File size: 21,729 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import OrderedDict
import sys
import weakref
import pytest
import numpy as np
import pyarrow as pa
import pyarrow.tests.util as test_util
from pyarrow.vendored.version import Version
try:
import pandas as pd
except ImportError:
pass
def test_schema_constructor_errors():
msg = ("Do not call Schema's constructor directly, use `pyarrow.schema` "
"instead")
with pytest.raises(TypeError, match=msg):
pa.Schema()
def test_type_integers():
dtypes = ['int8', 'int16', 'int32', 'int64',
'uint8', 'uint16', 'uint32', 'uint64']
for name in dtypes:
factory = getattr(pa, name)
t = factory()
assert str(t) == name
@pytest.mark.pandas
def test_type_to_pandas_dtype():
M8 = np.dtype('datetime64[ms]')
if Version(pd.__version__) < Version("2.0.0"):
M8 = np.dtype('datetime64[ns]')
cases = [
(pa.null(), np.object_),
(pa.bool_(), np.bool_),
(pa.int8(), np.int8),
(pa.int16(), np.int16),
(pa.int32(), np.int32),
(pa.int64(), np.int64),
(pa.uint8(), np.uint8),
(pa.uint16(), np.uint16),
(pa.uint32(), np.uint32),
(pa.uint64(), np.uint64),
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64),
(pa.date32(), M8),
(pa.date64(), M8),
(pa.timestamp('ms'), M8),
(pa.binary(), np.object_),
(pa.binary(12), np.object_),
(pa.string(), np.object_),
(pa.list_(pa.int8()), np.object_),
# (pa.list_(pa.int8(), 2), np.object_), # TODO needs pandas conversion
(pa.map_(pa.int64(), pa.float64()), np.object_),
]
for arrow_type, numpy_type in cases:
assert arrow_type.to_pandas_dtype() == numpy_type
@pytest.mark.pandas
def test_type_to_pandas_dtype_check_import():
# ARROW-7980
test_util.invoke_script('arrow_7980.py')
def test_type_list():
value_type = pa.int32()
list_type = pa.list_(value_type)
assert str(list_type) == 'list<item: int32>'
field = pa.field('my_item', pa.string())
l2 = pa.list_(field)
assert str(l2) == 'list<my_item: string>'
def test_type_comparisons():
val = pa.int32()
assert val == pa.int32()
assert val == 'int32'
assert val != 5
def test_type_for_alias():
cases = [
('i1', pa.int8()),
('int8', pa.int8()),
('i2', pa.int16()),
('int16', pa.int16()),
('i4', pa.int32()),
('int32', pa.int32()),
('i8', pa.int64()),
('int64', pa.int64()),
('u1', pa.uint8()),
('uint8', pa.uint8()),
('u2', pa.uint16()),
('uint16', pa.uint16()),
('u4', pa.uint32()),
('uint32', pa.uint32()),
('u8', pa.uint64()),
('uint64', pa.uint64()),
('f4', pa.float32()),
('float32', pa.float32()),
('f8', pa.float64()),
('float64', pa.float64()),
('date32', pa.date32()),
('date64', pa.date64()),
('string', pa.string()),
('str', pa.string()),
('binary', pa.binary()),
('time32[s]', pa.time32('s')),
('time32[ms]', pa.time32('ms')),
('time64[us]', pa.time64('us')),
('time64[ns]', pa.time64('ns')),
('timestamp[s]', pa.timestamp('s')),
('timestamp[ms]', pa.timestamp('ms')),
('timestamp[us]', pa.timestamp('us')),
('timestamp[ns]', pa.timestamp('ns')),
('duration[s]', pa.duration('s')),
('duration[ms]', pa.duration('ms')),
('duration[us]', pa.duration('us')),
('duration[ns]', pa.duration('ns')),
('month_day_nano_interval', pa.month_day_nano_interval()),
]
for val, expected in cases:
assert pa.type_for_alias(val) == expected
def test_type_string():
t = pa.string()
assert str(t) == 'string'
def test_type_timestamp_with_tz():
tz = 'America/Los_Angeles'
t = pa.timestamp('ns', tz=tz)
assert t.unit == 'ns'
assert t.tz == tz
def test_time_types():
t1 = pa.time32('s')
t2 = pa.time32('ms')
t3 = pa.time64('us')
t4 = pa.time64('ns')
assert t1.unit == 's'
assert t2.unit == 'ms'
assert t3.unit == 'us'
assert t4.unit == 'ns'
assert str(t1) == 'time32[s]'
assert str(t4) == 'time64[ns]'
with pytest.raises(ValueError):
pa.time32('us')
with pytest.raises(ValueError):
pa.time64('s')
def test_from_numpy_dtype():
cases = [
(np.dtype('bool'), pa.bool_()),
(np.dtype('int8'), pa.int8()),
(np.dtype('int16'), pa.int16()),
(np.dtype('int32'), pa.int32()),
(np.dtype('int64'), pa.int64()),
(np.dtype('uint8'), pa.uint8()),
(np.dtype('uint16'), pa.uint16()),
(np.dtype('uint32'), pa.uint32()),
(np.dtype('float16'), pa.float16()),
(np.dtype('float32'), pa.float32()),
(np.dtype('float64'), pa.float64()),
(np.dtype('U'), pa.string()),
(np.dtype('S'), pa.binary()),
(np.dtype('datetime64[s]'), pa.timestamp('s')),
(np.dtype('datetime64[ms]'), pa.timestamp('ms')),
(np.dtype('datetime64[us]'), pa.timestamp('us')),
(np.dtype('datetime64[ns]'), pa.timestamp('ns')),
(np.dtype('timedelta64[s]'), pa.duration('s')),
(np.dtype('timedelta64[ms]'), pa.duration('ms')),
(np.dtype('timedelta64[us]'), pa.duration('us')),
(np.dtype('timedelta64[ns]'), pa.duration('ns')),
]
for dt, pt in cases:
result = pa.from_numpy_dtype(dt)
assert result == pt
# Things convertible to numpy dtypes work
assert pa.from_numpy_dtype('U') == pa.string()
assert pa.from_numpy_dtype(np.str_) == pa.string()
assert pa.from_numpy_dtype('int32') == pa.int32()
assert pa.from_numpy_dtype(bool) == pa.bool_()
with pytest.raises(NotImplementedError):
pa.from_numpy_dtype(np.dtype('O'))
with pytest.raises(TypeError):
pa.from_numpy_dtype('not_convertible_to_dtype')
def test_schema():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
sch = pa.schema(fields)
assert sch.names == ['foo', 'bar', 'baz']
assert sch.types == [pa.int32(), pa.string(), pa.list_(pa.int8())]
assert len(sch) == 3
assert sch[0].name == 'foo'
assert sch[0].type == fields[0].type
assert sch.field('foo').name == 'foo'
assert sch.field('foo').type == fields[0].type
assert repr(sch) == """\
foo: int32
bar: string
baz: list<item: int8>
child 0, item: int8"""
with pytest.raises(TypeError):
pa.schema([None])
def test_schema_weakref():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
schema = pa.schema(fields)
wr = weakref.ref(schema)
assert wr() is not None
del schema
assert wr() is None
def test_schema_to_string_with_metadata():
lorem = """\
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla accumsan vel
turpis et mollis. Aliquam tincidunt arcu id tortor blandit blandit. Donec
eget leo quis lectus scelerisque varius. Class aptent taciti sociosqu ad
litora torquent per conubia nostra, per inceptos himenaeos. Praesent
faucibus, diam eu volutpat iaculis, tellus est porta ligula, a efficitur
turpis nulla facilisis quam. Aliquam vitae lorem erat. Proin a dolor ac libero
dignissim mollis vitae eu mauris. Quisque posuere tellus vitae massa
pellentesque sagittis. Aenean feugiat, diam ac dignissim fermentum, lorem
sapien commodo massa, vel volutpat orci nisi eu justo. Nulla non blandit
sapien. Quisque pretium vestibulum urna eu vehicula."""
# ARROW-7063
my_schema = pa.schema([pa.field("foo", "int32", False,
metadata={"key1": "value1"}),
pa.field("bar", "string", True,
metadata={"key3": "value3"})],
metadata={"lorem": lorem})
assert my_schema.to_string() == """\
foo: int32 not null
-- field metadata --
key1: 'value1'
bar: string
-- field metadata --
key3: 'value3'
-- schema metadata --
lorem: '""" + lorem[:65] + "' + " + str(len(lorem) - 65)
# Metadata that exactly fits
result = pa.schema([('f0', 'int32')],
metadata={'key': 'value' + 'x' * 62}).to_string()
assert result == """\
f0: int32
-- schema metadata --
key: 'valuexxxxxxxxxxxxxxxxxxxxxxxxxxxxx\
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'"""
assert my_schema.to_string(truncate_metadata=False) == """\
foo: int32 not null
-- field metadata --
key1: 'value1'
bar: string
-- field metadata --
key3: 'value3'
-- schema metadata --
lorem: '{}'""".format(lorem)
assert my_schema.to_string(truncate_metadata=False,
show_field_metadata=False) == """\
foo: int32 not null
bar: string
-- schema metadata --
lorem: '{}'""".format(lorem)
assert my_schema.to_string(truncate_metadata=False,
show_schema_metadata=False) == """\
foo: int32 not null
-- field metadata --
key1: 'value1'
bar: string
-- field metadata --
key3: 'value3'"""
assert my_schema.to_string(truncate_metadata=False,
show_field_metadata=False,
show_schema_metadata=False) == """\
foo: int32 not null
bar: string"""
def test_schema_from_tuples():
fields = [
('foo', pa.int32()),
('bar', pa.string()),
('baz', pa.list_(pa.int8())),
]
sch = pa.schema(fields)
assert sch.names == ['foo', 'bar', 'baz']
assert sch.types == [pa.int32(), pa.string(), pa.list_(pa.int8())]
assert len(sch) == 3
assert repr(sch) == """\
foo: int32
bar: string
baz: list<item: int8>
child 0, item: int8"""
with pytest.raises(TypeError):
pa.schema([('foo', None)])
def test_schema_from_mapping():
fields = OrderedDict([
('foo', pa.int32()),
('bar', pa.string()),
('baz', pa.list_(pa.int8())),
])
sch = pa.schema(fields)
assert sch.names == ['foo', 'bar', 'baz']
assert sch.types == [pa.int32(), pa.string(), pa.list_(pa.int8())]
assert len(sch) == 3
assert repr(sch) == """\
foo: int32
bar: string
baz: list<item: int8>
child 0, item: int8"""
fields = OrderedDict([('foo', None)])
with pytest.raises(TypeError):
pa.schema(fields)
def test_schema_duplicate_fields():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('foo', pa.list_(pa.int8())),
]
sch = pa.schema(fields)
assert sch.names == ['foo', 'bar', 'foo']
assert sch.types == [pa.int32(), pa.string(), pa.list_(pa.int8())]
assert len(sch) == 3
assert repr(sch) == """\
foo: int32
bar: string
foo: list<item: int8>
child 0, item: int8"""
assert sch[0].name == 'foo'
assert sch[0].type == fields[0].type
with pytest.warns(FutureWarning):
assert sch.field_by_name('bar') == fields[1]
with pytest.warns(FutureWarning):
assert sch.field_by_name('xxx') is None
with pytest.warns((UserWarning, FutureWarning)):
assert sch.field_by_name('foo') is None
# Schema::GetFieldIndex
assert sch.get_field_index('foo') == -1
# Schema::GetAllFieldIndices
assert sch.get_all_field_indices('foo') == [0, 2]
def test_field_flatten():
f0 = pa.field('foo', pa.int32()).with_metadata({b'foo': b'bar'})
assert f0.flatten() == [f0]
f1 = pa.field('bar', pa.float64(), nullable=False)
ff = pa.field('ff', pa.struct([f0, f1]), nullable=False)
assert ff.flatten() == [
pa.field('ff.foo', pa.int32()).with_metadata({b'foo': b'bar'}),
pa.field('ff.bar', pa.float64(), nullable=False)] # XXX
# Nullable parent makes flattened child nullable
ff = pa.field('ff', pa.struct([f0, f1]))
assert ff.flatten() == [
pa.field('ff.foo', pa.int32()).with_metadata({b'foo': b'bar'}),
pa.field('ff.bar', pa.float64())]
fff = pa.field('fff', pa.struct([ff]))
assert fff.flatten() == [pa.field('fff.ff', pa.struct([f0, f1]))]
def test_schema_add_remove_metadata():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
s1 = pa.schema(fields)
assert s1.metadata is None
metadata = {b'foo': b'bar', b'pandas': b'badger'}
s2 = s1.with_metadata(metadata)
assert s2.metadata == metadata
s3 = s2.remove_metadata()
assert s3.metadata is None
# idempotent
s4 = s3.remove_metadata()
assert s4.metadata is None
def test_schema_equals():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
metadata = {b'foo': b'bar', b'pandas': b'badger'}
sch1 = pa.schema(fields)
sch2 = pa.schema(fields)
sch3 = pa.schema(fields, metadata=metadata)
sch4 = pa.schema(fields, metadata=metadata)
assert sch1.equals(sch2, check_metadata=True)
assert sch3.equals(sch4, check_metadata=True)
assert sch1.equals(sch3)
assert not sch1.equals(sch3, check_metadata=True)
assert not sch1.equals(sch3, check_metadata=True)
del fields[-1]
sch3 = pa.schema(fields)
assert not sch1.equals(sch3)
def test_schema_equals_propagates_check_metadata():
# ARROW-4088
schema1 = pa.schema([
pa.field('foo', pa.int32()),
pa.field('bar', pa.string())
])
schema2 = pa.schema([
pa.field('foo', pa.int32()),
pa.field('bar', pa.string(), metadata={'a': 'alpha'}),
])
assert not schema1.equals(schema2, check_metadata=True)
assert schema1.equals(schema2)
def test_schema_equals_invalid_type():
# ARROW-5873
schema = pa.schema([pa.field("a", pa.int64())])
for val in [None, 'string', pa.array([1, 2])]:
with pytest.raises(TypeError):
schema.equals(val)
def test_schema_equality_operators():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
metadata = {b'foo': b'bar', b'pandas': b'badger'}
sch1 = pa.schema(fields)
sch2 = pa.schema(fields)
sch3 = pa.schema(fields, metadata=metadata)
sch4 = pa.schema(fields, metadata=metadata)
assert sch1 == sch2
assert sch3 == sch4
# __eq__ and __ne__ do not check metadata
assert sch1 == sch3
assert not sch1 != sch3
assert sch2 == sch4
# comparison with other types doesn't raise
assert sch1 != []
assert sch3 != 'foo'
def test_schema_get_fields():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
schema = pa.schema(fields)
assert schema.field('foo').name == 'foo'
assert schema.field(0).name == 'foo'
assert schema.field(-1).name == 'baz'
with pytest.raises(KeyError):
schema.field('other')
with pytest.raises(TypeError):
schema.field(0.0)
with pytest.raises(IndexError):
schema.field(4)
def test_schema_negative_indexing():
fields = [
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
]
schema = pa.schema(fields)
assert schema[-1].equals(schema[2])
assert schema[-2].equals(schema[1])
assert schema[-3].equals(schema[0])
with pytest.raises(IndexError):
schema[-4]
with pytest.raises(IndexError):
schema[3]
def test_schema_repr_with_dictionaries():
fields = [
pa.field('one', pa.dictionary(pa.int16(), pa.string())),
pa.field('two', pa.int32())
]
sch = pa.schema(fields)
expected = (
"""\
one: dictionary<values=string, indices=int16, ordered=0>
two: int32""")
assert repr(sch) == expected
def test_type_schema_pickling(pickle_module):
cases = [
pa.int8(),
pa.string(),
pa.binary(),
pa.binary(10),
pa.list_(pa.string()),
pa.map_(pa.string(), pa.int8()),
pa.struct([
pa.field('a', 'int8'),
pa.field('b', 'string')
]),
pa.union([
pa.field('a', pa.int8()),
pa.field('b', pa.int16())
], pa.lib.UnionMode_SPARSE),
pa.union([
pa.field('a', pa.int8()),
pa.field('b', pa.int16())
], pa.lib.UnionMode_DENSE),
pa.time32('s'),
pa.time64('us'),
pa.date32(),
pa.date64(),
pa.timestamp('ms'),
pa.timestamp('ns'),
pa.decimal128(12, 2),
pa.decimal256(76, 38),
pa.field('a', 'string', metadata={b'foo': b'bar'}),
pa.list_(pa.field("element", pa.int64())),
pa.large_list(pa.field("element", pa.int64())),
pa.map_(pa.field("key", pa.string(), nullable=False),
pa.field("value", pa.int8()))
]
for val in cases:
roundtripped = pickle_module.loads(pickle_module.dumps(val))
assert val == roundtripped
fields = []
for i, f in enumerate(cases):
if isinstance(f, pa.Field):
fields.append(f)
else:
fields.append(pa.field('_f{}'.format(i), f))
schema = pa.schema(fields, metadata={b'foo': b'bar'})
roundtripped = pickle_module.loads(pickle_module.dumps(schema))
assert schema == roundtripped
def test_empty_table():
schema1 = pa.schema([
pa.field('f0', pa.int64()),
pa.field('f1', pa.dictionary(pa.int32(), pa.string())),
pa.field('f2', pa.list_(pa.list_(pa.int64()))),
])
# test it preserves field nullability
schema2 = pa.schema([
pa.field('a', pa.int64(), nullable=False),
pa.field('b', pa.int64())
])
for schema in [schema1, schema2]:
table = schema.empty_table()
assert isinstance(table, pa.Table)
assert table.num_rows == 0
assert table.schema == schema
@pytest.mark.pandas
def test_schema_from_pandas():
import pandas as pd
inputs = [
list(range(10)),
pd.Categorical(list(range(10))),
['foo', 'bar', None, 'baz', 'qux'],
np.array([
'2007-07-13T01:23:34.123456789',
'2006-01-13T12:34:56.432539784',
'2010-08-13T05:46:57.437699912'
], dtype='datetime64[ns]'),
pd.array([1, 2, None], dtype=pd.Int32Dtype()),
]
for data in inputs:
df = pd.DataFrame({'a': data}, index=data)
schema = pa.Schema.from_pandas(df)
expected = pa.Table.from_pandas(df).schema
assert schema == expected
def test_schema_sizeof():
schema = pa.schema([
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
])
# Note: pa.schema is twice as large on 64-bit systems
assert sys.getsizeof(schema) > (30 if sys.maxsize > 2**32 else 15)
schema2 = schema.with_metadata({"key": "some metadata"})
assert sys.getsizeof(schema2) > sys.getsizeof(schema)
schema3 = schema.with_metadata({"key": "some more metadata"})
assert sys.getsizeof(schema3) > sys.getsizeof(schema2)
def test_schema_merge():
a = pa.schema([
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8()))
])
b = pa.schema([
pa.field('foo', pa.int32()),
pa.field('qux', pa.bool_())
])
c = pa.schema([
pa.field('quux', pa.dictionary(pa.int32(), pa.string()))
])
d = pa.schema([
pa.field('foo', pa.int64()),
pa.field('qux', pa.bool_())
])
result = pa.unify_schemas([a, b, c])
expected = pa.schema([
pa.field('foo', pa.int32()),
pa.field('bar', pa.string()),
pa.field('baz', pa.list_(pa.int8())),
pa.field('qux', pa.bool_()),
pa.field('quux', pa.dictionary(pa.int32(), pa.string()))
])
assert result.equals(expected)
with pytest.raises(pa.ArrowTypeError):
pa.unify_schemas([b, d])
# ARROW-14002: Try with tuple instead of list
result = pa.unify_schemas((a, b, c))
assert result.equals(expected)
result = pa.unify_schemas([b, d], promote_options="permissive")
assert result.equals(d)
# raise proper error when passing a non-Schema value
with pytest.raises(TypeError):
pa.unify_schemas([a, 1])
def test_undecodable_metadata():
# ARROW-10214: undecodable metadata shouldn't fail repr()
data1 = b'abcdef\xff\x00'
data2 = b'ghijkl\xff\x00'
schema = pa.schema(
[pa.field('ints', pa.int16(), metadata={'key': data1})],
metadata={'key': data2})
assert 'abcdef' in str(schema)
assert 'ghijkl' in str(schema)
|