File size: 15,471 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import json
import os
import pyarrow as pa
import pyarrow.jvm as pa_jvm
import pytest
import sys
import xml.etree.ElementTree as ET
jpype = pytest.importorskip("jpype")
@pytest.fixture(scope="session")
def root_allocator():
# This test requires Arrow Java to be built in the same source tree
try:
arrow_dir = os.environ["ARROW_SOURCE_DIR"]
except KeyError:
arrow_dir = os.path.join(os.path.dirname(__file__), '..', '..', '..')
pom_path = os.path.join(arrow_dir, 'java', 'pom.xml')
tree = ET.parse(pom_path)
version = tree.getroot().find(
'POM:version',
namespaces={
'POM': 'http://maven.apache.org/POM/4.0.0'
}).text
jar_path = os.path.join(
arrow_dir, 'java', 'tools', 'target',
'arrow-tools-{}-jar-with-dependencies.jar'.format(version))
jar_path = os.getenv("ARROW_TOOLS_JAR", jar_path)
kwargs = {}
# This will be the default behaviour in jpype 0.8+
kwargs['convertStrings'] = False
jpype.startJVM(jpype.getDefaultJVMPath(), "-Djava.class.path=" + jar_path,
**kwargs)
return jpype.JPackage("org").apache.arrow.memory.RootAllocator(sys.maxsize)
def test_jvm_buffer(root_allocator):
# Create a Java buffer
jvm_buffer = root_allocator.buffer(8)
for i in range(8):
jvm_buffer.setByte(i, 8 - i)
orig_refcnt = jvm_buffer.refCnt()
# Convert to Python
buf = pa_jvm.jvm_buffer(jvm_buffer)
# Check its content
assert buf.to_pybytes() == b'\x08\x07\x06\x05\x04\x03\x02\x01'
# Check Java buffer lifetime is tied to PyArrow buffer lifetime
assert jvm_buffer.refCnt() == orig_refcnt + 1
del buf
assert jvm_buffer.refCnt() == orig_refcnt
def test_jvm_buffer_released(root_allocator):
import jpype.imports # noqa
from java.lang import IllegalArgumentException
jvm_buffer = root_allocator.buffer(8)
jvm_buffer.release()
with pytest.raises(IllegalArgumentException):
pa_jvm.jvm_buffer(jvm_buffer)
def _jvm_field(jvm_spec):
om = jpype.JClass('com.fasterxml.jackson.databind.ObjectMapper')()
pojo_Field = jpype.JClass('org.apache.arrow.vector.types.pojo.Field')
return om.readValue(jvm_spec, pojo_Field)
def _jvm_schema(jvm_spec, metadata=None):
field = _jvm_field(jvm_spec)
schema_cls = jpype.JClass('org.apache.arrow.vector.types.pojo.Schema')
fields = jpype.JClass('java.util.ArrayList')()
fields.add(field)
if metadata:
dct = jpype.JClass('java.util.HashMap')()
for k, v in metadata.items():
dct.put(k, v)
return schema_cls(fields, dct)
else:
return schema_cls(fields)
# In the following, we use the JSON serialization of the Field objects in Java.
# This ensures that we neither rely on the exact mechanics on how to construct
# them using Java code as well as enables us to define them as parameters
# without to invoke the JVM.
#
# The specifications were created using:
#
# om = jpype.JClass('com.fasterxml.jackson.databind.ObjectMapper')()
# field = … # Code to instantiate the field
# jvm_spec = om.writeValueAsString(field)
@pytest.mark.parametrize('pa_type,jvm_spec', [
(pa.null(), '{"name":"null"}'),
(pa.bool_(), '{"name":"bool"}'),
(pa.int8(), '{"name":"int","bitWidth":8,"isSigned":true}'),
(pa.int16(), '{"name":"int","bitWidth":16,"isSigned":true}'),
(pa.int32(), '{"name":"int","bitWidth":32,"isSigned":true}'),
(pa.int64(), '{"name":"int","bitWidth":64,"isSigned":true}'),
(pa.uint8(), '{"name":"int","bitWidth":8,"isSigned":false}'),
(pa.uint16(), '{"name":"int","bitWidth":16,"isSigned":false}'),
(pa.uint32(), '{"name":"int","bitWidth":32,"isSigned":false}'),
(pa.uint64(), '{"name":"int","bitWidth":64,"isSigned":false}'),
(pa.float16(), '{"name":"floatingpoint","precision":"HALF"}'),
(pa.float32(), '{"name":"floatingpoint","precision":"SINGLE"}'),
(pa.float64(), '{"name":"floatingpoint","precision":"DOUBLE"}'),
(pa.time32('s'), '{"name":"time","unit":"SECOND","bitWidth":32}'),
(pa.time32('ms'), '{"name":"time","unit":"MILLISECOND","bitWidth":32}'),
(pa.time64('us'), '{"name":"time","unit":"MICROSECOND","bitWidth":64}'),
(pa.time64('ns'), '{"name":"time","unit":"NANOSECOND","bitWidth":64}'),
(pa.timestamp('s'), '{"name":"timestamp","unit":"SECOND",'
'"timezone":null}'),
(pa.timestamp('ms'), '{"name":"timestamp","unit":"MILLISECOND",'
'"timezone":null}'),
(pa.timestamp('us'), '{"name":"timestamp","unit":"MICROSECOND",'
'"timezone":null}'),
(pa.timestamp('ns'), '{"name":"timestamp","unit":"NANOSECOND",'
'"timezone":null}'),
(pa.timestamp('ns', tz='UTC'), '{"name":"timestamp","unit":"NANOSECOND"'
',"timezone":"UTC"}'),
(pa.timestamp('ns', tz='Europe/Paris'), '{"name":"timestamp",'
'"unit":"NANOSECOND","timezone":"Europe/Paris"}'),
(pa.date32(), '{"name":"date","unit":"DAY"}'),
(pa.date64(), '{"name":"date","unit":"MILLISECOND"}'),
(pa.decimal128(19, 4), '{"name":"decimal","precision":19,"scale":4}'),
(pa.string(), '{"name":"utf8"}'),
(pa.binary(), '{"name":"binary"}'),
(pa.binary(10), '{"name":"fixedsizebinary","byteWidth":10}'),
# TODO(ARROW-2609): complex types that have children
# pa.list_(pa.int32()),
# pa.struct([pa.field('a', pa.int32()),
# pa.field('b', pa.int8()),
# pa.field('c', pa.string())]),
# pa.union([pa.field('a', pa.binary(10)),
# pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE),
# pa.union([pa.field('a', pa.binary(10)),
# pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE),
# TODO: DictionaryType requires a vector in the type
# pa.dictionary(pa.int32(), pa.array(['a', 'b', 'c'])),
])
@pytest.mark.parametrize('nullable', [True, False])
def test_jvm_types(root_allocator, pa_type, jvm_spec, nullable):
if pa_type == pa.null() and not nullable:
return
spec = {
'name': 'field_name',
'nullable': nullable,
'type': json.loads(jvm_spec),
# TODO: This needs to be set for complex types
'children': []
}
jvm_field = _jvm_field(json.dumps(spec))
result = pa_jvm.field(jvm_field)
expected_field = pa.field('field_name', pa_type, nullable=nullable)
assert result == expected_field
jvm_schema = _jvm_schema(json.dumps(spec))
result = pa_jvm.schema(jvm_schema)
assert result == pa.schema([expected_field])
# Schema with custom metadata
jvm_schema = _jvm_schema(json.dumps(spec), {'meta': 'data'})
result = pa_jvm.schema(jvm_schema)
assert result == pa.schema([expected_field], {'meta': 'data'})
# Schema with custom field metadata
spec['metadata'] = [{'key': 'field meta', 'value': 'field data'}]
jvm_schema = _jvm_schema(json.dumps(spec))
result = pa_jvm.schema(jvm_schema)
expected_field = expected_field.with_metadata(
{'field meta': 'field data'})
assert result == pa.schema([expected_field])
# These test parameters mostly use an integer range as an input as this is
# often the only type that is understood by both Python and Java
# implementations of Arrow.
@pytest.mark.parametrize('pa_type,py_data,jvm_type', [
(pa.bool_(), [True, False, True, True], 'BitVector'),
(pa.uint8(), list(range(128)), 'UInt1Vector'),
(pa.uint16(), list(range(128)), 'UInt2Vector'),
(pa.int32(), list(range(128)), 'IntVector'),
(pa.int64(), list(range(128)), 'BigIntVector'),
(pa.float32(), list(range(128)), 'Float4Vector'),
(pa.float64(), list(range(128)), 'Float8Vector'),
(pa.timestamp('s'), list(range(128)), 'TimeStampSecVector'),
(pa.timestamp('ms'), list(range(128)), 'TimeStampMilliVector'),
(pa.timestamp('us'), list(range(128)), 'TimeStampMicroVector'),
(pa.timestamp('ns'), list(range(128)), 'TimeStampNanoVector'),
# TODO(ARROW-2605): These types miss a conversion from pure Python objects
# * pa.time32('s')
# * pa.time32('ms')
# * pa.time64('us')
# * pa.time64('ns')
(pa.date32(), list(range(128)), 'DateDayVector'),
(pa.date64(), list(range(128)), 'DateMilliVector'),
# TODO(ARROW-2606): pa.decimal128(19, 4)
])
def test_jvm_array(root_allocator, pa_type, py_data, jvm_type):
# Create vector
cls = "org.apache.arrow.vector.{}".format(jvm_type)
jvm_vector = jpype.JClass(cls)("vector", root_allocator)
jvm_vector.allocateNew(len(py_data))
for i, val in enumerate(py_data):
# char and int are ambiguous overloads for these two setSafe calls
if jvm_type in {'UInt1Vector', 'UInt2Vector'}:
val = jpype.JInt(val)
jvm_vector.setSafe(i, val)
jvm_vector.setValueCount(len(py_data))
py_array = pa.array(py_data, type=pa_type)
jvm_array = pa_jvm.array(jvm_vector)
assert py_array.equals(jvm_array)
def test_jvm_array_empty(root_allocator):
cls = "org.apache.arrow.vector.{}".format('IntVector')
jvm_vector = jpype.JClass(cls)("vector", root_allocator)
jvm_vector.allocateNew()
jvm_array = pa_jvm.array(jvm_vector)
assert len(jvm_array) == 0
assert jvm_array.type == pa.int32()
# These test parameters mostly use an integer range as an input as this is
# often the only type that is understood by both Python and Java
# implementations of Arrow.
@pytest.mark.parametrize('pa_type,py_data,jvm_type,jvm_spec', [
# TODO: null
(pa.bool_(), [True, False, True, True], 'BitVector', '{"name":"bool"}'),
(
pa.uint8(),
list(range(128)),
'UInt1Vector',
'{"name":"int","bitWidth":8,"isSigned":false}'
),
(
pa.uint16(),
list(range(128)),
'UInt2Vector',
'{"name":"int","bitWidth":16,"isSigned":false}'
),
(
pa.uint32(),
list(range(128)),
'UInt4Vector',
'{"name":"int","bitWidth":32,"isSigned":false}'
),
(
pa.uint64(),
list(range(128)),
'UInt8Vector',
'{"name":"int","bitWidth":64,"isSigned":false}'
),
(
pa.int8(),
list(range(128)),
'TinyIntVector',
'{"name":"int","bitWidth":8,"isSigned":true}'
),
(
pa.int16(),
list(range(128)),
'SmallIntVector',
'{"name":"int","bitWidth":16,"isSigned":true}'
),
(
pa.int32(),
list(range(128)),
'IntVector',
'{"name":"int","bitWidth":32,"isSigned":true}'
),
(
pa.int64(),
list(range(128)),
'BigIntVector',
'{"name":"int","bitWidth":64,"isSigned":true}'
),
# TODO: float16
(
pa.float32(),
list(range(128)),
'Float4Vector',
'{"name":"floatingpoint","precision":"SINGLE"}'
),
(
pa.float64(),
list(range(128)),
'Float8Vector',
'{"name":"floatingpoint","precision":"DOUBLE"}'
),
(
pa.timestamp('s'),
list(range(128)),
'TimeStampSecVector',
'{"name":"timestamp","unit":"SECOND","timezone":null}'
),
(
pa.timestamp('ms'),
list(range(128)),
'TimeStampMilliVector',
'{"name":"timestamp","unit":"MILLISECOND","timezone":null}'
),
(
pa.timestamp('us'),
list(range(128)),
'TimeStampMicroVector',
'{"name":"timestamp","unit":"MICROSECOND","timezone":null}'
),
(
pa.timestamp('ns'),
list(range(128)),
'TimeStampNanoVector',
'{"name":"timestamp","unit":"NANOSECOND","timezone":null}'
),
# TODO(ARROW-2605): These types miss a conversion from pure Python objects
# * pa.time32('s')
# * pa.time32('ms')
# * pa.time64('us')
# * pa.time64('ns')
(
pa.date32(),
list(range(128)),
'DateDayVector',
'{"name":"date","unit":"DAY"}'
),
(
pa.date64(),
list(range(128)),
'DateMilliVector',
'{"name":"date","unit":"MILLISECOND"}'
),
# TODO(ARROW-2606): pa.decimal128(19, 4)
])
def test_jvm_record_batch(root_allocator, pa_type, py_data, jvm_type,
jvm_spec):
# Create vector
cls = "org.apache.arrow.vector.{}".format(jvm_type)
jvm_vector = jpype.JClass(cls)("vector", root_allocator)
jvm_vector.allocateNew(len(py_data))
for i, val in enumerate(py_data):
if jvm_type in {'UInt1Vector', 'UInt2Vector'}:
val = jpype.JInt(val)
jvm_vector.setSafe(i, val)
jvm_vector.setValueCount(len(py_data))
# Create field
spec = {
'name': 'field_name',
'nullable': False,
'type': json.loads(jvm_spec),
# TODO: This needs to be set for complex types
'children': []
}
jvm_field = _jvm_field(json.dumps(spec))
# Create VectorSchemaRoot
jvm_fields = jpype.JClass('java.util.ArrayList')()
jvm_fields.add(jvm_field)
jvm_vectors = jpype.JClass('java.util.ArrayList')()
jvm_vectors.add(jvm_vector)
jvm_vsr = jpype.JClass('org.apache.arrow.vector.VectorSchemaRoot')
jvm_vsr = jvm_vsr(jvm_fields, jvm_vectors, len(py_data))
py_record_batch = pa.RecordBatch.from_arrays(
[pa.array(py_data, type=pa_type)],
['col']
)
jvm_record_batch = pa_jvm.record_batch(jvm_vsr)
assert py_record_batch.equals(jvm_record_batch)
def _string_to_varchar_holder(ra, string):
nvch_cls = "org.apache.arrow.vector.holders.NullableVarCharHolder"
holder = jpype.JClass(nvch_cls)()
if string is None:
holder.isSet = 0
else:
holder.isSet = 1
value = jpype.JClass("java.lang.String")("string")
std_charsets = jpype.JClass("java.nio.charset.StandardCharsets")
bytes_ = value.getBytes(std_charsets.UTF_8)
holder.buffer = ra.buffer(len(bytes_))
holder.buffer.setBytes(0, bytes_, 0, len(bytes_))
holder.start = 0
holder.end = len(bytes_)
return holder
# TODO(ARROW-2607)
@pytest.mark.xfail(reason="from_buffers is only supported for "
"primitive arrays yet")
def test_jvm_string_array(root_allocator):
data = ["string", None, "töst"]
cls = "org.apache.arrow.vector.VarCharVector"
jvm_vector = jpype.JClass(cls)("vector", root_allocator)
jvm_vector.allocateNew()
for i, string in enumerate(data):
holder = _string_to_varchar_holder(root_allocator, "string")
jvm_vector.setSafe(i, holder)
jvm_vector.setValueCount(i + 1)
py_array = pa.array(data, type=pa.string())
jvm_array = pa_jvm.array(jvm_vector)
assert py_array.equals(jvm_array)
|