pa.ipc.read_message(buf.to_pybytes())
restored4 = pa.ipc.read_message(reader)
assert msg.equals(restored)
assert msg.equals(restored2)
assert msg.equals(restored3)
assert msg.equals(restored4)
with pytest.raises(pa.ArrowInvalid, match="Corrupted message"):
pa.ipc.read_message(pa.BufferReader(b'ab'))
with pytest.raises(EOFError):
pa.ipc.read_message(reader)
@pytest.mark.gzip
def test_message_read_from_compressed(example_messages):
# Part of ARROW-5910
_, messages = example_messages
for message in messages:
raw_out = pa.BufferOutputStream()
with pa.output_stream(raw_out, compression='gzip') as compressed_out:
message.serialize_to(compressed_out)
compressed_buf = raw_out.getvalue()
result = pa.ipc.read_message(pa.input_stream(compressed_buf,
compression='gzip'))
assert result.equals(message)
def test_message_read_schema(example_messages):
batches, messages = example_messages
schema = pa.ipc.read_schema(messages[0])
assert schema.equals(batches[1].schema)
def test_message_read_record_batch(example_messages):
batches, messages = example_messages
for batch, message in zip(batches, messages[1:]):
read_batch = pa.ipc.read_record_batch(message, batch.schema)
assert read_batch.equals(batch)
def test_read_record_batch_on_stream_error_message():
# ARROW-5374
batch = pa.record_batch([pa.array([b"foo"], type=pa.utf8())],
names=['strs'])
stream = pa.BufferOutputStream()
with pa.ipc.new_stream(stream, batch.schema) as writer:
writer.write_batch(batch)
buf = stream.getvalue()
with pytest.raises(IOError,
match="type record batch but got schema"):
pa.ipc.read_record_batch(buf, batch.schema)
# ----------------------------------------------------------------------
# Socket streaming testa
class StreamReaderServer(threading.Thread):
def init(self, do_read_all):
self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self._sock.bind(('127.0.0.1', 0))
self._sock.listen(1)
host, port = self._sock.getsockname()
self._do_read_all = do_read_all
self._schema = None
self._batches = []
self._table = None
return port
def run(self):
connection, client_address = self._sock.accept()
try:
source = connection.makefile(mode='rb')
reader = pa.ipc.open_stream(source)
self._schema = reader.schema
if self._do_read_all:
self._table = reader.read_all()
else:
for i, batch in enumerate(reader):
self._batches.append(batch)
finally:
connection.close()
self._sock.close()
def get_result(self):
return (self._schema, self._table if self._do_read_all
else self._batches)
class SocketStreamFixture(IpcFixture):
def __init__(self):
# XXX(wesm): test will decide when to start socket server. This should
# probably be refactored
pass
def start_server(self, do_read_all):
self._server = StreamReaderServer()
port = self._server.init(do_read_all)
self._server.start()
self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self._sock.connect(('127.0.0.1', port))
self.sink = self.get_sink()
def stop_and_get_result(self):
import struct
self.sink.write(struct.pack('Q', 0))
self.sink.flush()
self._sock.close()
self._server.join()
return self._server.get_result()
def get_sink(self):
return self._sock.makefile(mode='wb')
def _get_writer(self, sink, schema):
return pa.RecordBatchStreamWriter(sink, schema)
@pytest.fixture
def socket_fixture():
return SocketStreamFixture()
def test_socket_simple_roundtrip(socket_fixture):
socket_fixture.start_server(do_read_all=False)
writer_batches = socket_fixture.write_batches()
reader_schema, reader_batches = socket_fixture.stop_and_get_result()
assert reader_schema.equals(writer_batches[0].schema)
assert len(reader_batches) == len(writer_batches)
for i, batch in enumerate(writer_batches):
assert reader_batches[i].equals(batch)
def test_socket_read_all(socket_fixture):
socket_fixture.start_server(do_read_all=True)
writer_batches = socket_fixture.write_batches()
_, result = socket_fixture.stop_and_get_result()
expected = pa.Table.from_batches(writer_batches)
assert result.equals(expected)
# ----------------------------------------------------------------------
# Miscellaneous IPC tests
@pytest.mark.pandas
def test_ipc_file_stream_has_eos():
# ARROW-5395
df = pd.DataFrame({'foo': [1.5]})
batch = pa.RecordBatch.from_pandas(df)
sink = pa.BufferOutputStream()
write_file(batch, sink)
buffer = sink.getvalue()
# skip the file magic
reader = pa.ipc.open_stream(buffer[8:])
# will fail if encounters footer data instead of eos
rdf = reader.read_pandas()
assert_frame_equal(df, rdf)
@pytest.mark.pandas
def test_ipc_zero_copy_numpy():
df = pd.DataFrame({'foo': [1.5]})
batch = pa.RecordBatch.from_pandas(df)
sink = pa.BufferOutputStream()
write_file(batch, sink)
buffer = sink.getvalue()
reader = pa.BufferReader(buffer)
batches = read_file(reader)
data = batches[0].to_pandas()
rdf = pd.DataFrame(data)
assert_frame_equal(df, rdf)
@pytest.mark.pandas
@pytest.mark.parametrize("ipc_type", ["stream", "file"])
def test_batches_with_custom_metadata_roundtrip(ipc_type):
df = pd.DataFrame({'foo': [1.5]})
batch = pa.RecordBatch.from_pandas(df)
sink = pa.BufferOutputStream()
batch_count = 2
file_factory = {"stream": pa.ipc.new_stream,
"file": pa.ipc.new_file}[ipc_type]
with file_factory(sink, batch.schema) as writer:
for i in range(batch_count):
writer.write_batch(batch, custom_metadata={"batch_id": str(i)})
# write a batch without custom metadata
writer.write_batch(batch)
buffer = sink.getvalue()
if ipc_type == "stream":
with pa.ipc.open_stream(buffer) as reader:
batch_with_metas = list(reader.iter_batches_with_custom_metadata())
else:
with pa.ipc.open_file(buffer) as reader:
batch_with_metas = [reader.get_batch_with_custom_metadata(i)
for i in range(reader.num_record_batches)]
for i in range(batch_count):
assert batch_with_metas[i].batch.num_rows == 1
assert isinstance(
batch_with_metas[i].custom_metadata, pa.KeyValueMetadata)
assert batch_with_metas[i].custom_metadata == {"batch_id": str(i)}
# the last batch has no custom metadata
assert batch_with_metas[batch_count].batch.num_rows == 1
assert batch_with_metas[batch_count].custom_metadata is None
def test_ipc_stream_no_batches():
# ARROW-2307
table = pa.Table.from_arrays([pa.array([1, 2, 3, 4]),
pa.array(['foo', 'bar', 'baz', 'qux'])],
names=['a', 'b'])
sink = pa.BufferOutputStream()
with pa.ipc.new_stream(sink, table.schema):
pass
source = sink.getvalue()
with pa.ipc.open_stream(source) as reader:
result = reader.read_all()
assert result.schema.equals(table.schema)
assert len(result) == 0
@pytest.mark.pandas
def test_get_record_batch_size():
N = 10
itemsize = 8
df = pd.DataFrame({'foo': np.random.randn(N)})
batch = pa.RecordBatch.from_pandas(df)
assert pa.ipc.get_record_batch_size(batch) > (N * itemsize)
@pytest.mark.pandas
def _check_serialize_pandas_round_trip(df, use_threads=False):
buf = pa.serialize_pandas(df, nthreads=2 if use_threads else 1)
result = pa.deserialize_pandas(buf, use_threads=use_threads)
assert_frame_equal(result, df)
@pytest.mark.pandas
def test_pandas_serialize_round_trip():
index = pd.Index([1, 2, 3], name='my_index')
columns = ['foo', 'bar']
df = pd.DataFrame(
{'foo': [1.5, 1.6, 1.7], 'bar': list('abc')},
index=index, columns=columns
)
_check_serialize_pandas_round_trip(df)
@pytest.mark.pandas
def test_pandas_serialize_round_trip_nthreads():
index = pd.Index([1, 2, 3], name='my_index')
columns = ['foo', 'bar']
df = pd.DataFrame(
{'foo': [1.5, 1.6, 1.7], 'bar': list('abc')},
index=index, columns=columns
)
_check_serialize_pandas_round_trip(df, use_threads=True)
@pytest.mark.pandas
def test_pandas_serialize_round_trip_multi_index():
index1 = pd.Index([1, 2, 3], name='level_1')
index2 = pd.Index(list('def'), name=None)
index = pd.MultiIndex.from_arrays([index1, index2])
columns = ['foo', 'bar']
df = pd.DataFrame(
{'foo': [1.5, 1.6, 1.7], 'bar': list('abc')},
index=index,
columns=columns,
)
_check_serialize_pandas_round_trip(df)
@pytest.mark.pandas
def test_serialize_pandas_empty_dataframe():
df = pd.DataFrame()
_check_serialize_pandas_round_trip(df)
@pytest.mark.pandas
def test_pandas_serialize_round_trip_not_string_columns():
df = pd.DataFrame(list(zip([1.5, 1.6, 1.7], 'abc')))
buf = pa.serialize_pandas(df)
result = pa.deserialize_pandas(buf)
assert_frame_equal(result, df)
@pytest.mark.pandas
def test_serialize_pandas_no_preserve_index():
df = pd.DataFrame({'a': [1, 2, 3]}, index=[1, 2, 3])
expected = pd.DataFrame({'a': [1, 2, 3]})
buf = pa.serialize_pandas(df, preserve_index=False)
result = pa.deserialize_pandas(buf)
assert_frame_equal(result, expected)
buf = pa.serialize_pandas(df, preserve_index=True)
result = pa.deserialize_pandas(buf)
assert_frame_equal(result, df)
@pytest.mark.pandas
def test_schema_batch_serialize_methods():
nrows = 5
df = pd.DataFrame({
'one': np.random.randn(nrows),
'two': ['foo', np.nan, 'bar', 'bazbaz', 'qux']})
batch = pa.RecordBatch.from_pandas(df)
s_schema = batch.schema.serialize()
s_batch = batch.serialize()
recons_schema = pa.ipc.read_schema(s_schema)
recons_batch = pa.ipc.read_record_batch(s_batch, recons_schema)
assert recons_batch.equals(batch)
def test_schema_serialization_with_metadata():
field_metadata = {b'foo': b'bar', b'kind': b'field'}
schema_metadata = {b'foo': b'bar', b'kind': b'schema'}
f0 = pa.field('a', pa.int8())
f1 = pa.field('b', pa.string(), metadata=field_metadata)
schema = pa.schema([f0, f1], metadata=schema_metadata)
s_schema = schema.serialize()
recons_schema = pa.ipc.read_schema(s_schema)
assert recons_schema.equals(schema)
assert recons_schema.metadata == schema_metadata
assert recons_schema[0].metadata is None
assert recons_schema[1].metadata == field_metadata
def write_file(batch, sink):
with pa.ipc.new_file(sink, batch.schema) as writer:
writer.write_batch(batch)
def read_file(source):
with pa.ipc.open_file(source) as reader:
return [reader.get_batch(i) for i in range(reader.num_record_batches)]
def test_write_empty_ipc_file():
# ARROW-3894: IPC file was not being properly initialized when no record
# batches are being written
schema = pa.schema([('field', pa.int64())])
sink = pa.BufferOutputStream()
with pa.ipc.new_file(sink, schema):
pass
buf = sink.getvalue()
with pa.RecordBatchFileReader(pa.BufferReader(buf)) as reader:
table = reader.read_all()
assert len(table) == 0
assert table.schema.equals(schema)
def test_py_record_batch_reader():
def make_schema():
return pa.schema([('field', pa.int64())])
def make_batches():
schema = make_schema()
batch1 = pa.record_batch([[1, 2, 3]], schema=schema)
batch2 = pa.record_batch([[4, 5]], schema=schema)
return [batch1, batch2]
# With iterable
batches = UserList(make_batches()) # weakrefable
wr = weakref.ref(batches)
with pa.RecordBatchReader.from_batches(make_schema(),
batches) as reader:
batches = None
assert wr() is not None
assert list(reader) == make_batches()
assert wr() is None
# With iterator
batches = iter(UserList(make_batches())) # weakrefable
wr = weakref.ref(batches)
with pa.RecordBatchReader.from_batches(make_schema(),
batches) as reader:
batches = None
assert wr() is not None
assert list(reader) == make_batches()
assert wr() is None
# ensure we get proper error when not passing a schema
# (https://issues.apache.org/jira/browse/ARROW-18229)
batches = make_batches()
with pytest.raises(TypeError):
reader = pa.RecordBatchReader.from_batches(
[('field', pa.int64())], batches)
pass
with pytest.raises(TypeError):
reader = pa.RecordBatchReader.from_batches(None, batches)
pass
def test_record_batch_reader_from_arrow_stream():
class StreamWrapper:
def __init__(self, batches):
self.batches = batches
def __arrow_c_stream__(self, requested_schema=None):
reader = pa.RecordBatchReader.from_batches(
self.batches[0].schema, self.batches)
return reader.__arrow_c_stream__(requested_schema)
data = [
pa.record_batch([pa.array([1, 2, 3], type=pa.int64())], names=['a']),
pa.record_batch([pa.array([4, 5, 6], type=pa.int64())], names=['a'])
]
wrapper = StreamWrapper(data)
# Can roundtrip a pyarrow stream-like object
expected = pa.Table.from_batches(data)
reader = pa.RecordBatchReader.from_stream(expected)
assert reader.read_all() == expected
# Can roundtrip through the wrapper.
reader = pa.RecordBatchReader.from_stream(wrapper)
assert reader.read_all() == expected
# Passing schema works if already that schema
reader = pa.RecordBatchReader.from_stream(wrapper, schema=data[0].schema)
assert reader.read_all() == expected
# Passing a different but castable schema works
good_schema = pa.schema([pa.field("a", pa.int32())])
reader = pa.RecordBatchReader.from_stream(wrapper, schema=good_schema)
assert reader.read_all() == expected.cast(good_schema)
# If schema doesn't match, raises TypeError
with pytest.raises(pa.lib.ArrowTypeError, match='Field 0 cannot be cast'):
pa.RecordBatchReader.from_stream(
wrapper, schema=pa.schema([pa.field('a', pa.list_(pa.int32()))])
)
# Proper type errors for wrong input
with pytest.raises(TypeError):
pa.RecordBatchReader.from_stream(data[0]['a'])
with pytest.raises(TypeError):
pa.RecordBatchReader.from_stream(expected, schema=data[0])
def test_record_batch_reader_cast():
schema_src = pa.schema([pa.field('a', pa.int64())])
data = [
pa.record_batch([pa.array([1, 2, 3], type=pa.int64())], names=['a']),
pa.record_batch([pa.array([4, 5, 6], type=pa.int64())], names=['a']),
]
table_src = pa.Table.from_batches(data)
# Cast to same type should always work
reader = pa.RecordBatchReader.from_batches(schema_src, data)
assert reader.cast(schema_src).read_all() == table_src
# Check non-trivial cast
schema_dst = pa.schema([pa.field('a', pa.int32())])
reader = pa.RecordBatchReader.from_batches(schema_src, data)
assert reader.cast(schema_dst).read_all() == table_src.cast(schema_dst)
# Check error for field name/length mismatch
reader = pa.RecordBatchReader.from_batches(schema_src, data)
with pytest.raises(ValueError, match="Target schema's field names"):
reader.cast(pa.schema([]))
# Check error for impossible cast in call to .cast()
reader = pa.RecordBatchReader.from_batches(schema_src, data)
with pytest.raises(pa.lib.ArrowTypeError, match='Field 0 cannot be cast'):
reader.cast(pa.schema([pa.field('a', pa.list_(pa.int32()))]))
def test_record_batch_reader_cast_nulls():
schema_src = pa.schema([pa.field('a', pa.int64())])
data_with_nulls = [
pa.record_batch([pa.array([1, 2, None], type=pa.int64())], names=['a']),
]
data_without_nulls = [
pa.record_batch([pa.array([1, 2, 3], type=pa.int64())], names=['a']),
]
table_with_nulls = pa.Table.from_batches(data_with_nulls)
table_without_nulls = pa.Table.from_batches(data_without_nulls)
# Cast to nullable destination should work
reader = pa.RecordBatchReader.from_batches(schema_src, data_with_nulls)
schema_dst = pa.schema([pa.field('a', pa.int32())])
assert reader.cast(schema_dst).read_all() == table_with_nulls.cast(schema_dst)
# Cast to non-nullable destination should work if there are no nulls
reader = pa.RecordBatchReader.from_batches(schema_src, data_without_nulls)
schema_dst = pa.schema([pa.field('a', pa.int32(), nullable=False)])
assert reader.cast(schema_dst).read_all() == table_without_nulls.cast(schema_dst)
# Cast to non-nullable destination should error if there are nulls
# when the batch is pulled
reader = pa.RecordBatchReader.from_batches(schema_src, data_with_nulls)
casted_reader = reader.cast(schema_dst)
with pytest.raises(pa.lib.ArrowInvalid, match="Can't cast array"):
casted_reader.read_all()
|