File size: 37,525 Bytes
fa6fb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# cython: language_level = 3

"""Dataset support for Parquet file format."""

from cython cimport binding
from cython.operator cimport dereference as deref

import os
import warnings

import pyarrow as pa
from pyarrow.lib cimport *
from pyarrow.lib import frombytes, tobytes
from pyarrow.includes.libarrow cimport *
from pyarrow.includes.libarrow_dataset cimport *
from pyarrow.includes.libarrow_dataset_parquet cimport *
from pyarrow._fs cimport FileSystem

from pyarrow._compute cimport Expression, _bind
from pyarrow._dataset cimport (
    _make_file_source,
    DatasetFactory,
    FileFormat,
    FileFragment,
    FileWriteOptions,
    Fragment,
    FragmentScanOptions,
    CacheOptions,
    Partitioning,
    PartitioningFactory,
    WrittenFile
)

from pyarrow._parquet cimport (
    _create_writer_properties, _create_arrow_writer_properties,
    FileMetaData,
)


try:
    from pyarrow._dataset_parquet_encryption import (
        set_encryption_config, set_decryption_config
    )
    parquet_encryption_enabled = True
except ImportError:
    parquet_encryption_enabled = False


cdef Expression _true = Expression._scalar(True)

ctypedef CParquetFileWriter* _CParquetFileWriterPtr


cdef class ParquetFileFormat(FileFormat):
    """
    FileFormat for Parquet

    Parameters
    ----------
    read_options : ParquetReadOptions
        Read options for the file.
    default_fragment_scan_options : ParquetFragmentScanOptions
        Scan Options for the file.
    **kwargs : dict
        Additional options for read option or scan option
    """

    cdef:
        CParquetFileFormat* parquet_format

    def __init__(self, read_options=None,
                 default_fragment_scan_options=None,
                 **kwargs):
        cdef:
            shared_ptr[CParquetFileFormat] wrapped
            CParquetFileFormatReaderOptions* options

        # Read/scan options
        read_options_args = {option: kwargs[option] for option in kwargs
                             if option in _PARQUET_READ_OPTIONS}
        scan_args = {option: kwargs[option] for option in kwargs
                     if option not in _PARQUET_READ_OPTIONS}
        if read_options and read_options_args:
            duplicates = ', '.join(sorted(read_options_args))
            raise ValueError(f'If `read_options` is given, '
                             f'cannot specify {duplicates}')
        if default_fragment_scan_options and scan_args:
            duplicates = ', '.join(sorted(scan_args))
            raise ValueError(f'If `default_fragment_scan_options` is given, '
                             f'cannot specify {duplicates}')

        if read_options is None:
            read_options = ParquetReadOptions(**read_options_args)
        elif isinstance(read_options, dict):
            # For backwards compatibility
            duplicates = []
            for option, value in read_options.items():
                if option in _PARQUET_READ_OPTIONS:
                    read_options_args[option] = value
                else:
                    duplicates.append(option)
                    scan_args[option] = value
            if duplicates:
                duplicates = ", ".join(duplicates)
                warnings.warn(f'The scan options {duplicates} should be '
                              'specified directly as keyword arguments')
            read_options = ParquetReadOptions(**read_options_args)
        elif not isinstance(read_options, ParquetReadOptions):
            raise TypeError('`read_options` must be either a dictionary or an '
                            'instance of ParquetReadOptions')

        if default_fragment_scan_options is None:
            default_fragment_scan_options = ParquetFragmentScanOptions(
                **scan_args)
        elif isinstance(default_fragment_scan_options, dict):
            default_fragment_scan_options = ParquetFragmentScanOptions(
                **default_fragment_scan_options)
        elif not isinstance(default_fragment_scan_options,
                            ParquetFragmentScanOptions):
            raise TypeError('`default_fragment_scan_options` must be either a '
                            'dictionary or an instance of '
                            'ParquetFragmentScanOptions')

        wrapped = make_shared[CParquetFileFormat]()

        options = &(wrapped.get().reader_options)
        if read_options.dictionary_columns is not None:
            for column in read_options.dictionary_columns:
                options.dict_columns.insert(tobytes(column))
        options.coerce_int96_timestamp_unit = \
            read_options._coerce_int96_timestamp_unit

        self.init(<shared_ptr[CFileFormat]> wrapped)
        self.default_fragment_scan_options = default_fragment_scan_options

    cdef void init(self, const shared_ptr[CFileFormat]& sp):
        FileFormat.init(self, sp)
        self.parquet_format = <CParquetFileFormat*> sp.get()

    cdef WrittenFile _finish_write(self, path, base_dir,
                                   CFileWriter* file_writer):
        cdef:
            FileMetaData parquet_metadata
            CParquetFileWriter* parquet_file_writer

        parquet_metadata = None
        parquet_file_writer = dynamic_cast[_CParquetFileWriterPtr](file_writer)
        with nogil:
            metadata = deref(
                deref(parquet_file_writer).parquet_writer()).metadata()
        if metadata:
            parquet_metadata = FileMetaData()
            parquet_metadata.init(metadata)
            parquet_metadata.set_file_path(os.path.relpath(path, base_dir))

        size = GetResultValue(file_writer.GetBytesWritten())

        return WrittenFile(path, parquet_metadata, size)

    @property
    def read_options(self):
        cdef CParquetFileFormatReaderOptions* options
        options = &self.parquet_format.reader_options
        parquet_read_options = ParquetReadOptions(
            dictionary_columns={frombytes(col)
                                for col in options.dict_columns},
        )
        # Read options getter/setter works with strings so setting
        # the private property which uses the C Type
        parquet_read_options._coerce_int96_timestamp_unit = \
            options.coerce_int96_timestamp_unit
        return parquet_read_options

    def make_write_options(self, **kwargs):
        """
        Parameters
        ----------
        **kwargs : dict

        Returns
        -------
        pyarrow.dataset.FileWriteOptions
        """
        # Safeguard from calling make_write_options as a static class method
        if not isinstance(self, ParquetFileFormat):
            raise TypeError("make_write_options() should be called on "
                            "an instance of ParquetFileFormat")
        opts = FileFormat.make_write_options(self)
        (<ParquetFileWriteOptions> opts).update(**kwargs)
        return opts

    cdef _set_default_fragment_scan_options(self, FragmentScanOptions options):
        if options.type_name == 'parquet':
            self.parquet_format.default_fragment_scan_options = options.wrapped
        else:
            super()._set_default_fragment_scan_options(options)

    def equals(self, ParquetFileFormat other):
        """
        Parameters
        ----------
        other : pyarrow.dataset.ParquetFileFormat

        Returns
        -------
        bool
        """
        return (
            self.read_options.equals(other.read_options) and
            self.default_fragment_scan_options ==
            other.default_fragment_scan_options
        )

    @property
    def default_extname(self):
        return "parquet"

    def __reduce__(self):
        return ParquetFileFormat, (self.read_options,
                                   self.default_fragment_scan_options)

    def __repr__(self):
        return f"<ParquetFileFormat read_options={self.read_options}>"

    def make_fragment(self, file, filesystem=None,
                      Expression partition_expression=None, row_groups=None, *, file_size=None):
        """
        Make a FileFragment from a given file.

        Parameters
        ----------
        file : file-like object, path-like or str
            The file or file path to make a fragment from.
        filesystem : Filesystem, optional
            If `filesystem` is given, `file` must be a string and specifies
            the path of the file to read from the filesystem.
        partition_expression : Expression, optional
            An expression that is guaranteed true for all rows in the fragment.  Allows
            fragment to be potentially skipped while scanning with a filter.
        row_groups : Iterable, optional
            The indices of the row groups to include
        file_size : int, optional
            The size of the file in bytes. Can improve performance with high-latency filesystems
            when file size needs to be known before reading.

        Returns
        -------
        fragment : Fragment
            The file fragment
        """
        cdef:
            vector[int] c_row_groups
        if partition_expression is None:
            partition_expression = _true
        if row_groups is None:
            return super().make_fragment(file, filesystem,
                                         partition_expression, file_size=file_size)

        c_source = _make_file_source(file, filesystem, file_size)
        c_row_groups = [<int> row_group for row_group in set(row_groups)]

        c_fragment = <shared_ptr[CFragment]> GetResultValue(
            self.parquet_format.MakeFragment(move(c_source),
                                             partition_expression.unwrap(),
                                             <shared_ptr[CSchema]>nullptr,
                                             move(c_row_groups)))
        return Fragment.wrap(move(c_fragment))


class RowGroupInfo:
    """
    A wrapper class for RowGroup information

    Parameters
    ----------
    id : integer
        The group ID.
    metadata : FileMetaData
        The rowgroup metadata.
    schema : Schema
        Schema of the rows.
    """

    def __init__(self, id, metadata, schema):
        self.id = id
        self.metadata = metadata
        self.schema = schema

    @property
    def num_rows(self):
        return self.metadata.num_rows

    @property
    def total_byte_size(self):
        return self.metadata.total_byte_size

    @property
    def statistics(self):
        def name_stats(i):
            col = self.metadata.column(i)

            stats = col.statistics
            if stats is None or not stats.has_min_max:
                return None, None

            name = col.path_in_schema
            field_index = self.schema.get_field_index(name)
            if field_index < 0:
                return None, None

            typ = self.schema.field(field_index).type
            return col.path_in_schema, {
                'min': pa.scalar(stats.min, type=typ).as_py(),
                'max': pa.scalar(stats.max, type=typ).as_py()
            }

        return {
            name: stats for name, stats
            in map(name_stats, range(self.metadata.num_columns))
            if stats is not None
        }

    def __repr__(self):
        return "RowGroupInfo({})".format(self.id)

    def __eq__(self, other):
        if isinstance(other, int):
            return self.id == other
        if not isinstance(other, RowGroupInfo):
            return False
        return self.id == other.id


cdef class ParquetFileFragment(FileFragment):
    """A Fragment representing a parquet file."""

    cdef:
        CParquetFileFragment* parquet_file_fragment

    cdef void init(self, const shared_ptr[CFragment]& sp):
        FileFragment.init(self, sp)
        self.parquet_file_fragment = <CParquetFileFragment*> sp.get()

    def __reduce__(self):
        buffer = self.buffer
        # parquet_file_fragment.row_groups() is empty if the metadata
        # information of the file is not yet populated
        if not bool(self.parquet_file_fragment.row_groups()):
            row_groups = None
        else:
            row_groups = [row_group.id for row_group in self.row_groups]

        return self.format.make_fragment, (
            self.path if buffer is None else buffer,
            self.filesystem,
            self.partition_expression,
            row_groups
        )

    def ensure_complete_metadata(self):
        """
        Ensure that all metadata (statistics, physical schema, ...) have
        been read and cached in this fragment.
        """
        with nogil:
            check_status(self.parquet_file_fragment.EnsureCompleteMetadata())

    @property
    def row_groups(self):
        metadata = self.metadata
        cdef vector[int] row_groups = self.parquet_file_fragment.row_groups()
        return [RowGroupInfo(i, metadata.row_group(i), self.physical_schema)
                for i in row_groups]

    @property
    def metadata(self):
        self.ensure_complete_metadata()
        cdef FileMetaData metadata = FileMetaData()
        metadata.init(self.parquet_file_fragment.metadata())
        return metadata

    @property
    def num_row_groups(self):
        """
        Return the number of row groups viewed by this fragment (not the
        number of row groups in the origin file).
        """
        self.ensure_complete_metadata()
        return self.parquet_file_fragment.row_groups().size()

    def split_by_row_group(self, Expression filter=None,
                           Schema schema=None):
        """
        Split the fragment into multiple fragments.

        Yield a Fragment wrapping each row group in this ParquetFileFragment.
        Row groups will be excluded whose metadata contradicts the optional
        filter.

        Parameters
        ----------
        filter : Expression, default None
            Only include the row groups which satisfy this predicate (using
            the Parquet RowGroup statistics).
        schema : Schema, default None
            Schema to use when filtering row groups. Defaults to the
            Fragment's physical schema

        Returns
        -------
        A list of Fragments
        """
        cdef:
            vector[shared_ptr[CFragment]] c_fragments
            CExpression c_filter
            shared_ptr[CFragment] c_fragment

        schema = schema or self.physical_schema
        c_filter = _bind(filter, schema)
        with nogil:
            c_fragments = move(GetResultValue(
                self.parquet_file_fragment.SplitByRowGroup(move(c_filter))))

        return [Fragment.wrap(c_fragment) for c_fragment in c_fragments]

    def subset(self, Expression filter=None, Schema schema=None,
               object row_group_ids=None):
        """
        Create a subset of the fragment (viewing a subset of the row groups).

        Subset can be specified by either a filter predicate (with optional
        schema) or by a list of row group IDs. Note that when using a filter,
        the resulting fragment can be empty (viewing no row groups).

        Parameters
        ----------
        filter : Expression, default None
            Only include the row groups which satisfy this predicate (using
            the Parquet RowGroup statistics).
        schema : Schema, default None
            Schema to use when filtering row groups. Defaults to the
            Fragment's physical schema
        row_group_ids : list of ints
            The row group IDs to include in the subset. Can only be specified
            if `filter` is None.

        Returns
        -------
        ParquetFileFragment
        """
        cdef:
            CExpression c_filter
            vector[int] c_row_group_ids
            shared_ptr[CFragment] c_fragment

        if filter is not None and row_group_ids is not None:
            raise ValueError(
                "Cannot specify both 'filter' and 'row_group_ids'."
            )

        if filter is not None:
            schema = schema or self.physical_schema
            c_filter = _bind(filter, schema)
            with nogil:
                c_fragment = move(GetResultValue(
                    self.parquet_file_fragment.SubsetWithFilter(
                        move(c_filter))))
        elif row_group_ids is not None:
            c_row_group_ids = [
                <int> row_group for row_group in sorted(set(row_group_ids))
            ]
            with nogil:
                c_fragment = move(GetResultValue(
                    self.parquet_file_fragment.SubsetWithIds(
                        move(c_row_group_ids))))
        else:
            raise ValueError(
                "Need to specify one of 'filter' or 'row_group_ids'"
            )

        return Fragment.wrap(c_fragment)


cdef class ParquetReadOptions(_Weakrefable):
    """
    Parquet format specific options for reading.

    Parameters
    ----------
    dictionary_columns : list of string, default None
        Names of columns which should be dictionary encoded as
        they are read
    coerce_int96_timestamp_unit : str, default None
        Cast timestamps that are stored in INT96 format to a particular
        resolution (e.g. 'ms'). Setting to None is equivalent to 'ns'
        and therefore INT96 timestamps will be inferred as timestamps
        in nanoseconds
    """

    cdef public:
        set dictionary_columns
        TimeUnit _coerce_int96_timestamp_unit

    # Also see _PARQUET_READ_OPTIONS
    def __init__(self, dictionary_columns=None,
                 coerce_int96_timestamp_unit=None):
        self.dictionary_columns = set(dictionary_columns or set())
        self.coerce_int96_timestamp_unit = coerce_int96_timestamp_unit

    @property
    def coerce_int96_timestamp_unit(self):
        return timeunit_to_string(self._coerce_int96_timestamp_unit)

    @coerce_int96_timestamp_unit.setter
    def coerce_int96_timestamp_unit(self, unit):
        if unit is not None:
            self._coerce_int96_timestamp_unit = string_to_timeunit(unit)
        else:
            self._coerce_int96_timestamp_unit = TimeUnit_NANO

    def equals(self, ParquetReadOptions other):
        """
        Parameters
        ----------
        other : pyarrow.dataset.ParquetReadOptions

        Returns
        -------
        bool
        """
        return (self.dictionary_columns == other.dictionary_columns and
                self.coerce_int96_timestamp_unit ==
                other.coerce_int96_timestamp_unit)

    def __eq__(self, other):
        try:
            return self.equals(other)
        except TypeError:
            return False

    def __repr__(self):
        return (
            f"<ParquetReadOptions"
            f" dictionary_columns={self.dictionary_columns}"
            f" coerce_int96_timestamp_unit={self.coerce_int96_timestamp_unit}>"
        )


cdef class ParquetFileWriteOptions(FileWriteOptions):

    def update(self, **kwargs):
        """
        Parameters
        ----------
        **kwargs : dict
        """
        arrow_fields = {
            "use_deprecated_int96_timestamps",
            "coerce_timestamps",
            "allow_truncated_timestamps",
            "use_compliant_nested_type",
        }

        setters = set()
        for name, value in kwargs.items():
            if name not in self._properties:
                raise TypeError("unexpected parquet write option: " + name)
            self._properties[name] = value
            if name in arrow_fields:
                setters.add(self._set_arrow_properties)
            elif name == "encryption_config" and value is not None:
                setters.add(self._set_encryption_config)
            else:
                setters.add(self._set_properties)

        for setter in setters:
            setter()

    def _set_properties(self):
        cdef CParquetFileWriteOptions* opts = self.parquet_options

        opts.writer_properties = _create_writer_properties(
            use_dictionary=self._properties["use_dictionary"],
            compression=self._properties["compression"],
            version=self._properties["version"],
            write_statistics=self._properties["write_statistics"],
            data_page_size=self._properties["data_page_size"],
            compression_level=self._properties["compression_level"],
            use_byte_stream_split=(
                self._properties["use_byte_stream_split"]
            ),
            column_encoding=self._properties["column_encoding"],
            data_page_version=self._properties["data_page_version"],
            encryption_properties=self._properties["encryption_properties"],
            write_batch_size=self._properties["write_batch_size"],
            dictionary_pagesize_limit=self._properties["dictionary_pagesize_limit"],
            write_page_index=self._properties["write_page_index"],
            write_page_checksum=self._properties["write_page_checksum"],
            sorting_columns=self._properties["sorting_columns"],
        )

    def _set_arrow_properties(self):
        cdef CParquetFileWriteOptions* opts = self.parquet_options

        opts.arrow_writer_properties = _create_arrow_writer_properties(
            use_deprecated_int96_timestamps=(
                self._properties["use_deprecated_int96_timestamps"]
            ),
            coerce_timestamps=self._properties["coerce_timestamps"],
            allow_truncated_timestamps=(
                self._properties["allow_truncated_timestamps"]
            ),
            writer_engine_version="V2",
            use_compliant_nested_type=(
                self._properties["use_compliant_nested_type"]
            )
        )

    def _set_encryption_config(self):
        if not parquet_encryption_enabled:
            raise NotImplementedError(
                "Encryption is not enabled in your installation of pyarrow, but an "
                "encryption_config was provided."
            )
        set_encryption_config(self, self._properties["encryption_config"])

    cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
        FileWriteOptions.init(self, sp)
        self.parquet_options = <CParquetFileWriteOptions*> sp.get()
        self._properties = dict(
            use_dictionary=True,
            compression="snappy",
            version="2.6",
            write_statistics=None,
            data_page_size=None,
            compression_level=None,
            use_byte_stream_split=False,
            column_encoding=None,
            data_page_version="1.0",
            use_deprecated_int96_timestamps=False,
            coerce_timestamps=None,
            allow_truncated_timestamps=False,
            use_compliant_nested_type=True,
            encryption_properties=None,
            write_batch_size=None,
            dictionary_pagesize_limit=None,
            write_page_index=False,
            encryption_config=None,
            write_page_checksum=False,
            sorting_columns=None,
        )

        self._set_properties()
        self._set_arrow_properties()

    def __repr__(self):
        return "<pyarrow.dataset.ParquetFileWriteOptions {0}>".format(
            " ".join([f"{key}={value}" for key, value in self._properties.items()])
        )


cdef set _PARQUET_READ_OPTIONS = {
    'dictionary_columns', 'coerce_int96_timestamp_unit'
}


cdef class ParquetFragmentScanOptions(FragmentScanOptions):
    """
    Scan-specific options for Parquet fragments.

    Parameters
    ----------
    use_buffered_stream : bool, default False
        Read files through buffered input streams rather than loading entire
        row groups at once. This may be enabled to reduce memory overhead.
        Disabled by default.
    buffer_size : int, default 8192
        Size of buffered stream, if enabled. Default is 8KB.
    pre_buffer : bool, default True
        If enabled, pre-buffer the raw Parquet data instead of issuing one
        read per column chunk. This can improve performance on high-latency
        filesystems (e.g. S3, GCS) by coalescing and issuing file reads in
        parallel using a background I/O thread pool.
        Set to False if you want to prioritize minimal memory usage
        over maximum speed.
    cache_options : pyarrow.CacheOptions, default None
        Cache options used when pre_buffer is enabled. The default values should
        be good for most use cases. You may want to adjust these for example if
        you have exceptionally high latency to the file system. 
    thrift_string_size_limit : int, default None
        If not None, override the maximum total string size allocated
        when decoding Thrift structures. The default limit should be
        sufficient for most Parquet files.
    thrift_container_size_limit : int, default None
        If not None, override the maximum total size of containers allocated
        when decoding Thrift structures. The default limit should be
        sufficient for most Parquet files.
    decryption_config : pyarrow.dataset.ParquetDecryptionConfig, default None
        If not None, use the provided ParquetDecryptionConfig to decrypt the
        Parquet file.
    page_checksum_verification : bool, default False
        If True, verify the page checksum for each page read from the file.
    """

    # Avoid mistakingly creating attributes
    __slots__ = ()

    def __init__(self, *, bint use_buffered_stream=False,
                 buffer_size=8192,
                 bint pre_buffer=True,
                 cache_options=None,
                 thrift_string_size_limit=None,
                 thrift_container_size_limit=None,
                 decryption_config=None,
                 bint page_checksum_verification=False):
        self.init(shared_ptr[CFragmentScanOptions](
            new CParquetFragmentScanOptions()))
        self.use_buffered_stream = use_buffered_stream
        self.buffer_size = buffer_size
        self.pre_buffer = pre_buffer
        if cache_options is not None:
            self.cache_options = cache_options
        if thrift_string_size_limit is not None:
            self.thrift_string_size_limit = thrift_string_size_limit
        if thrift_container_size_limit is not None:
            self.thrift_container_size_limit = thrift_container_size_limit
        if decryption_config is not None:
            self.parquet_decryption_config = decryption_config
        self.page_checksum_verification = page_checksum_verification

    cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp):
        FragmentScanOptions.init(self, sp)
        self.parquet_options = <CParquetFragmentScanOptions*> sp.get()

    cdef CReaderProperties* reader_properties(self):
        return self.parquet_options.reader_properties.get()

    cdef ArrowReaderProperties* arrow_reader_properties(self):
        return self.parquet_options.arrow_reader_properties.get()

    @property
    def use_buffered_stream(self):
        return self.reader_properties().is_buffered_stream_enabled()

    @use_buffered_stream.setter
    def use_buffered_stream(self, bint use_buffered_stream):
        if use_buffered_stream:
            self.reader_properties().enable_buffered_stream()
        else:
            self.reader_properties().disable_buffered_stream()

    @property
    def buffer_size(self):
        return self.reader_properties().buffer_size()

    @buffer_size.setter
    def buffer_size(self, buffer_size):
        if buffer_size <= 0:
            raise ValueError("Buffer size must be larger than zero")
        self.reader_properties().set_buffer_size(buffer_size)

    @property
    def pre_buffer(self):
        return self.arrow_reader_properties().pre_buffer()

    @pre_buffer.setter
    def pre_buffer(self, bint pre_buffer):
        self.arrow_reader_properties().set_pre_buffer(pre_buffer)

    @property
    def cache_options(self):
        return CacheOptions.wrap(self.arrow_reader_properties().cache_options())

    @cache_options.setter
    def cache_options(self, CacheOptions options):
        self.arrow_reader_properties().set_cache_options(options.unwrap())

    @property
    def thrift_string_size_limit(self):
        return self.reader_properties().thrift_string_size_limit()

    @thrift_string_size_limit.setter
    def thrift_string_size_limit(self, size):
        if size <= 0:
            raise ValueError("size must be larger than zero")
        self.reader_properties().set_thrift_string_size_limit(size)

    @property
    def thrift_container_size_limit(self):
        return self.reader_properties().thrift_container_size_limit()

    @thrift_container_size_limit.setter
    def thrift_container_size_limit(self, size):
        if size <= 0:
            raise ValueError("size must be larger than zero")
        self.reader_properties().set_thrift_container_size_limit(size)

    @property
    def parquet_decryption_config(self):
        if not parquet_encryption_enabled:
            raise NotImplementedError(
                "Unable to access encryption features. "
                "Encryption is not enabled in your installation of pyarrow."
            )
        return self._parquet_decryption_config

    @parquet_decryption_config.setter
    def parquet_decryption_config(self, config):
        if not parquet_encryption_enabled:
            raise NotImplementedError(
                "Encryption is not enabled in your installation of pyarrow, but a "
                "decryption_config was provided."
            )
        set_decryption_config(self, config)
        self._parquet_decryption_config = config

    @property
    def page_checksum_verification(self):
        return self.reader_properties().page_checksum_verification()

    @page_checksum_verification.setter
    def page_checksum_verification(self, bint page_checksum_verification):
        self.reader_properties().set_page_checksum_verification(page_checksum_verification)

    def equals(self, ParquetFragmentScanOptions other):
        """
        Parameters
        ----------
        other : pyarrow.dataset.ParquetFragmentScanOptions

        Returns
        -------
        bool
        """
        attrs = (
            self.use_buffered_stream, self.buffer_size, self.pre_buffer, self.cache_options,
            self.thrift_string_size_limit, self.thrift_container_size_limit,
            self.page_checksum_verification)
        other_attrs = (
            other.use_buffered_stream, other.buffer_size, other.pre_buffer, other.cache_options,
            other.thrift_string_size_limit,
            other.thrift_container_size_limit, other.page_checksum_verification)
        return attrs == other_attrs

    @staticmethod
    @binding(True)  # Required for Cython < 3
    def _reconstruct(kwargs):
        # __reduce__ doesn't allow passing named arguments directly to the
        # reconstructor, hence this wrapper.
        return ParquetFragmentScanOptions(**kwargs)

    def __reduce__(self):
        kwargs = dict(
            use_buffered_stream=self.use_buffered_stream,
            buffer_size=self.buffer_size,
            pre_buffer=self.pre_buffer,
            cache_options=self.cache_options,
            thrift_string_size_limit=self.thrift_string_size_limit,
            thrift_container_size_limit=self.thrift_container_size_limit,
            page_checksum_verification=self.page_checksum_verification
        )
        return ParquetFragmentScanOptions._reconstruct, (kwargs,)


cdef class ParquetFactoryOptions(_Weakrefable):
    """
    Influences the discovery of parquet dataset.

    Parameters
    ----------
    partition_base_dir : str, optional
        For the purposes of applying the partitioning, paths will be
        stripped of the partition_base_dir. Files not matching the
        partition_base_dir prefix will be skipped for partitioning discovery.
        The ignored files will still be part of the Dataset, but will not
        have partition information.
    partitioning : Partitioning, PartitioningFactory, optional
        The partitioning scheme applied to fragments, see ``Partitioning``.
    validate_column_chunk_paths : bool, default False
        Assert that all ColumnChunk paths are consistent. The parquet spec
        allows for ColumnChunk data to be stored in multiple files, but
        ParquetDatasetFactory supports only a single file with all ColumnChunk
        data. If this flag is set construction of a ParquetDatasetFactory will
        raise an error if ColumnChunk data is not resident in a single file.
    """

    cdef:
        CParquetFactoryOptions options

    __slots__ = ()  # avoid mistakingly creating attributes

    def __init__(self, partition_base_dir=None, partitioning=None,
                 validate_column_chunk_paths=False):
        if isinstance(partitioning, PartitioningFactory):
            self.partitioning_factory = partitioning
        elif isinstance(partitioning, Partitioning):
            self.partitioning = partitioning

        if partition_base_dir is not None:
            self.partition_base_dir = partition_base_dir

        self.options.validate_column_chunk_paths = validate_column_chunk_paths

    cdef inline CParquetFactoryOptions unwrap(self):
        return self.options

    @property
    def partitioning(self):
        """Partitioning to apply to discovered files.

        NOTE: setting this property will overwrite partitioning_factory.
        """
        c_partitioning = self.options.partitioning.partitioning()
        if c_partitioning.get() == nullptr:
            return None
        return Partitioning.wrap(c_partitioning)

    @partitioning.setter
    def partitioning(self, Partitioning value):
        self.options.partitioning = (<Partitioning> value).unwrap()

    @property
    def partitioning_factory(self):
        """PartitioningFactory to apply to discovered files and
        discover a Partitioning.

        NOTE: setting this property will overwrite partitioning.
        """
        c_factory = self.options.partitioning.factory()
        if c_factory.get() == nullptr:
            return None
        return PartitioningFactory.wrap(c_factory, None, None)

    @partitioning_factory.setter
    def partitioning_factory(self, PartitioningFactory value):
        self.options.partitioning = (<PartitioningFactory> value).unwrap()

    @property
    def partition_base_dir(self):
        """
        Base directory to strip paths before applying the partitioning.
        """
        return frombytes(self.options.partition_base_dir)

    @partition_base_dir.setter
    def partition_base_dir(self, value):
        self.options.partition_base_dir = tobytes(value)

    @property
    def validate_column_chunk_paths(self):
        """
        Base directory to strip paths before applying the partitioning.
        """
        return self.options.validate_column_chunk_paths

    @validate_column_chunk_paths.setter
    def validate_column_chunk_paths(self, value):
        self.options.validate_column_chunk_paths = value


cdef class ParquetDatasetFactory(DatasetFactory):
    """
    Create a ParquetDatasetFactory from a Parquet `_metadata` file.

    Parameters
    ----------
    metadata_path : str
        Path to the `_metadata` parquet metadata-only file generated with
        `pyarrow.parquet.write_metadata`.
    filesystem : pyarrow.fs.FileSystem
        Filesystem to read the metadata_path from, and subsequent parquet
        files.
    format : ParquetFileFormat
        Parquet format options.
    options : ParquetFactoryOptions, optional
        Various flags influencing the discovery of filesystem paths.
    """

    cdef:
        CParquetDatasetFactory* parquet_factory

    def __init__(self, metadata_path, FileSystem filesystem not None,
                 FileFormat format not None,
                 ParquetFactoryOptions options=None):
        cdef:
            c_string c_path
            shared_ptr[CFileSystem] c_filesystem
            shared_ptr[CParquetFileFormat] c_format
            CResult[shared_ptr[CDatasetFactory]] result
            CParquetFactoryOptions c_options

        c_path = tobytes(metadata_path)
        c_filesystem = filesystem.unwrap()
        c_format = static_pointer_cast[CParquetFileFormat, CFileFormat](
            format.unwrap())
        options = options or ParquetFactoryOptions()
        c_options = options.unwrap()

        with nogil:
            result = CParquetDatasetFactory.MakeFromMetaDataPath(
                c_path, c_filesystem, c_format, c_options)
        self.init(GetResultValue(result))

    cdef init(self, shared_ptr[CDatasetFactory]& sp):
        DatasetFactory.init(self, sp)
        self.parquet_factory = <CParquetDatasetFactory*> sp.get()