File size: 21,301 Bytes
fa6fb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# ---------------------------------------------------------------------
# Low-level Acero bindings
# cython: profile=False
# distutils: language = c++
# cython: language_level = 3
from pyarrow.includes.common cimport *
from pyarrow.includes.libarrow cimport *
from pyarrow.includes.libarrow_acero cimport *
from pyarrow.lib cimport (Table, pyarrow_unwrap_table, pyarrow_wrap_table,
RecordBatchReader)
from pyarrow.lib import frombytes, tobytes
from pyarrow._compute cimport (
Expression, FunctionOptions, _ensure_field_ref, _true,
unwrap_null_placement, unwrap_sort_order
)
cdef class ExecNodeOptions(_Weakrefable):
"""
Base class for the node options.
Use one of the subclasses to construct an options object.
"""
__slots__ = () # avoid mistakingly creating attributes
cdef void init(self, const shared_ptr[CExecNodeOptions]& sp):
self.wrapped = sp
cdef inline shared_ptr[CExecNodeOptions] unwrap(self) nogil:
return self.wrapped
cdef class _TableSourceNodeOptions(ExecNodeOptions):
def _set_options(self, Table table):
cdef:
shared_ptr[CTable] c_table
c_table = pyarrow_unwrap_table(table)
self.wrapped.reset(
new CTableSourceNodeOptions(c_table)
)
class TableSourceNodeOptions(_TableSourceNodeOptions):
"""
A Source node which accepts a table.
This is the option class for the "table_source" node factory.
Parameters
----------
table : pyarrow.Table
The table which acts as the data source.
"""
def __init__(self, Table table):
self._set_options(table)
cdef class _FilterNodeOptions(ExecNodeOptions):
def _set_options(self, Expression filter_expression not None):
self.wrapped.reset(
new CFilterNodeOptions(<CExpression>filter_expression.unwrap())
)
class FilterNodeOptions(_FilterNodeOptions):
"""
Make a node which excludes some rows from batches passed through it.
This is the option class for the "filter" node factory.
The "filter" operation provides an option to define data filtering
criteria. It selects rows where the given expression evaluates to true.
Filters can be written using pyarrow.compute.Expression, and the
expression must have a return type of boolean.
Parameters
----------
filter_expression : pyarrow.compute.Expression
"""
def __init__(self, Expression filter_expression):
self._set_options(filter_expression)
cdef class _ProjectNodeOptions(ExecNodeOptions):
def _set_options(self, expressions, names=None):
cdef:
Expression expr
vector[CExpression] c_expressions
vector[c_string] c_names
for expr in expressions:
c_expressions.push_back(expr.unwrap())
if names is not None:
if len(names) != len(expressions):
raise ValueError(
"The number of names should be equal to the number of expressions"
)
for name in names:
c_names.push_back(<c_string>tobytes(name))
self.wrapped.reset(
new CProjectNodeOptions(c_expressions, c_names)
)
else:
self.wrapped.reset(
new CProjectNodeOptions(c_expressions)
)
class ProjectNodeOptions(_ProjectNodeOptions):
"""
Make a node which executes expressions on input batches,
producing batches of the same length with new columns.
This is the option class for the "project" node factory.
The "project" operation rearranges, deletes, transforms, and
creates columns. Each output column is computed by evaluating
an expression against the source record batch. These must be
scalar expressions (expressions consisting of scalar literals,
field references and scalar functions, i.e. elementwise functions
that return one value for each input row independent of the value
of all other rows).
Parameters
----------
expressions : list of pyarrow.compute.Expression
List of expressions to evaluate against the source batch. This must
be scalar expressions.
names : list of str, optional
List of names for each of the output columns (same length as
`expressions`). If `names` is not provided, the string
representations of exprs will be used.
"""
def __init__(self, expressions, names=None):
self._set_options(expressions, names)
cdef class _AggregateNodeOptions(ExecNodeOptions):
def _set_options(self, aggregates, keys=None):
cdef:
CAggregate c_aggr
vector[CAggregate] c_aggregations
vector[CFieldRef] c_keys
for arg_names, func_name, opts, name in aggregates:
c_aggr.function = tobytes(func_name)
if opts is not None:
c_aggr.options = (<FunctionOptions?>opts).wrapped
else:
c_aggr.options = <shared_ptr[CFunctionOptions]>nullptr
if not isinstance(arg_names, (list, tuple)):
arg_names = [arg_names]
for arg in arg_names:
c_aggr.target.push_back(_ensure_field_ref(arg))
c_aggr.name = tobytes(name)
c_aggregations.push_back(move(c_aggr))
if keys is None:
keys = []
for name in keys:
c_keys.push_back(_ensure_field_ref(name))
self.wrapped.reset(
new CAggregateNodeOptions(c_aggregations, c_keys)
)
class AggregateNodeOptions(_AggregateNodeOptions):
"""
Make a node which aggregates input batches, optionally grouped by keys.
This is the option class for the "aggregate" node factory.
Acero supports two types of aggregates: "scalar" aggregates,
and "hash" aggregates. Scalar aggregates reduce an array or scalar
input to a single scalar output (e.g. computing the mean of a column).
Hash aggregates act like GROUP BY in SQL and first partition data
based on one or more key columns, then reduce the data in each partition.
The aggregate node supports both types of computation, and can compute
any number of aggregations at once.
Parameters
----------
aggregates : list of tuples
Aggregations which will be applied to the targeted fields.
Specified as a list of tuples, where each tuple is one aggregation
specification and consists of: aggregation target column(s) followed
by function name, aggregation function options object and the
output field name.
The target column(s) specification can be a single field reference,
an empty list or a list of fields unary, nullary and n-ary aggregation
functions respectively. Each field reference can be a string
column name or expression.
keys : list of field references, optional
Keys by which aggregations will be grouped. Each key can reference
a field using a string name or expression.
"""
def __init__(self, aggregates, keys=None):
self._set_options(aggregates, keys)
cdef class _OrderByNodeOptions(ExecNodeOptions):
def _set_options(self, sort_keys, null_placement):
cdef:
vector[CSortKey] c_sort_keys
for name, order in sort_keys:
c_sort_keys.push_back(
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order))
)
self.wrapped.reset(
new COrderByNodeOptions(
COrdering(c_sort_keys, unwrap_null_placement(null_placement))
)
)
class OrderByNodeOptions(_OrderByNodeOptions):
"""
Make a node which applies a new ordering to the data.
Currently this node works by accumulating all data, sorting, and then
emitting the new data with an updated batch index.
Larger-than-memory sort is not currently supported.
This is the option class for the "order_by" node factory.
Parameters
----------
sort_keys : sequence of (name, order) tuples
Names of field/column keys to sort the input on,
along with the order each field/column is sorted in.
Accepted values for `order` are "ascending", "descending".
Each field reference can be a string column name or expression.
null_placement : str, default "at_end"
Where nulls in input should be sorted, only applying to
columns/fields mentioned in `sort_keys`.
Accepted values are "at_start", "at_end".
"""
def __init__(self, sort_keys=(), *, null_placement="at_end"):
self._set_options(sort_keys, null_placement)
cdef class _HashJoinNodeOptions(ExecNodeOptions):
def _set_options(
self, join_type, left_keys, right_keys, left_output=None, right_output=None,
output_suffix_for_left="", output_suffix_for_right="",
):
cdef:
CJoinType c_join_type
vector[CFieldRef] c_left_keys
vector[CFieldRef] c_right_keys
vector[CFieldRef] c_left_output
vector[CFieldRef] c_right_output
# join type
if join_type == "left semi":
c_join_type = CJoinType_LEFT_SEMI
elif join_type == "right semi":
c_join_type = CJoinType_RIGHT_SEMI
elif join_type == "left anti":
c_join_type = CJoinType_LEFT_ANTI
elif join_type == "right anti":
c_join_type = CJoinType_RIGHT_ANTI
elif join_type == "inner":
c_join_type = CJoinType_INNER
elif join_type == "left outer":
c_join_type = CJoinType_LEFT_OUTER
elif join_type == "right outer":
c_join_type = CJoinType_RIGHT_OUTER
elif join_type == "full outer":
c_join_type = CJoinType_FULL_OUTER
else:
raise ValueError("Unsupported join type")
# left/right keys
if not isinstance(left_keys, (list, tuple)):
left_keys = [left_keys]
for key in left_keys:
c_left_keys.push_back(_ensure_field_ref(key))
if not isinstance(right_keys, (list, tuple)):
right_keys = [right_keys]
for key in right_keys:
c_right_keys.push_back(_ensure_field_ref(key))
# left/right output fields
if left_output is not None and right_output is not None:
for colname in left_output:
c_left_output.push_back(_ensure_field_ref(colname))
for colname in right_output:
c_right_output.push_back(_ensure_field_ref(colname))
self.wrapped.reset(
new CHashJoinNodeOptions(
c_join_type, c_left_keys, c_right_keys,
c_left_output, c_right_output,
_true,
<c_string>tobytes(output_suffix_for_left),
<c_string>tobytes(output_suffix_for_right)
)
)
else:
self.wrapped.reset(
new CHashJoinNodeOptions(
c_join_type, c_left_keys, c_right_keys,
_true,
<c_string>tobytes(output_suffix_for_left),
<c_string>tobytes(output_suffix_for_right)
)
)
class HashJoinNodeOptions(_HashJoinNodeOptions):
"""
Make a node which implements join operation using hash join strategy.
This is the option class for the "hashjoin" node factory.
Parameters
----------
join_type : str
Type of join. One of "left semi", "right semi", "left anti",
"right anti", "inner", "left outer", "right outer", "full outer".
left_keys : str, Expression or list
Key fields from left input. Each key can be a string column name
or a field expression, or a list of such field references.
right_keys : str, Expression or list
Key fields from right input. See `left_keys` for details.
left_output : list, optional
List of output fields passed from left input. If left and right
output fields are not specified, all valid fields from both left and
right input will be output. Each field can be a string column name
or a field expression.
right_output : list, optional
List of output fields passed from right input. If left and right
output fields are not specified, all valid fields from both left and
right input will be output. Each field can be a string column name
or a field expression.
output_suffix_for_left : str
Suffix added to names of output fields coming from left input
(used to distinguish, if necessary, between fields of the same
name in left and right input and can be left empty if there are
no name collisions).
output_suffix_for_right : str
Suffix added to names of output fields coming from right input,
see `output_suffix_for_left` for details.
"""
def __init__(
self, join_type, left_keys, right_keys, left_output=None, right_output=None,
output_suffix_for_left="", output_suffix_for_right=""
):
self._set_options(
join_type, left_keys, right_keys, left_output, right_output,
output_suffix_for_left, output_suffix_for_right
)
cdef class _AsofJoinNodeOptions(ExecNodeOptions):
def _set_options(self, left_on, left_by, right_on, right_by, tolerance):
cdef:
vector[CFieldRef] c_left_by
vector[CFieldRef] c_right_by
CAsofJoinKeys c_left_keys
CAsofJoinKeys c_right_keys
vector[CAsofJoinKeys] c_input_keys
# Prepare left AsofJoinNodeOption::Keys
if not isinstance(left_by, (list, tuple)):
left_by = [left_by]
for key in left_by:
c_left_by.push_back(_ensure_field_ref(key))
c_left_keys.on_key = _ensure_field_ref(left_on)
c_left_keys.by_key = c_left_by
c_input_keys.push_back(c_left_keys)
# Prepare right AsofJoinNodeOption::Keys
if not isinstance(right_by, (list, tuple)):
right_by = [right_by]
for key in right_by:
c_right_by.push_back(_ensure_field_ref(key))
c_right_keys.on_key = _ensure_field_ref(right_on)
c_right_keys.by_key = c_right_by
c_input_keys.push_back(c_right_keys)
self.wrapped.reset(
new CAsofJoinNodeOptions(
c_input_keys,
tolerance,
)
)
class AsofJoinNodeOptions(_AsofJoinNodeOptions):
"""
Make a node which implements 'as of join' operation.
This is the option class for the "asofjoin" node factory.
Parameters
----------
left_on : str, Expression
The left key on which the join operation should be performed.
Can be a string column name or a field expression.
An inexact match is used on the "on" key, i.e. a row is considered a
match if and only if left_on - tolerance <= right_on <= left_on.
The input dataset must be sorted by the "on" key. Must be a single
field of a common type.
Currently, the "on" key must be an integer, date, or timestamp type.
left_by: str, Expression or list
The left keys on which the join operation should be performed.
Exact equality is used for each field of the "by" keys.
Each key can be a string column name or a field expression,
or a list of such field references.
right_on : str, Expression
The right key on which the join operation should be performed.
See `left_on` for details.
right_by: str, Expression or list
The right keys on which the join operation should be performed.
See `left_by` for details.
tolerance : int
The tolerance to use for the asof join. The tolerance is interpreted in
the same units as the "on" key.
"""
def __init__(self, left_on, left_by, right_on, right_by, tolerance):
self._set_options(left_on, left_by, right_on, right_by, tolerance)
cdef class Declaration(_Weakrefable):
"""
Helper class for declaring the nodes of an ExecPlan.
A Declaration represents an unconstructed ExecNode, and potentially
more since its inputs may also be Declarations or when constructed
with ``from_sequence``.
The possible ExecNodes to use are registered with a name,
the "factory name", and need to be specified using this name, together
with its corresponding ExecNodeOptions subclass.
Parameters
----------
factory_name : str
The ExecNode factory name, such as "table_source", "filter",
"project" etc. See the ExecNodeOptions subclasses for the exact
factory names to use.
options : ExecNodeOptions
Corresponding ExecNodeOptions subclass (matching the factory name).
inputs : list of Declaration, optional
Input nodes for this declaration. Optional if the node is a source
node, or when the declaration gets combined later with
``from_sequence``.
Returns
-------
Declaration
"""
cdef void init(self, const CDeclaration& c_decl):
self.decl = c_decl
@staticmethod
cdef wrap(const CDeclaration& c_decl):
cdef Declaration self = Declaration.__new__(Declaration)
self.init(c_decl)
return self
cdef inline CDeclaration unwrap(self) nogil:
return self.decl
def __init__(self, factory_name, ExecNodeOptions options, inputs=None):
cdef:
c_string c_factory_name
CDeclaration c_decl
vector[CDeclaration.Input] c_inputs
c_factory_name = tobytes(factory_name)
if inputs is not None:
for ipt in inputs:
c_inputs.push_back(
CDeclaration.Input((<Declaration>ipt).unwrap())
)
c_decl = CDeclaration(c_factory_name, c_inputs, options.unwrap())
self.init(c_decl)
@staticmethod
def from_sequence(decls):
"""
Convenience factory for the common case of a simple sequence of nodes.
Each of the declarations will be appended to the inputs of the
subsequent declaration, and the final modified declaration will
be returned.
Parameters
----------
decls : list of Declaration
Returns
-------
Declaration
"""
cdef:
vector[CDeclaration] c_decls
CDeclaration c_decl
for decl in decls:
c_decls.push_back((<Declaration> decl).unwrap())
c_decl = CDeclaration.Sequence(c_decls)
return Declaration.wrap(c_decl)
def __str__(self):
return frombytes(GetResultValue(DeclarationToString(self.decl)))
def __repr__(self):
return "<pyarrow.acero.Declaration>\n{0}".format(str(self))
def to_table(self, bint use_threads=True):
"""
Run the declaration and collect the results into a table.
This method will implicitly add a sink node to the declaration
to collect results into a table. It will then create an ExecPlan
from the declaration, start the exec plan, block until the plan
has finished, and return the created table.
Parameters
----------
use_threads : bool, default True
If set to False, then all CPU work will be done on the calling
thread. I/O tasks will still happen on the I/O executor
and may be multi-threaded (but should not use significant CPU
resources).
Returns
-------
pyarrow.Table
"""
cdef:
shared_ptr[CTable] c_table
with nogil:
c_table = GetResultValue(DeclarationToTable(self.unwrap(), use_threads))
return pyarrow_wrap_table(c_table)
def to_reader(self, bint use_threads=True):
"""Run the declaration and return results as a RecordBatchReader.
For details about the parameters, see `to_table`.
Returns
-------
pyarrow.RecordBatchReader
"""
cdef:
RecordBatchReader reader
reader = RecordBatchReader.__new__(RecordBatchReader)
reader.reader.reset(
GetResultValue(DeclarationToReader(self.unwrap(), use_threads)).release()
)
return reader
|