File size: 26,804 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datetime
import decimal
import pytest
import sys
import weakref
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.tests import util
@pytest.mark.parametrize(['value', 'ty', 'klass'], [
(False, None, pa.BooleanScalar),
(True, None, pa.BooleanScalar),
(1, None, pa.Int64Scalar),
(-1, None, pa.Int64Scalar),
(1, pa.int8(), pa.Int8Scalar),
(1, pa.uint8(), pa.UInt8Scalar),
(1, pa.int16(), pa.Int16Scalar),
(1, pa.uint16(), pa.UInt16Scalar),
(1, pa.int32(), pa.Int32Scalar),
(1, pa.uint32(), pa.UInt32Scalar),
(1, pa.int64(), pa.Int64Scalar),
(1, pa.uint64(), pa.UInt64Scalar),
(1.0, None, pa.DoubleScalar),
(np.float16(1.0), pa.float16(), pa.HalfFloatScalar),
(1.0, pa.float32(), pa.FloatScalar),
(decimal.Decimal("1.123"), None, pa.Decimal128Scalar),
(decimal.Decimal("1.1234567890123456789012345678901234567890"),
None, pa.Decimal256Scalar),
("string", None, pa.StringScalar),
(b"bytes", None, pa.BinaryScalar),
("largestring", pa.large_string(), pa.LargeStringScalar),
(b"largebytes", pa.large_binary(), pa.LargeBinaryScalar),
("string_view", pa.string_view(), pa.StringViewScalar),
(b"bytes_view", pa.binary_view(), pa.BinaryViewScalar),
(b"abc", pa.binary(3), pa.FixedSizeBinaryScalar),
([1, 2, 3], None, pa.ListScalar),
([1, 2, 3, 4], pa.large_list(pa.int8()), pa.LargeListScalar),
([1, 2, 3, 4, 5], pa.list_(pa.int8(), 5), pa.FixedSizeListScalar),
([1, 2, 3], pa.list_view(pa.int8()), pa.ListViewScalar),
([1, 2, 3, 4], pa.large_list_view(pa.int8()), pa.LargeListViewScalar),
(datetime.date.today(), None, pa.Date32Scalar),
(datetime.date.today(), pa.date64(), pa.Date64Scalar),
(datetime.datetime.now(), None, pa.TimestampScalar),
(datetime.datetime.now().time().replace(microsecond=0), pa.time32('s'),
pa.Time32Scalar),
(datetime.datetime.now().time(), None, pa.Time64Scalar),
(datetime.timedelta(days=1), None, pa.DurationScalar),
(pa.MonthDayNano([1, -1, -10100]), None,
pa.MonthDayNanoIntervalScalar),
({'a': 1, 'b': [1, 2]}, None, pa.StructScalar),
([('a', 1), ('b', 2)], pa.map_(pa.string(), pa.int8()), pa.MapScalar),
])
def test_basics(value, ty, klass, pickle_module):
s = pa.scalar(value, type=ty)
s.validate()
s.validate(full=True)
assert isinstance(s, klass)
assert s.as_py() == value
assert s == pa.scalar(value, type=ty)
assert s != value
assert s != "else"
assert hash(s) == hash(s)
assert s.is_valid is True
assert s != None # noqa: E711
s = pa.scalar(None, type=s.type)
assert s.is_valid is False
assert s.as_py() is None
assert s != pa.scalar(value, type=ty)
# test pickle roundtrip
restored = pickle_module.loads(pickle_module.dumps(s))
assert s.equals(restored)
# test that scalars are weak-referenceable
wr = weakref.ref(s)
assert wr() is not None
del s
assert wr() is None
def test_invalid_scalar():
s = pc.cast(pa.scalar(b"\xff"), pa.string(), safe=False)
s.validate()
with pytest.raises(ValueError,
match="string scalar contains invalid UTF8 data"):
s.validate(full=True)
def test_null_singleton():
with pytest.raises(RuntimeError):
pa.NullScalar()
def test_nulls(pickle_module):
null = pa.scalar(None)
assert null is pa.NA
assert null.as_py() is None
assert null != "something"
assert (null == pa.scalar(None)) is True
assert (null == 0) is False
assert pa.NA == pa.NA
assert pa.NA not in [5]
arr = pa.array([None, None])
for v in arr:
assert v is pa.NA
assert v.as_py() is None
# test pickle roundtrip
restored = pickle_module.loads(pickle_module.dumps(null))
assert restored.equals(null)
# test that scalars are weak-referenceable
wr = weakref.ref(null)
assert wr() is not None
del null
assert wr() is not None # singleton
def test_hashing():
# ARROW-640
values = list(range(500))
arr = pa.array(values + values)
set_from_array = set(arr)
assert isinstance(set_from_array, set)
assert len(set_from_array) == 500
def test_hashing_struct_scalar():
# GH-35360
a = pa.array([[{'a': 5}, {'a': 6}], [{'a': 7}, None]])
b = pa.array([[{'a': 7}, None]])
hash1 = hash(a[1])
hash2 = hash(b[0])
assert hash1 == hash2
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
def test_timestamp_scalar():
a = repr(pa.scalar("0000-01-01").cast(pa.timestamp("s")))
assert a == "<pyarrow.TimestampScalar: '0000-01-01T00:00:00'>"
b = repr(pa.scalar(datetime.datetime(2015, 1, 1), type=pa.timestamp('s', tz='UTC')))
assert b == "<pyarrow.TimestampScalar: '2015-01-01T00:00:00+0000'>"
c = repr(pa.scalar(datetime.datetime(2015, 1, 1), type=pa.timestamp('us')))
assert c == "<pyarrow.TimestampScalar: '2015-01-01T00:00:00.000000'>"
d = repr(pc.assume_timezone(
pa.scalar("2000-01-01").cast(pa.timestamp("s")), "America/New_York"))
assert d == "<pyarrow.TimestampScalar: '2000-01-01T00:00:00-0500'>"
def test_bool():
false = pa.scalar(False)
true = pa.scalar(True)
assert isinstance(false, pa.BooleanScalar)
assert isinstance(true, pa.BooleanScalar)
assert repr(true) == "<pyarrow.BooleanScalar: True>"
assert str(true) == "True"
assert repr(false) == "<pyarrow.BooleanScalar: False>"
assert str(false) == "False"
assert true.as_py() is True
assert false.as_py() is False
def test_numerics():
# int64
s = pa.scalar(1)
assert isinstance(s, pa.Int64Scalar)
assert repr(s) == "<pyarrow.Int64Scalar: 1>"
assert str(s) == "1"
assert s.as_py() == 1
with pytest.raises(OverflowError):
pa.scalar(-1, type='uint8')
# float64
s = pa.scalar(1.5)
assert isinstance(s, pa.DoubleScalar)
assert repr(s) == "<pyarrow.DoubleScalar: 1.5>"
assert str(s) == "1.5"
assert s.as_py() == 1.5
# float16
s = pa.scalar(np.float16(0.5), type='float16')
assert isinstance(s, pa.HalfFloatScalar)
# on numpy2 repr(np.float16(0.5)) == "np.float16(0.5)"
# on numpy1 repr(np.float16(0.5)) == "0.5"
assert repr(s) == f"<pyarrow.HalfFloatScalar: {np.float16(0.5)!r}>"
assert str(s) == "0.5"
assert s.as_py() == 0.5
def test_decimal128():
v = decimal.Decimal("1.123")
s = pa.scalar(v)
assert isinstance(s, pa.Decimal128Scalar)
assert s.as_py() == v
assert s.type == pa.decimal128(4, 3)
v = decimal.Decimal("1.1234")
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal128(4, scale=3))
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal128(5, scale=3))
s = pa.scalar(v, type=pa.decimal128(5, scale=4))
assert isinstance(s, pa.Decimal128Scalar)
assert s.as_py() == v
def test_decimal256():
v = decimal.Decimal("1234567890123456789012345678901234567890.123")
s = pa.scalar(v)
assert isinstance(s, pa.Decimal256Scalar)
assert s.as_py() == v
assert s.type == pa.decimal256(43, 3)
v = decimal.Decimal("1.1234")
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal256(4, scale=3))
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal256(5, scale=3))
s = pa.scalar(v, type=pa.decimal256(5, scale=4))
assert isinstance(s, pa.Decimal256Scalar)
assert s.as_py() == v
def test_date():
# ARROW-5125
d1 = datetime.date(3200, 1, 1)
d2 = datetime.date(1960, 1, 1)
for ty in [pa.date32(), pa.date64()]:
for d in [d1, d2]:
s = pa.scalar(d, type=ty)
assert s.as_py() == d
def test_date_cast():
# ARROW-10472 - casting fo scalars doesn't segfault
scalar = pa.scalar(datetime.datetime(2012, 1, 1), type=pa.timestamp("us"))
expected = datetime.date(2012, 1, 1)
for ty in [pa.date32(), pa.date64()]:
result = scalar.cast(ty)
assert result.as_py() == expected
def test_time_from_datetime_time():
t1 = datetime.time(18, 0)
t2 = datetime.time(21, 0)
types = [pa.time32('s'), pa.time32('ms'), pa.time64('us'), pa.time64('ns')]
for ty in types:
for t in [t1, t2]:
s = pa.scalar(t, type=ty)
assert s.as_py() == t
@pytest.mark.parametrize(['value', 'time_type'], [
(1, pa.time32("s")),
(2**30, pa.time32("s")),
(None, pa.time32("s")),
(1, pa.time32("ms")),
(2**30, pa.time32("ms")),
(None, pa.time32("ms")),
(1, pa.time64("us")),
(2**62, pa.time64("us")),
(None, pa.time64("us")),
(1, pa.time64("ns")),
(2**62, pa.time64("ns")),
(None, pa.time64("ns")),
(1, pa.date32()),
(2**30, pa.date32()),
(None, pa.date32()),
(1, pa.date64()),
(2**62, pa.date64()),
(None, pa.date64()),
(1, pa.timestamp("ns")),
(2**62, pa.timestamp("ns")),
(None, pa.timestamp("ns")),
(1, pa.duration("ns")),
(2**62, pa.duration("ns")),
(None, pa.duration("ns")),
((1, 2, -3), pa.month_day_nano_interval()),
(None, pa.month_day_nano_interval()),
])
def test_temporal_values(value, time_type: pa.DataType):
time_scalar = pa.scalar(value, type=time_type)
time_scalar.validate(full=True)
assert time_scalar.value == value
def test_cast():
val = pa.scalar(5, type='int8')
assert val.cast('int64') == pa.scalar(5, type='int64')
assert val.cast('uint32') == pa.scalar(5, type='uint32')
assert val.cast('string') == pa.scalar('5', type='string')
with pytest.raises(ValueError):
pa.scalar('foo').cast('int32')
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
def test_cast_timestamp_to_string():
# GH-35370
pytest.importorskip("pytz")
import pytz
dt = datetime.datetime(2000, 1, 1, 0, 0, 0, tzinfo=pytz.utc)
ts = pa.scalar(dt, type=pa.timestamp("ns", tz="UTC"))
assert ts.cast(pa.string()) == pa.scalar('2000-01-01 00:00:00.000000000Z')
def test_cast_float_to_int():
# GH-35040
float_scalar = pa.scalar(1.5, type=pa.float64())
unsafe_cast = float_scalar.cast(pa.int64(), safe=False)
expected_unsafe_cast = pa.scalar(1, type=pa.int64())
assert unsafe_cast == expected_unsafe_cast
with pytest.raises(pa.ArrowInvalid):
float_scalar.cast(pa.int64()) # verify default is safe cast
def test_cast_int_to_float():
# GH-34901
int_scalar = pa.scalar(18014398509481983, type=pa.int64())
unsafe_cast = int_scalar.cast(pa.float64(), safe=False)
expected_unsafe_cast = pa.scalar(18014398509481983.0, type=pa.float64())
assert unsafe_cast == expected_unsafe_cast
with pytest.raises(pa.ArrowInvalid):
int_scalar.cast(pa.float64()) # verify default is safe cast
@pytest.mark.parametrize("typ", [pa.date32(), pa.date64()])
def test_cast_string_to_date(typ):
scalar = pa.scalar('2021-01-01')
result = scalar.cast(typ)
assert result == pa.scalar(datetime.date(2021, 1, 1), type=typ)
@pytest.mark.pandas
def test_timestamp():
import pandas as pd
arr = pd.date_range('2000-01-01 12:34:56', periods=10).values
units = ['ns', 'us', 'ms', 's']
for i, unit in enumerate(units):
dtype = 'datetime64[{}]'.format(unit)
arrow_arr = pa.Array.from_pandas(arr.astype(dtype))
expected = pd.Timestamp('2000-01-01 12:34:56')
assert arrow_arr[0].as_py() == expected
assert arrow_arr[0].value * 1000**i == expected.value
tz = 'America/New_York'
arrow_type = pa.timestamp(unit, tz=tz)
dtype = 'datetime64[{}]'.format(unit)
arrow_arr = pa.Array.from_pandas(arr.astype(dtype), type=arrow_type)
expected = (pd.Timestamp('2000-01-01 12:34:56')
.tz_localize('utc')
.tz_convert(tz))
assert arrow_arr[0].as_py() == expected
assert arrow_arr[0].value * 1000**i == expected.value
@pytest.mark.nopandas
def test_timestamp_nanos_nopandas():
# ARROW-5450
pytest.importorskip("pytz")
import pytz
tz = 'America/New_York'
ty = pa.timestamp('ns', tz=tz)
# 2000-01-01 00:00:00 + 1 microsecond
s = pa.scalar(946684800000000000 + 1000, type=ty)
tzinfo = pytz.timezone(tz)
expected = datetime.datetime(2000, 1, 1, microsecond=1, tzinfo=tzinfo)
expected = tzinfo.fromutc(expected)
result = s.as_py()
assert result == expected
assert result.year == 1999
assert result.hour == 19
# Non-zero nanos yields ValueError
s = pa.scalar(946684800000000001, type=ty)
with pytest.raises(ValueError):
s.as_py()
def test_timestamp_no_overflow():
# ARROW-5450
pytest.importorskip("pytz")
import pytz
timestamps = [
datetime.datetime(1, 1, 1, 0, 0, 0, tzinfo=pytz.utc),
datetime.datetime(9999, 12, 31, 23, 59, 59, 999999, tzinfo=pytz.utc),
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=pytz.utc),
]
for ts in timestamps:
s = pa.scalar(ts, type=pa.timestamp("us", tz="UTC"))
assert s.as_py() == ts
def test_timestamp_fixed_offset_print():
# ARROW-13896
pytest.importorskip("pytz")
arr = pa.array([0], pa.timestamp('s', tz='+02:00'))
assert str(arr[0]) == "1970-01-01 02:00:00+02:00"
def test_duration():
arr = np.array([0, 3600000000000], dtype='timedelta64[ns]')
units = ['us', 'ms', 's']
for i, unit in enumerate(units):
dtype = 'timedelta64[{}]'.format(unit)
arrow_arr = pa.array(arr.astype(dtype))
expected = datetime.timedelta(seconds=60*60)
assert isinstance(arrow_arr[1].as_py(), datetime.timedelta)
assert arrow_arr[1].as_py() == expected
assert (arrow_arr[1].value * 1000**(i+1) ==
expected.total_seconds() * 1e9)
@pytest.mark.pandas
def test_duration_nanos_pandas():
import pandas as pd
arr = pa.array([0, 3600000000000], type=pa.duration('ns'))
expected = pd.Timedelta('1 hour')
assert isinstance(arr[1].as_py(), pd.Timedelta)
assert arr[1].as_py() == expected
assert arr[1].value == expected.value
# Non-zero nanos work fine
arr = pa.array([946684800000000001], type=pa.duration('ns'))
assert arr[0].as_py() == pd.Timedelta(946684800000000001, unit='ns')
@pytest.mark.nopandas
def test_duration_nanos_nopandas():
arr = pa.array([0, 3600000000000], pa.duration('ns'))
expected = datetime.timedelta(seconds=60*60)
assert isinstance(arr[1].as_py(), datetime.timedelta)
assert arr[1].as_py() == expected
assert arr[1].value == expected.total_seconds() * 1e9
# Non-zero nanos yields ValueError
arr = pa.array([946684800000000001], type=pa.duration('ns'))
with pytest.raises(ValueError):
arr[0].as_py()
def test_month_day_nano_interval():
triple = pa.MonthDayNano([-3600, 1800, -50])
arr = pa.array([triple])
assert isinstance(arr[0].as_py(), pa.MonthDayNano)
assert arr[0].as_py() == triple
assert arr[0].value == triple
@pytest.mark.parametrize('value', ['foo', 'mañana'])
@pytest.mark.parametrize(('ty', 'scalar_typ'), [
(pa.string(), pa.StringScalar),
(pa.large_string(), pa.LargeStringScalar),
(pa.string_view(), pa.StringViewScalar),
])
def test_string(value, ty, scalar_typ):
s = pa.scalar(value, type=ty)
assert isinstance(s, scalar_typ)
assert s.as_py() == value
assert s.as_py() != 'something'
assert repr(value) in repr(s)
assert str(s) == str(value)
buf = s.as_buffer()
assert isinstance(buf, pa.Buffer)
assert buf.to_pybytes() == value.encode()
@pytest.mark.parametrize('value', [b'foo', b'bar'])
@pytest.mark.parametrize(('ty', 'scalar_typ'), [
(pa.binary(), pa.BinaryScalar),
(pa.large_binary(), pa.LargeBinaryScalar),
(pa.binary_view(), pa.BinaryViewScalar),
])
def test_binary(value, ty, scalar_typ):
s = pa.scalar(value, type=ty)
assert isinstance(s, scalar_typ)
assert s.as_py() == value
assert str(s) == str(value)
assert repr(value) in repr(s)
assert s.as_py() == value
assert s != b'xxxxx'
buf = s.as_buffer()
assert isinstance(buf, pa.Buffer)
assert buf.to_pybytes() == value
def test_fixed_size_binary():
s = pa.scalar(b'foof', type=pa.binary(4))
assert isinstance(s, pa.FixedSizeBinaryScalar)
assert s.as_py() == b'foof'
with pytest.raises(pa.ArrowInvalid):
pa.scalar(b'foof5', type=pa.binary(4))
@pytest.mark.parametrize(('ty', 'klass'), [
(pa.list_(pa.string()), pa.ListScalar),
(pa.large_list(pa.string()), pa.LargeListScalar),
(pa.list_view(pa.string()), pa.ListViewScalar),
(pa.large_list_view(pa.string()), pa.LargeListViewScalar)
])
def test_list(ty, klass):
v = ['foo', None]
s = pa.scalar(v, type=ty)
assert s.type == ty
assert len(s) == 2
assert isinstance(s.values, pa.Array)
assert s.values.to_pylist() == v
assert isinstance(s, klass)
assert repr(v) in repr(s)
assert s.as_py() == v
assert s[0].as_py() == 'foo'
assert s[1].as_py() is None
assert s[-1] == s[1]
assert s[-2] == s[0]
with pytest.raises(IndexError):
s[-3]
with pytest.raises(IndexError):
s[2]
@pytest.mark.parametrize('ty', [
pa.list_(pa.int64()),
pa.large_list(pa.int64()),
pa.list_view(pa.int64()),
pa.large_list_view(pa.int64()),
None
])
def test_list_from_numpy(ty):
s = pa.scalar(np.array([1, 2, 3], dtype=np.int64()), type=ty)
if ty is None:
ty = pa.list_(pa.int64()) # expected inferred type
assert s.type == ty
assert s.as_py() == [1, 2, 3]
@pytest.mark.pandas
@pytest.mark.parametrize('factory', [
pa.list_,
pa.large_list,
pa.list_view,
pa.large_list_view
])
def test_list_from_pandas(factory):
import pandas as pd
s = pa.scalar(pd.Series([1, 2, 3]))
assert s.as_py() == [1, 2, 3]
cases = [
(np.nan, 'null'),
(['string', np.nan], factory(pa.binary())),
(['string', np.nan], factory(pa.utf8())),
([b'string', np.nan], factory(pa.binary(6))),
([True, np.nan], factory(pa.bool_())),
([decimal.Decimal('0'), np.nan], factory(pa.decimal128(12, 2))),
]
for case, ty in cases:
# Both types of exceptions are raised. May want to clean that up
with pytest.raises((ValueError, TypeError)):
pa.scalar(case, type=ty)
# from_pandas option suppresses failure
s = pa.scalar(case, type=ty, from_pandas=True)
def test_fixed_size_list():
s = pa.scalar([1, None, 3], type=pa.list_(pa.int64(), 3))
assert len(s) == 3
assert isinstance(s, pa.FixedSizeListScalar)
assert repr(s) == "<pyarrow.FixedSizeListScalar: [1, None, 3]>"
assert s.as_py() == [1, None, 3]
assert s[0].as_py() == 1
assert s[1].as_py() is None
assert s[-1] == s[2]
with pytest.raises(IndexError):
s[-4]
with pytest.raises(IndexError):
s[3]
def test_struct():
ty = pa.struct([
pa.field('x', pa.int16()),
pa.field('y', pa.float32())
])
v = {'x': 2, 'y': 3.5}
s = pa.scalar(v, type=ty)
assert list(s) == list(s.keys()) == ['x', 'y']
assert list(s.values()) == [
pa.scalar(2, type=pa.int16()),
pa.scalar(3.5, type=pa.float32())
]
assert list(s.items()) == [
('x', pa.scalar(2, type=pa.int16())),
('y', pa.scalar(3.5, type=pa.float32()))
]
assert 'x' in s
assert 'y' in s
assert 'z' not in s
assert 0 not in s
assert s.as_py() == v
assert repr(s) != repr(v)
assert repr(s.as_py()) == repr(v)
assert len(s) == 2
assert isinstance(s['x'], pa.Int16Scalar)
assert isinstance(s['y'], pa.FloatScalar)
assert s['x'].as_py() == 2
assert s['y'].as_py() == 3.5
with pytest.raises(KeyError):
s['nonexistent']
s = pa.scalar(None, type=ty)
assert list(s) == list(s.keys()) == ['x', 'y']
assert s.as_py() is None
assert 'x' in s
assert 'y' in s
assert isinstance(s['x'], pa.Int16Scalar)
assert isinstance(s['y'], pa.FloatScalar)
assert s['x'].is_valid is False
assert s['y'].is_valid is False
assert s['x'].as_py() is None
assert s['y'].as_py() is None
def test_struct_duplicate_fields():
ty = pa.struct([
pa.field('x', pa.int16()),
pa.field('y', pa.float32()),
pa.field('x', pa.int64()),
])
s = pa.scalar([('x', 1), ('y', 2.0), ('x', 3)], type=ty)
assert list(s) == list(s.keys()) == ['x', 'y', 'x']
assert len(s) == 3
assert s == s
assert list(s.items()) == [
('x', pa.scalar(1, pa.int16())),
('y', pa.scalar(2.0, pa.float32())),
('x', pa.scalar(3, pa.int64()))
]
assert 'x' in s
assert 'y' in s
assert 'z' not in s
assert 0 not in s
# getitem with field names fails for duplicate fields, works for others
with pytest.raises(KeyError):
s['x']
assert isinstance(s['y'], pa.FloatScalar)
assert s['y'].as_py() == 2.0
# getitem with integer index works for all fields
assert isinstance(s[0], pa.Int16Scalar)
assert s[0].as_py() == 1
assert isinstance(s[1], pa.FloatScalar)
assert s[1].as_py() == 2.0
assert isinstance(s[2], pa.Int64Scalar)
assert s[2].as_py() == 3
assert "pyarrow.StructScalar" in repr(s)
with pytest.raises(ValueError, match="duplicate field names"):
s.as_py()
def test_map(pickle_module):
ty = pa.map_(pa.string(), pa.int8())
v = [('a', 1), ('b', 2)]
s = pa.scalar(v, type=ty)
assert len(s) == 2
assert isinstance(s, pa.MapScalar)
assert isinstance(s.values, pa.Array)
assert repr(s) == "<pyarrow.MapScalar: [('a', 1), ('b', 2)]>"
assert s.values.to_pylist() == [
{'key': 'a', 'value': 1},
{'key': 'b', 'value': 2}
]
# test iteration
for i, j in zip(s, v):
assert i == j
# test iteration with missing values
for _ in pa.scalar(None, type=ty):
pass
assert s.as_py() == v
assert s[1] == (
pa.scalar('b', type=pa.string()),
pa.scalar(2, type=pa.int8())
)
assert s[-1] == s[1]
assert s[-2] == s[0]
with pytest.raises(IndexError):
s[-3]
with pytest.raises(IndexError):
s[2]
restored = pickle_module.loads(pickle_module.dumps(s))
assert restored.equals(s)
def test_dictionary(pickle_module):
indices = pa.array([2, None, 1, 2, 0, None])
dictionary = pa.array(['foo', 'bar', 'baz'])
arr = pa.DictionaryArray.from_arrays(indices, dictionary)
expected = ['baz', None, 'bar', 'baz', 'foo', None]
assert arr.to_pylist() == expected
for j, (i, v) in enumerate(zip(indices, expected)):
s = arr[j]
assert s.as_py() == v
assert s.value.as_py() == v
assert s.index.equals(i)
assert s.dictionary.equals(dictionary)
restored = pickle_module.loads(pickle_module.dumps(s))
assert restored.equals(s)
def test_run_end_encoded():
run_ends = [3, 5, 10, 12, 19]
values = [1, 2, 1, None, 3]
arr = pa.RunEndEncodedArray.from_arrays(run_ends, values)
scalar = arr[0]
assert isinstance(scalar, pa.RunEndEncodedScalar)
assert isinstance(scalar.value, pa.Int64Scalar)
assert scalar.value == pa.array(values)[0]
assert scalar.as_py() == 1
# null -> .value is still a scalar, as_py returns None
scalar = arr[10]
assert isinstance(scalar.value, pa.Int64Scalar)
assert scalar.as_py() is None
# constructing a scalar directly doesn't work yet
with pytest.raises(NotImplementedError):
pa.scalar(1, pa.run_end_encoded(pa.int64(), pa.int64()))
def test_union(pickle_module):
# sparse
arr = pa.UnionArray.from_sparse(
pa.array([0, 0, 1, 1], type=pa.int8()),
[
pa.array(["a", "b", "c", "d"]),
pa.array([1, 2, 3, 4])
]
)
for s in arr:
s.validate(full=True)
assert isinstance(s, pa.UnionScalar)
assert s.type.equals(arr.type)
assert s.is_valid is True
with pytest.raises(pa.ArrowNotImplementedError):
pickle_module.loads(pickle_module.dumps(s))
assert arr[0].type_code == 0
assert arr[0].as_py() == "a"
assert arr[1].type_code == 0
assert arr[1].as_py() == "b"
assert arr[2].type_code == 1
assert arr[2].as_py() == 3
assert arr[3].type_code == 1
assert arr[3].as_py() == 4
# dense
arr = pa.UnionArray.from_dense(
types=pa.array([0, 1, 0, 0, 1, 1, 0], type='int8'),
value_offsets=pa.array([0, 0, 2, 1, 1, 2, 3], type='int32'),
children=[
pa.array([b'a', b'b', b'c', b'd'], type='binary'),
pa.array([1, 2, 3], type='int64')
]
)
for s in arr:
s.validate(full=True)
assert isinstance(s, pa.UnionScalar)
assert s.type.equals(arr.type)
assert s.is_valid is True
with pytest.raises(pa.ArrowNotImplementedError):
pickle_module.loads(pickle_module.dumps(s))
assert arr[0].type_code == 0
assert arr[0].as_py() == b'a'
assert arr[5].type_code == 1
assert arr[5].as_py() == 3
def test_map_scalar_as_py_with_custom_field_name():
"""
Check we can call `MapScalar.as_py` with custom field names
See https://github.com/apache/arrow/issues/36809
"""
assert pa.scalar(
[("foo", "bar")],
pa.map_(
pa.string(),
pa.string()
),
).as_py() == [("foo", "bar")]
assert pa.scalar(
[("foo", "bar")],
pa.map_(
pa.field("custom_key", pa.string(), nullable=False),
pa.field("custom_value", pa.string()),
),
).as_py() == [("foo", "bar")]
|