File size: 6,434 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import sys
import pytest
import warnings
import weakref
import numpy as np
import pyarrow as pa
tensor_type_pairs = [
('i1', pa.int8()),
('i2', pa.int16()),
('i4', pa.int32()),
('i8', pa.int64()),
('u1', pa.uint8()),
('u2', pa.uint16()),
('u4', pa.uint32()),
('u8', pa.uint64()),
('f2', pa.float16()),
('f4', pa.float32()),
('f8', pa.float64())
]
def test_tensor_attrs():
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
assert tensor.ndim == 2
assert tensor.dim_names == []
assert tensor.size == 40
assert tensor.shape == data.shape
assert tensor.strides == data.strides
assert tensor.is_contiguous
assert tensor.is_mutable
# not writeable
data2 = data.copy()
data2.flags.writeable = False
tensor = pa.Tensor.from_numpy(data2)
assert not tensor.is_mutable
# With dim_names
tensor = pa.Tensor.from_numpy(data, dim_names=('x', 'y'))
assert tensor.ndim == 2
assert tensor.dim_names == ['x', 'y']
assert tensor.dim_name(0) == 'x'
assert tensor.dim_name(1) == 'y'
wr = weakref.ref(tensor)
assert wr() is not None
del tensor
assert wr() is None
def test_tensor_base_object():
tensor = pa.Tensor.from_numpy(np.random.randn(10, 4))
n = sys.getrefcount(tensor)
array = tensor.to_numpy() # noqa
assert sys.getrefcount(tensor) == n + 1
@pytest.mark.parametrize('dtype_str,arrow_type', tensor_type_pairs)
def test_tensor_numpy_roundtrip(dtype_str, arrow_type):
dtype = np.dtype(dtype_str)
# Casting np.float64 -> uint32 or uint64 throws a RuntimeWarning
with warnings.catch_warnings():
warnings.simplefilter("ignore")
data = (100 * np.random.randn(10, 4)).astype(dtype)
tensor = pa.Tensor.from_numpy(data)
assert tensor.type == arrow_type
repr(tensor)
result = tensor.to_numpy()
assert (data == result).all()
def test_tensor_ipc_roundtrip(tmpdir):
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-roundtrip')
mmap = pa.create_memory_map(path, 1024)
pa.ipc.write_tensor(tensor, mmap)
mmap.seek(0)
result = pa.ipc.read_tensor(mmap)
assert result.equals(tensor)
@pytest.mark.gzip
def test_tensor_ipc_read_from_compressed(tempdir):
# ARROW-5910
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
path = tempdir / 'tensor-compressed-file'
out_stream = pa.output_stream(path, compression='gzip')
pa.ipc.write_tensor(tensor, out_stream)
out_stream.close()
result = pa.ipc.read_tensor(pa.input_stream(path, compression='gzip'))
assert result.equals(tensor)
def test_tensor_ipc_strided(tmpdir):
data1 = np.random.randn(10, 4)
tensor1 = pa.Tensor.from_numpy(data1[::2])
data2 = np.random.randn(10, 6, 4)
tensor2 = pa.Tensor.from_numpy(data2[::, ::2, ::])
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-strided')
mmap = pa.create_memory_map(path, 2048)
for tensor in [tensor1, tensor2]:
mmap.seek(0)
pa.ipc.write_tensor(tensor, mmap)
mmap.seek(0)
result = pa.ipc.read_tensor(mmap)
assert result.equals(tensor)
def test_tensor_equals():
def eq(a, b):
assert a.equals(b)
assert a == b
assert not (a != b)
def ne(a, b):
assert not a.equals(b)
assert not (a == b)
assert a != b
data = np.random.randn(10, 6, 4)[::, ::2, ::]
tensor1 = pa.Tensor.from_numpy(data)
tensor2 = pa.Tensor.from_numpy(np.ascontiguousarray(data))
eq(tensor1, tensor2)
data = data.copy()
data[9, 0, 0] = 1.0
tensor2 = pa.Tensor.from_numpy(np.ascontiguousarray(data))
ne(tensor1, tensor2)
def test_tensor_hashing():
# Tensors are unhashable
with pytest.raises(TypeError, match="unhashable"):
hash(pa.Tensor.from_numpy(np.arange(10)))
def test_tensor_size():
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
assert pa.ipc.get_tensor_size(tensor) > (data.size * 8)
def test_read_tensor(tmpdir):
# Create and write tensor tensor
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
data_size = pa.ipc.get_tensor_size(tensor)
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-read-tensor')
write_mmap = pa.create_memory_map(path, data_size)
pa.ipc.write_tensor(tensor, write_mmap)
# Try to read tensor
read_mmap = pa.memory_map(path, mode='r')
array = pa.ipc.read_tensor(read_mmap).to_numpy()
np.testing.assert_equal(data, array)
def test_tensor_memoryview():
# Tensors support the PEP 3118 buffer protocol
for dtype, expected_format in [(np.int8, '=b'),
(np.int64, '=q'),
(np.uint64, '=Q'),
(np.float16, 'e'),
(np.float64, 'd'),
]:
data = np.arange(10, dtype=dtype)
dtype = data.dtype
lst = data.tolist()
tensor = pa.Tensor.from_numpy(data)
m = memoryview(tensor)
assert m.format == expected_format
assert m.shape == data.shape
assert m.strides == data.strides
assert m.ndim == 1
assert m.nbytes == data.nbytes
assert m.itemsize == data.itemsize
assert m.itemsize * 8 == tensor.type.bit_width
assert np.frombuffer(m, dtype).tolist() == lst
del tensor, data
assert np.frombuffer(m, dtype).tolist() == lst
|