File size: 5,548 Bytes
179036e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
"""
This file is modified from fused_adam.py
"""

import torch
from .multi_tensor_apply import MultiTensorApply

multi_tensor_applier = MultiTensorApply(2048 * 32)
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import FusedLionBuilder


class FusedLion(torch.optim.Optimizer):
    """Implements Lion algorithm.

    Currently GPU-only.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square. (default: (0.9, 0.999))
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        set_grad_none (bool, optional): whether set grad to None when zero_grad()
            method is called. (default: True)

    .. _Symbolic Discovery of Optimization Algorithms:
        https://doi.org/10.48550/arXiv.2302.06675
    """

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0., set_grad_none=True):

        defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
        super(FusedLion, self).__init__(params, defaults)
        self.set_grad_none = set_grad_none

        fused_lion_cuda = FusedLionBuilder().load()
        # Skip buffer
        self._dummy_overflow_buf = get_accelerator().IntTensor([0])
        self.multi_tensor_lion = fused_lion_cuda.multi_tensor_lion

    def zero_grad(self):
        if self.set_grad_none:
            for group in self.param_groups:
                for p in group['params']:
                    p.grad = None
        else:
            super(FusedLion, self).zero_grad()

    def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.

        The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
        """
        if any(p is not None for p in [grads, output_params, scale, grad_norms]):
            raise RuntimeError('FusedLion has been updated.')
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            if len(group['params']) == 0:
                continue
            beta1, beta2 = group['betas']

            # assume same step across group now to simplify things
            # per parameter step can be easily support by making it tensor, or pass list into kernel
            if 'step' not in group:
                group['step'] = 0

            # create lists for multi-tensor apply
            g_16, p_16, m_16 = [], [], []
            g_bf, p_bf, m_bf = [], [], []
            g_32, p_32, m_32 = [], [], []

            for p in group['params']:
                if p.grad is None:
                    continue
                if p.grad.data.is_sparse:
                    raise NotImplementedError('FusedLion does not support sparse gradients')

                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    # DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately.
                    # While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time.
                    # In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists.
                    state['step'] = group.get('step', 0)
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)

                if p.dtype == torch.float16:
                    g_16.append(p.grad.data)
                    p_16.append(p.data)
                    m_16.append(state['exp_avg'])
                elif p.dtype == torch.bfloat16:
                    g_bf.append(p.grad)
                    p_bf.append(p)
                    m_bf.append(state['exp_avg'])
                elif p.dtype == torch.float32:
                    g_32.append(p.grad.data)
                    p_32.append(p.data)
                    m_32.append(state['exp_avg'])
                else:
                    raise RuntimeError('FusedLion only support fp16, bf16 and fp32.')

            if len(g_16) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_16, p_16, m_16], group['lr'],
                                     beta1, beta2, state['step'], group['weight_decay'])

            if len(g_bf) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_bf, p_bf, m_bf], group['lr'],
                                     beta1, beta2, state['step'], group['weight_decay'])

            if len(g_32) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_32, p_32, m_32], group['lr'],
                                     beta1, beta2, state['step'], group['weight_decay'])

        return loss