File size: 28,023 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
UNTESTED:
read_message
"""
import sys
import sysconfig
import pytest
import pyarrow as pa
import numpy as np
cuda = pytest.importorskip("pyarrow.cuda")
platform = sysconfig.get_platform()
# TODO: enable ppc64 when Arrow C++ supports IPC in ppc64 systems:
has_ipc_support = platform == 'linux-x86_64' # or 'ppc64' in platform
cuda_ipc = pytest.mark.skipif(
not has_ipc_support,
reason='CUDA IPC not supported in platform `%s`' % (platform))
global_context = None # for flake8
global_context1 = None # for flake8
def setup_module(module):
module.global_context = cuda.Context(0)
module.global_context1 = cuda.Context(cuda.Context.get_num_devices() - 1)
def teardown_module(module):
del module.global_context
def test_Context():
assert cuda.Context.get_num_devices() > 0
assert global_context.device_number == 0
assert global_context1.device_number == cuda.Context.get_num_devices() - 1
with pytest.raises(ValueError,
match=("device_number argument must "
"be non-negative less than")):
cuda.Context(cuda.Context.get_num_devices())
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_manage_allocate_free_host(size):
buf = cuda.new_host_buffer(size)
arr = np.frombuffer(buf, dtype=np.uint8)
arr[size//4:3*size//4] = 1
arr_cp = arr.copy()
arr2 = np.frombuffer(buf, dtype=np.uint8)
np.testing.assert_equal(arr2, arr_cp)
assert buf.size == size
def test_context_allocate_del():
bytes_allocated = global_context.bytes_allocated
cudabuf = global_context.new_buffer(128)
assert global_context.bytes_allocated == bytes_allocated + 128
del cudabuf
assert global_context.bytes_allocated == bytes_allocated
def make_random_buffer(size, target='host'):
"""Return a host or device buffer with random data.
"""
if target == 'host':
assert size >= 0
buf = pa.allocate_buffer(size)
assert buf.size == size
arr = np.frombuffer(buf, dtype=np.uint8)
assert arr.size == size
arr[:] = np.random.randint(low=1, high=255, size=size, dtype=np.uint8)
assert arr.sum() > 0 or size == 0
arr_ = np.frombuffer(buf, dtype=np.uint8)
np.testing.assert_equal(arr, arr_)
return arr, buf
elif target == 'device':
arr, buf = make_random_buffer(size, target='host')
dbuf = global_context.new_buffer(size)
assert dbuf.size == size
dbuf.copy_from_host(buf, position=0, nbytes=size)
return arr, dbuf
raise ValueError('invalid target value')
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_context_device_buffer(size):
# Creating device buffer from host buffer;
arr, buf = make_random_buffer(size)
cudabuf = global_context.buffer_from_data(buf)
assert cudabuf.size == size
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
# CudaBuffer does not support buffer protocol
with pytest.raises(BufferError):
memoryview(cudabuf)
# Creating device buffer from array:
cudabuf = global_context.buffer_from_data(arr)
assert cudabuf.size == size
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
# Creating device buffer from bytes:
cudabuf = global_context.buffer_from_data(arr.tobytes())
assert cudabuf.size == size
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
# Creating a device buffer from another device buffer, view:
cudabuf2 = cudabuf.slice(0, cudabuf.size)
assert cudabuf2.size == size
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
if size > 1:
cudabuf2.copy_from_host(arr[size//2:])
arr3 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(np.concatenate((arr[size//2:], arr[size//2:])),
arr3)
cudabuf2.copy_from_host(arr[:size//2]) # restoring arr
# Creating a device buffer from another device buffer, copy:
cudabuf2 = global_context.buffer_from_data(cudabuf)
assert cudabuf2.size == size
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
cudabuf2.copy_from_host(arr[size//2:])
arr3 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr3)
# Slice of a device buffer
cudabuf2 = cudabuf.slice(0, cudabuf.size+10)
assert cudabuf2.size == size
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
cudabuf2 = cudabuf.slice(size//4, size+10)
assert cudabuf2.size == size - size//4
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[size//4:], arr2)
# Creating a device buffer from a slice of host buffer
soffset = size//4
ssize = 2*size//4
cudabuf = global_context.buffer_from_data(buf, offset=soffset,
size=ssize)
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2)
cudabuf = global_context.buffer_from_data(buf.slice(offset=soffset,
length=ssize))
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2)
# Creating a device buffer from a slice of an array
cudabuf = global_context.buffer_from_data(arr, offset=soffset, size=ssize)
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2)
cudabuf = global_context.buffer_from_data(arr[soffset:soffset+ssize])
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2)
# Creating a device buffer from a slice of bytes
cudabuf = global_context.buffer_from_data(arr.tobytes(),
offset=soffset,
size=ssize)
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2)
# Creating a device buffer from size
cudabuf = global_context.new_buffer(size)
assert cudabuf.size == size
# Creating device buffer from a slice of another device buffer:
cudabuf = global_context.buffer_from_data(arr)
cudabuf2 = cudabuf.slice(soffset, ssize)
assert cudabuf2.size == ssize
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset+ssize], arr2)
# Creating device buffer from HostBuffer
buf = cuda.new_host_buffer(size)
arr_ = np.frombuffer(buf, dtype=np.uint8)
arr_[:] = arr
cudabuf = global_context.buffer_from_data(buf)
assert cudabuf.size == size
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
# Creating device buffer from HostBuffer slice
cudabuf = global_context.buffer_from_data(buf, offset=soffset, size=ssize)
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset+ssize], arr2)
cudabuf = global_context.buffer_from_data(
buf.slice(offset=soffset, length=ssize))
assert cudabuf.size == ssize
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr[soffset:soffset+ssize], arr2)
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_context_from_object(size):
ctx = global_context
arr, cbuf = make_random_buffer(size, target='device')
dtype = arr.dtype
# Creating device buffer from a CUDA host buffer
hbuf = cuda.new_host_buffer(size * arr.dtype.itemsize)
np.frombuffer(hbuf, dtype=dtype)[:] = arr
cbuf2 = ctx.buffer_from_object(hbuf)
assert cbuf2.size == cbuf.size
arr2 = np.frombuffer(cbuf2.copy_to_host(), dtype=dtype)
np.testing.assert_equal(arr, arr2)
# Creating device buffer from a device buffer
cbuf2 = ctx.buffer_from_object(cbuf2)
assert cbuf2.size == cbuf.size
arr2 = np.frombuffer(cbuf2.copy_to_host(), dtype=dtype)
np.testing.assert_equal(arr, arr2)
# Trying to create a device buffer from a Buffer
with pytest.raises(pa.ArrowTypeError,
match=('buffer is not backed by a CudaBuffer')):
ctx.buffer_from_object(pa.py_buffer(b"123"))
# Trying to create a device buffer from numpy.array
with pytest.raises(pa.ArrowTypeError,
match=("cannot create device buffer view from "
".* \'numpy.ndarray\'")):
ctx.buffer_from_object(np.array([1, 2, 3]))
def test_foreign_buffer():
ctx = global_context
dtype = np.dtype(np.uint8)
size = 10
hbuf = cuda.new_host_buffer(size * dtype.itemsize)
# test host buffer memory reference counting
rc = sys.getrefcount(hbuf)
fbuf = ctx.foreign_buffer(hbuf.address, hbuf.size, hbuf)
assert sys.getrefcount(hbuf) == rc + 1
del fbuf
assert sys.getrefcount(hbuf) == rc
# test postponed deallocation of host buffer memory
fbuf = ctx.foreign_buffer(hbuf.address, hbuf.size, hbuf)
del hbuf
fbuf.copy_to_host()
# test deallocating the host buffer memory making it inaccessible
hbuf = cuda.new_host_buffer(size * dtype.itemsize)
fbuf = ctx.foreign_buffer(hbuf.address, hbuf.size)
del hbuf
with pytest.raises(pa.ArrowIOError,
match=('Cuda error ')):
fbuf.copy_to_host()
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_CudaBuffer(size):
arr, buf = make_random_buffer(size)
assert arr.tobytes() == buf.to_pybytes()
cbuf = global_context.buffer_from_data(buf)
assert cbuf.size == size
assert not cbuf.is_cpu
assert arr.tobytes() == cbuf.to_pybytes()
if size > 0:
assert cbuf.address > 0
for i in range(size):
assert cbuf[i] == arr[i]
for s in [
slice(None),
slice(size//4, size//2),
]:
assert cbuf[s].to_pybytes() == arr[s].tobytes()
sbuf = cbuf.slice(size//4, size//2)
assert sbuf.parent == cbuf
with pytest.raises(TypeError,
match="Do not call CudaBuffer's constructor directly"):
cuda.CudaBuffer()
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_HostBuffer(size):
arr, buf = make_random_buffer(size)
assert arr.tobytes() == buf.to_pybytes()
hbuf = cuda.new_host_buffer(size)
np.frombuffer(hbuf, dtype=np.uint8)[:] = arr
assert hbuf.size == size
assert hbuf.is_cpu
assert arr.tobytes() == hbuf.to_pybytes()
for i in range(size):
assert hbuf[i] == arr[i]
for s in [
slice(None),
slice(size//4, size//2),
]:
assert hbuf[s].to_pybytes() == arr[s].tobytes()
sbuf = hbuf.slice(size//4, size//2)
assert sbuf.parent == hbuf
del hbuf
with pytest.raises(TypeError,
match="Do not call HostBuffer's constructor directly"):
cuda.HostBuffer()
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_copy_from_to_host(size):
# Create a buffer in host containing range(size)
dt = np.dtype('uint16')
nbytes = size * dt.itemsize
buf = pa.allocate_buffer(nbytes, resizable=True) # in host
assert isinstance(buf, pa.Buffer)
assert not isinstance(buf, cuda.CudaBuffer)
arr = np.frombuffer(buf, dtype=dt)
assert arr.size == size
arr[:] = range(size)
arr_ = np.frombuffer(buf, dtype=dt)
np.testing.assert_equal(arr, arr_)
# Create a device buffer of the same size and copy from host
device_buffer = global_context.new_buffer(nbytes)
assert isinstance(device_buffer, cuda.CudaBuffer)
assert isinstance(device_buffer, pa.Buffer)
assert device_buffer.size == nbytes
assert not device_buffer.is_cpu
device_buffer.copy_from_host(buf, position=0, nbytes=nbytes)
# Copy back to host and compare contents
buf2 = device_buffer.copy_to_host(position=0, nbytes=nbytes)
arr2 = np.frombuffer(buf2, dtype=dt)
np.testing.assert_equal(arr, arr2)
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_copy_to_host(size):
arr, dbuf = make_random_buffer(size, target='device')
buf = dbuf.copy_to_host()
assert buf.is_cpu
np.testing.assert_equal(arr, np.frombuffer(buf, dtype=np.uint8))
buf = dbuf.copy_to_host(position=size//4)
assert buf.is_cpu
np.testing.assert_equal(arr[size//4:], np.frombuffer(buf, dtype=np.uint8))
buf = dbuf.copy_to_host(position=size//4, nbytes=size//8)
assert buf.is_cpu
np.testing.assert_equal(arr[size//4:size//4+size//8],
np.frombuffer(buf, dtype=np.uint8))
buf = dbuf.copy_to_host(position=size//4, nbytes=0)
assert buf.is_cpu
assert buf.size == 0
for (position, nbytes) in [
(size+2, -1), (-2, -1), (size+1, 0), (-3, 0),
]:
with pytest.raises(ValueError,
match='position argument is out-of-range'):
dbuf.copy_to_host(position=position, nbytes=nbytes)
for (position, nbytes) in [
(0, size+1), (size//2, (size+1)//2+1), (size, 1)
]:
with pytest.raises(ValueError,
match=('requested more to copy than'
' available from device buffer')):
dbuf.copy_to_host(position=position, nbytes=nbytes)
buf = pa.allocate_buffer(size//4)
dbuf.copy_to_host(buf=buf)
np.testing.assert_equal(arr[:size//4], np.frombuffer(buf, dtype=np.uint8))
if size < 12:
return
dbuf.copy_to_host(buf=buf, position=12)
np.testing.assert_equal(arr[12:12+size//4],
np.frombuffer(buf, dtype=np.uint8))
dbuf.copy_to_host(buf=buf, nbytes=12)
np.testing.assert_equal(arr[:12], np.frombuffer(buf, dtype=np.uint8)[:12])
dbuf.copy_to_host(buf=buf, nbytes=12, position=6)
np.testing.assert_equal(arr[6:6+12],
np.frombuffer(buf, dtype=np.uint8)[:12])
for (position, nbytes) in [
(0, size+10), (10, size-5),
(0, size//2), (size//4, size//4+1)
]:
with pytest.raises(ValueError,
match=('requested copy does not '
'fit into host buffer')):
dbuf.copy_to_host(buf=buf, position=position, nbytes=nbytes)
@pytest.mark.parametrize("dest_ctx", ['same', 'another'])
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_copy_from_device(dest_ctx, size):
arr, buf = make_random_buffer(size=size, target='device')
lst = arr.tolist()
if dest_ctx == 'another':
dest_ctx = global_context1
if buf.context.device_number == dest_ctx.device_number:
pytest.skip("not a multi-GPU system")
else:
dest_ctx = buf.context
dbuf = dest_ctx.new_buffer(size)
def put(*args, **kwargs):
dbuf.copy_from_device(buf, *args, **kwargs)
rbuf = dbuf.copy_to_host()
return np.frombuffer(rbuf, dtype=np.uint8).tolist()
assert put() == lst
if size > 4:
assert put(position=size//4) == lst[:size//4]+lst[:-size//4]
assert put() == lst
assert put(position=1, nbytes=size//2) == \
lst[:1] + lst[:size//2] + lst[-(size-size//2-1):]
for (position, nbytes) in [
(size+2, -1), (-2, -1), (size+1, 0), (-3, 0),
]:
with pytest.raises(ValueError,
match='position argument is out-of-range'):
put(position=position, nbytes=nbytes)
for (position, nbytes) in [
(0, size+1),
]:
with pytest.raises(ValueError,
match=('requested more to copy than'
' available from device buffer')):
put(position=position, nbytes=nbytes)
if size < 4:
return
for (position, nbytes) in [
(size//2, (size+1)//2+1)
]:
with pytest.raises(ValueError,
match=('requested more to copy than'
' available in device buffer')):
put(position=position, nbytes=nbytes)
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_copy_from_host(size):
arr, buf = make_random_buffer(size=size, target='host')
lst = arr.tolist()
dbuf = global_context.new_buffer(size)
def put(*args, **kwargs):
dbuf.copy_from_host(buf, *args, **kwargs)
rbuf = dbuf.copy_to_host()
return np.frombuffer(rbuf, dtype=np.uint8).tolist()
assert put() == lst
if size > 4:
assert put(position=size//4) == lst[:size//4]+lst[:-size//4]
assert put() == lst
assert put(position=1, nbytes=size//2) == \
lst[:1] + lst[:size//2] + lst[-(size-size//2-1):]
for (position, nbytes) in [
(size+2, -1), (-2, -1), (size+1, 0), (-3, 0),
]:
with pytest.raises(ValueError,
match='position argument is out-of-range'):
put(position=position, nbytes=nbytes)
for (position, nbytes) in [
(0, size+1),
]:
with pytest.raises(ValueError,
match=('requested more to copy than'
' available from host buffer')):
put(position=position, nbytes=nbytes)
if size < 4:
return
for (position, nbytes) in [
(size//2, (size+1)//2+1)
]:
with pytest.raises(ValueError,
match=('requested more to copy than'
' available in device buffer')):
put(position=position, nbytes=nbytes)
def test_BufferWriter():
def allocate(size):
cbuf = global_context.new_buffer(size)
writer = cuda.BufferWriter(cbuf)
return cbuf, writer
def test_writes(total_size, chunksize, buffer_size=0):
cbuf, writer = allocate(total_size)
arr, buf = make_random_buffer(size=total_size, target='host')
if buffer_size > 0:
writer.buffer_size = buffer_size
position = writer.tell()
assert position == 0
writer.write(buf.slice(length=chunksize))
assert writer.tell() == chunksize
writer.seek(0)
position = writer.tell()
assert position == 0
while position < total_size:
bytes_to_write = min(chunksize, total_size - position)
writer.write(buf.slice(offset=position, length=bytes_to_write))
position += bytes_to_write
writer.flush()
assert cbuf.size == total_size
cbuf.context.synchronize()
buf2 = cbuf.copy_to_host()
cbuf.context.synchronize()
assert buf2.size == total_size
arr2 = np.frombuffer(buf2, dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
total_size, chunk_size = 1 << 16, 1000
test_writes(total_size, chunk_size)
test_writes(total_size, chunk_size, total_size // 16)
cbuf, writer = allocate(100)
writer.write(np.arange(100, dtype=np.uint8))
writer.writeat(50, np.arange(25, dtype=np.uint8))
writer.write(np.arange(25, dtype=np.uint8))
writer.flush()
arr = np.frombuffer(cbuf.copy_to_host(), np.uint8)
np.testing.assert_equal(arr[:50], np.arange(50, dtype=np.uint8))
np.testing.assert_equal(arr[50:75], np.arange(25, dtype=np.uint8))
np.testing.assert_equal(arr[75:], np.arange(25, dtype=np.uint8))
def test_BufferWriter_edge_cases():
# edge cases, see cuda-test.cc for more information:
size = 1000
cbuf = global_context.new_buffer(size)
writer = cuda.BufferWriter(cbuf)
arr, buf = make_random_buffer(size=size, target='host')
assert writer.buffer_size == 0
writer.buffer_size = 100
assert writer.buffer_size == 100
writer.write(buf.slice(length=0))
assert writer.tell() == 0
writer.write(buf.slice(length=10))
writer.buffer_size = 200
assert writer.buffer_size == 200
assert writer.num_bytes_buffered == 0
writer.write(buf.slice(offset=10, length=300))
assert writer.num_bytes_buffered == 0
writer.write(buf.slice(offset=310, length=200))
assert writer.num_bytes_buffered == 0
writer.write(buf.slice(offset=510, length=390))
writer.write(buf.slice(offset=900, length=100))
writer.flush()
buf2 = cbuf.copy_to_host()
assert buf2.size == size
arr2 = np.frombuffer(buf2, dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
def test_BufferReader():
size = 1000
arr, cbuf = make_random_buffer(size=size, target='device')
reader = cuda.BufferReader(cbuf)
reader.seek(950)
assert reader.tell() == 950
data = reader.read(100)
assert len(data) == 50
assert reader.tell() == 1000
reader.seek(925)
arr2 = np.zeros(100, dtype=np.uint8)
n = reader.readinto(arr2)
assert n == 75
assert reader.tell() == 1000
np.testing.assert_equal(arr[925:], arr2[:75])
reader.seek(0)
assert reader.tell() == 0
buf2 = reader.read_buffer()
arr2 = np.frombuffer(buf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
def test_BufferReader_zero_size():
arr, cbuf = make_random_buffer(size=0, target='device')
reader = cuda.BufferReader(cbuf)
reader.seek(0)
data = reader.read()
assert len(data) == 0
assert reader.tell() == 0
buf2 = reader.read_buffer()
arr2 = np.frombuffer(buf2.copy_to_host(), dtype=np.uint8)
np.testing.assert_equal(arr, arr2)
def make_recordbatch(length):
schema = pa.schema([pa.field('f0', pa.int16()),
pa.field('f1', pa.int16())])
a0 = pa.array(np.random.randint(0, 255, size=length, dtype=np.int16))
a1 = pa.array(np.random.randint(0, 255, size=length, dtype=np.int16))
batch = pa.record_batch([a0, a1], schema=schema)
return batch
def test_batch_serialize():
batch = make_recordbatch(10)
hbuf = batch.serialize()
cbuf = cuda.serialize_record_batch(batch, global_context)
# Test that read_record_batch works properly
cbatch = cuda.read_record_batch(cbuf, batch.schema)
assert isinstance(cbatch, pa.RecordBatch)
assert batch.schema == cbatch.schema
assert batch.num_columns == cbatch.num_columns
assert batch.num_rows == cbatch.num_rows
# Deserialize CUDA-serialized batch on host
buf = cbuf.copy_to_host()
assert hbuf.equals(buf)
batch2 = pa.ipc.read_record_batch(buf, batch.schema)
assert hbuf.equals(batch2.serialize())
assert batch.num_columns == batch2.num_columns
assert batch.num_rows == batch2.num_rows
assert batch.column(0).equals(batch2.column(0))
assert batch.equals(batch2)
def make_table():
a0 = pa.array([0, 1, 42, None], type=pa.int16())
a1 = pa.array([[0, 1], [2], [], None], type=pa.list_(pa.int32()))
a2 = pa.array([("ab", True), ("cde", False), (None, None), None],
type=pa.struct([("strs", pa.utf8()),
("bools", pa.bool_())]))
# Dictionaries are validated on the IPC read path, but that can produce
# issues for GPU-located dictionaries. Check that they work fine.
a3 = pa.DictionaryArray.from_arrays(
indices=[0, 1, 1, None],
dictionary=pa.array(['foo', 'bar']))
a4 = pa.DictionaryArray.from_arrays(
indices=[2, 1, 2, None],
dictionary=a1)
a5 = pa.DictionaryArray.from_arrays(
indices=[2, 1, 0, None],
dictionary=a2)
arrays = [a0, a1, a2, a3, a4, a5]
schema = pa.schema([('f{}'.format(i), arr.type)
for i, arr in enumerate(arrays)])
batch = pa.record_batch(arrays, schema=schema)
table = pa.Table.from_batches([batch])
return table
def make_table_cuda():
htable = make_table()
# Serialize the host table to bytes
sink = pa.BufferOutputStream()
with pa.ipc.new_stream(sink, htable.schema) as out:
out.write_table(htable)
hbuf = pa.py_buffer(sink.getvalue().to_pybytes())
# Copy the host bytes to a device buffer
dbuf = global_context.new_buffer(len(hbuf))
dbuf.copy_from_host(hbuf, nbytes=len(hbuf))
# Deserialize the device buffer into a Table
dtable = pa.ipc.open_stream(cuda.BufferReader(dbuf)).read_all()
return hbuf, htable, dbuf, dtable
def test_table_deserialize():
# ARROW-9659: make sure that we can deserialize a GPU-located table
# without crashing when initializing or validating the underlying arrays.
hbuf, htable, dbuf, dtable = make_table_cuda()
# Assert basic fields the same between host and device tables
assert htable.schema == dtable.schema
assert htable.num_rows == dtable.num_rows
assert htable.num_columns == dtable.num_columns
# Assert byte-level equality
assert hbuf.equals(dbuf.copy_to_host())
# Copy DtoH and assert the tables are still equivalent
assert htable.equals(pa.ipc.open_stream(
dbuf.copy_to_host()
).read_all())
def test_create_table_with_device_buffers():
# ARROW-11872: make sure that we can create an Arrow Table from
# GPU-located Arrays without crashing.
hbuf, htable, dbuf, dtable = make_table_cuda()
# Construct a new Table from the device Table
dtable2 = pa.Table.from_arrays(dtable.columns, dtable.column_names)
# Assert basic fields the same between host and device tables
assert htable.schema == dtable2.schema
assert htable.num_rows == dtable2.num_rows
assert htable.num_columns == dtable2.num_columns
# Assert byte-level equality
assert hbuf.equals(dbuf.copy_to_host())
# Copy DtoH and assert the tables are still equivalent
assert htable.equals(pa.ipc.open_stream(
dbuf.copy_to_host()
).read_all())
def other_process_for_test_IPC(handle_buffer, expected_arr):
other_context = pa.cuda.Context(0)
ipc_handle = pa.cuda.IpcMemHandle.from_buffer(handle_buffer)
ipc_buf = other_context.open_ipc_buffer(ipc_handle)
ipc_buf.context.synchronize()
buf = ipc_buf.copy_to_host()
assert buf.size == expected_arr.size, repr((buf.size, expected_arr.size))
arr = np.frombuffer(buf, dtype=expected_arr.dtype)
np.testing.assert_equal(arr, expected_arr)
@cuda_ipc
@pytest.mark.parametrize("size", [0, 1, 1000])
def test_IPC(size):
import multiprocessing
ctx = multiprocessing.get_context('spawn')
arr, cbuf = make_random_buffer(size=size, target='device')
ipc_handle = cbuf.export_for_ipc()
handle_buffer = ipc_handle.serialize()
p = ctx.Process(target=other_process_for_test_IPC,
args=(handle_buffer, arr))
p.start()
p.join()
assert p.exitcode == 0
|