File size: 10,096 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import pyarrow as pa
import pyarrow.compute as pc
from .test_extension_type import IntegerType
try:
import pyarrow.dataset as ds
except ImportError:
pass
try:
from pyarrow.acero import _perform_join, _filter_table
except ImportError:
pass
pytestmark = pytest.mark.acero
def test_joins_corner_cases():
t1 = pa.Table.from_pydict({
"colA": [1, 2, 3, 4, 5, 6],
"col2": ["a", "b", "c", "d", "e", "f"]
})
t2 = pa.Table.from_pydict({
"colB": [1, 2, 3, 4, 5],
"col3": ["A", "B", "C", "D", "E"]
})
with pytest.raises(pa.ArrowInvalid):
_perform_join("left outer", t1, "", t2, "")
with pytest.raises(TypeError):
_perform_join("left outer", None, "colA", t2, "colB")
with pytest.raises(ValueError):
_perform_join("super mario join", t1, "colA", t2, "colB")
@pytest.mark.parametrize("jointype,expected", [
("left semi", {
"colA": [1, 2],
"col2": ["a", "b"]
}),
("right semi", {
"colB": [1, 2],
"col3": ["A", "B"]
}),
("left anti", {
"colA": [6],
"col2": ["f"]
}),
("right anti", {
"colB": [99],
"col3": ["Z"]
}),
("inner", {
"colA": [1, 2],
"col2": ["a", "b"],
"colB": [1, 2],
"col3": ["A", "B"]
}),
("left outer", {
"colA": [1, 2, 6],
"col2": ["a", "b", "f"],
"colB": [1, 2, None],
"col3": ["A", "B", None]
}),
("right outer", {
"colA": [1, 2, None],
"col2": ["a", "b", None],
"colB": [1, 2, 99],
"col3": ["A", "B", "Z"]
}),
("full outer", {
"colA": [1, 2, 6, None],
"col2": ["a", "b", "f", None],
"colB": [1, 2, None, 99],
"col3": ["A", "B", None, "Z"]
})
])
@pytest.mark.parametrize("use_threads", [True, False])
@pytest.mark.parametrize("coalesce_keys", [True, False])
@pytest.mark.parametrize("use_datasets",
[False, pytest.param(True, marks=pytest.mark.dataset)])
def test_joins(jointype, expected, use_threads, coalesce_keys, use_datasets):
# Allocate table here instead of using parametrize
# this prevents having arrow allocated memory forever around.
expected = pa.table(expected)
t1 = pa.Table.from_pydict({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"]
})
t2 = pa.Table.from_pydict({
"colB": [99, 2, 1],
"col3": ["Z", "B", "A"]
})
if use_datasets:
t1 = ds.dataset([t1])
t2 = ds.dataset([t2])
r = _perform_join(jointype, t1, "colA", t2, "colB",
use_threads=use_threads, coalesce_keys=coalesce_keys)
r = r.combine_chunks()
if "right" in jointype:
r = r.sort_by("colB")
else:
r = r.sort_by("colA")
if coalesce_keys:
if jointype in ("inner", "left outer"):
expected = expected.drop(["colB"])
elif jointype == "right outer":
expected = expected.drop(["colA"])
elif jointype == "full outer":
expected = expected.drop(["colB"]).set_column(0, "colA", [[1, 2, 6, 99]])
assert r == expected
def test_table_join_collisions():
t1 = pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"colVals": ["a", "b", "f"]
})
t2 = pa.table({
"colB": [99, 20, 10],
"colVals": ["Z", "B", "A"],
"colUniq": [100, 200, 300],
"colA": [99, 2, 1],
})
result = _perform_join(
"full outer", t1, ["colA", "colB"], t2, ["colA", "colB"])
result = result.combine_chunks()
result = result.sort_by("colUniq")
assert result == pa.table([
[None, 2, 1, 6],
[None, 20, 10, 60],
[None, "b", "a", "f"],
[99, 20, 10, None],
["Z", "B", "A", None],
[100, 200, 300, None],
[99, 2, 1, None],
], names=["colA", "colB", "colVals", "colB", "colVals", "colUniq", "colA"])
result = _perform_join("full outer", t1, "colA",
t2, "colA", right_suffix="_r",
coalesce_keys=False)
result = result.combine_chunks()
result = result.sort_by("colA")
assert result == pa.table({
"colA": [1, 2, 6, None],
"colB": [10, 20, 60, None],
"colVals": ["a", "b", "f", None],
"colB_r": [10, 20, None, 99],
"colVals_r": ["A", "B", None, "Z"],
"colUniq": [300, 200, None, 100],
"colA_r": [1, 2, None, 99],
})
result = _perform_join("full outer", t1, "colA",
t2, "colA", right_suffix="_r",
coalesce_keys=True)
result = result.combine_chunks()
result = result.sort_by("colA")
assert result == pa.table({
"colA": [1, 2, 6, 99],
"colB": [10, 20, 60, None],
"colVals": ["a", "b", "f", None],
"colB_r": [10, 20, None, 99],
"colVals_r": ["A", "B", None, "Z"],
"colUniq": [300, 200, None, 100]
})
def test_table_join_keys_order():
t1 = pa.table({
"colB": [10, 20, 60],
"colA": [1, 2, 6],
"colVals": ["a", "b", "f"]
})
t2 = pa.table({
"colVals": ["Z", "B", "A"],
"colX": [99, 2, 1],
})
result = _perform_join("full outer", t1, "colA", t2, "colX",
left_suffix="_l", right_suffix="_r",
coalesce_keys=True)
result = result.combine_chunks()
result = result.sort_by("colA")
assert result == pa.table({
"colB": [10, 20, 60, None],
"colA": [1, 2, 6, 99],
"colVals_l": ["a", "b", "f", None],
"colVals_r": ["A", "B", None, "Z"],
})
def test_filter_table_errors():
t = pa.table({
"a": [1, 2, 3, 4, 5],
"b": [10, 20, 30, 40, 50]
})
with pytest.raises(pa.ArrowTypeError):
_filter_table(t, pc.divide(pc.field("a"), pc.scalar(2)))
with pytest.raises(pa.ArrowInvalid):
_filter_table(t, (pc.field("Z") <= pc.scalar(2)))
def test_filter_table():
t = pa.table({
"a": [1, 2, 3, 4, 5],
"b": [10, 20, 30, 40, 50]
})
result = _filter_table(
t, (pc.field("a") <= pc.scalar(3)) & (pc.field("b") == pc.scalar(20)),
)
assert result == pa.table({
"a": [2],
"b": [20]
})
result = _filter_table(t, pc.field("b") > pc.scalar(30))
assert result == pa.table({
"a": [4, 5],
"b": [40, 50]
})
def test_filter_table_ordering():
table1 = pa.table({'a': [1, 2, 3, 4], 'b': ['a'] * 4})
table2 = pa.table({'a': [1, 2, 3, 4], 'b': ['b'] * 4})
table = pa.concat_tables([table1, table2])
for _ in range(20):
# 20 seems to consistently cause errors when order is not preserved.
# If the order problem is reintroduced this test will become flaky
# which is still a signal that the order is not preserved.
r = _filter_table(table, pc.field('a') == 1)
assert r["b"] == pa.chunked_array([["a"], ["b"]])
def test_complex_filter_table():
t = pa.table({
"a": [1, 2, 3, 4, 5, 6, 6],
"b": [10, 20, 30, 40, 50, 60, 61]
})
result = _filter_table(
t, ((pc.bit_wise_and(pc.field("a"), pc.scalar(1)) == pc.scalar(0)) &
(pc.multiply(pc.field("a"), pc.scalar(10)) == pc.field("b")))
)
assert result == pa.table({
"a": [2, 4, 6], # second six must be omitted because 6*10 != 61
"b": [20, 40, 60]
})
def test_join_extension_array_column():
storage = pa.array([1, 2, 3], type=pa.int64())
ty = IntegerType()
ext_array = pa.ExtensionArray.from_storage(ty, storage)
dict_array = pa.DictionaryArray.from_arrays(
pa.array([0, 2, 1]), pa.array(['a', 'b', 'c']))
t1 = pa.table({
"colA": [1, 2, 6],
"colB": ext_array,
"colVals": ext_array,
})
t2 = pa.table({
"colA": [99, 2, 1],
"colC": ext_array,
})
t3 = pa.table({
"colA": [99, 2, 1],
"colC": ext_array,
"colD": dict_array,
})
result = _perform_join(
"left outer", t1, ["colA"], t2, ["colA"])
assert result["colVals"] == pa.chunked_array(ext_array)
result = _perform_join(
"left outer", t1, ["colB"], t2, ["colC"])
assert result["colB"] == pa.chunked_array(ext_array)
result = _perform_join(
"left outer", t1, ["colA"], t3, ["colA"])
assert result["colVals"] == pa.chunked_array(ext_array)
result = _perform_join(
"left outer", t1, ["colB"], t3, ["colC"])
assert result["colB"] == pa.chunked_array(ext_array)
def test_group_by_ordering():
# GH-36709 - preserve ordering in groupby by setting use_threads=False
table1 = pa.table({'a': [1, 2, 3, 4], 'b': ['a'] * 4})
table2 = pa.table({'a': [1, 2, 3, 4], 'b': ['b'] * 4})
table = pa.concat_tables([table1, table2])
for _ in range(50):
# 50 seems to consistently cause errors when order is not preserved.
# If the order problem is reintroduced this test will become flaky
# which is still a signal that the order is not preserved.
result = table.group_by("b", use_threads=False).aggregate([])
assert result["b"] == pa.chunked_array([["a"], ["b"]])
|