File size: 14,184 Bytes
9f7bac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`."""
from __future__ import annotations as _annotations
import dataclasses
import sys
import warnings
from copy import copy
from functools import lru_cache
from typing import TYPE_CHECKING, Any
from pydantic_core import PydanticUndefined
from pydantic.errors import PydanticUserError
from . import _typing_extra
from ._config import ConfigWrapper
from ._docs_extraction import extract_docstrings_from_cls
from ._repr import Representation
from ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar
if TYPE_CHECKING:
from annotated_types import BaseMetadata
from ..fields import FieldInfo
from ..main import BaseModel
from ._dataclasses import StandardDataclass
from ._decorators import DecoratorInfos
def get_type_hints_infer_globalns(
obj: Any,
localns: dict[str, Any] | None = None,
include_extras: bool = False,
) -> dict[str, Any]:
"""Gets type hints for an object by inferring the global namespace.
It uses the `typing.get_type_hints`, The only thing that we do here is fetching
global namespace from `obj.__module__` if it is not `None`.
Args:
obj: The object to get its type hints.
localns: The local namespaces.
include_extras: Whether to recursively include annotation metadata.
Returns:
The object type hints.
"""
module_name = getattr(obj, '__module__', None)
globalns: dict[str, Any] | None = None
if module_name:
try:
globalns = sys.modules[module_name].__dict__
except KeyError:
# happens occasionally, see https://github.com/pydantic/pydantic/issues/2363
pass
return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras)
class PydanticMetadata(Representation):
"""Base class for annotation markers like `Strict`."""
__slots__ = ()
def pydantic_general_metadata(**metadata: Any) -> BaseMetadata:
"""Create a new `_PydanticGeneralMetadata` class with the given metadata.
Args:
**metadata: The metadata to add.
Returns:
The new `_PydanticGeneralMetadata` class.
"""
return _general_metadata_cls()(metadata) # type: ignore
@lru_cache(maxsize=None)
def _general_metadata_cls() -> type[BaseMetadata]:
"""Do it this way to avoid importing `annotated_types` at import time."""
from annotated_types import BaseMetadata
class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):
"""Pydantic general metadata like `max_digits`."""
def __init__(self, metadata: Any):
self.__dict__ = metadata
return _PydanticGeneralMetadata # type: ignore
def _update_fields_from_docstrings(cls: type[Any], fields: dict[str, FieldInfo], config_wrapper: ConfigWrapper) -> None:
if config_wrapper.use_attribute_docstrings:
fields_docs = extract_docstrings_from_cls(cls)
for ann_name, field_info in fields.items():
if field_info.description is None and ann_name in fields_docs:
field_info.description = fields_docs[ann_name]
def collect_model_fields( # noqa: C901
cls: type[BaseModel],
bases: tuple[type[Any], ...],
config_wrapper: ConfigWrapper,
types_namespace: dict[str, Any] | None,
*,
typevars_map: dict[Any, Any] | None = None,
) -> tuple[dict[str, FieldInfo], set[str]]:
"""Collect the fields of a nascent pydantic model.
Also collect the names of any ClassVars present in the type hints.
The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.
Args:
cls: BaseModel or dataclass.
bases: Parents of the class, generally `cls.__bases__`.
config_wrapper: The config wrapper instance.
types_namespace: Optional extra namespace to look for types in.
typevars_map: A dictionary mapping type variables to their concrete types.
Returns:
A tuple contains fields and class variables.
Raises:
NameError:
- If there is a conflict between a field name and protected namespaces.
- If there is a field other than `root` in `RootModel`.
- If a field shadows an attribute in the parent model.
"""
from ..fields import FieldInfo
type_hints = get_cls_type_hints_lenient(cls, types_namespace)
# https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older
# annotations is only used for finding fields in parent classes
annotations = cls.__dict__.get('__annotations__', {})
fields: dict[str, FieldInfo] = {}
class_vars: set[str] = set()
for ann_name, ann_type in type_hints.items():
if ann_name == 'model_config':
# We never want to treat `model_config` as a field
# Note: we may need to change this logic if/when we introduce a `BareModel` class with no
# protected namespaces (where `model_config` might be allowed as a field name)
continue
for protected_namespace in config_wrapper.protected_namespaces:
if ann_name.startswith(protected_namespace):
for b in bases:
if hasattr(b, ann_name):
from ..main import BaseModel
if not (issubclass(b, BaseModel) and ann_name in b.model_fields):
raise NameError(
f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}'
f' of protected namespace "{protected_namespace}".'
)
else:
valid_namespaces = tuple(
x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x)
)
warnings.warn(
f'Field "{ann_name}" has conflict with protected namespace "{protected_namespace}".'
'\n\nYou may be able to resolve this warning by setting'
f" `model_config['protected_namespaces'] = {valid_namespaces}`.",
UserWarning,
)
if is_classvar(ann_type):
class_vars.add(ann_name)
continue
if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):
class_vars.add(ann_name)
continue
if not is_valid_field_name(ann_name):
continue
if cls.__pydantic_root_model__ and ann_name != 'root':
raise NameError(
f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`"
)
# when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get
# "... shadows an attribute" warnings
generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')
for base in bases:
dataclass_fields = {
field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())
}
if hasattr(base, ann_name):
if base is generic_origin:
# Don't warn when "shadowing" of attributes in parametrized generics
continue
if ann_name in dataclass_fields:
# Don't warn when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set
# on the class instance.
continue
if ann_name not in annotations:
# Don't warn when a field exists in a parent class but has not been defined in the current class
continue
warnings.warn(
f'Field name "{ann_name}" in "{cls.__qualname__}" shadows an attribute in parent '
f'"{base.__qualname__}"',
UserWarning,
)
try:
default = getattr(cls, ann_name, PydanticUndefined)
if default is PydanticUndefined:
raise AttributeError
except AttributeError:
if ann_name in annotations:
field_info = FieldInfo.from_annotation(ann_type)
else:
# if field has no default value and is not in __annotations__ this means that it is
# defined in a base class and we can take it from there
model_fields_lookup: dict[str, FieldInfo] = {}
for x in cls.__bases__[::-1]:
model_fields_lookup.update(getattr(x, 'model_fields', {}))
if ann_name in model_fields_lookup:
# The field was present on one of the (possibly multiple) base classes
# copy the field to make sure typevar substitutions don't cause issues with the base classes
field_info = copy(model_fields_lookup[ann_name])
else:
# The field was not found on any base classes; this seems to be caused by fields not getting
# generated thanks to models not being fully defined while initializing recursive models.
# Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.
field_info = FieldInfo.from_annotation(ann_type)
else:
field_info = FieldInfo.from_annotated_attribute(ann_type, default)
# attributes which are fields are removed from the class namespace:
# 1. To match the behaviour of annotation-only fields
# 2. To avoid false positives in the NameError check above
try:
delattr(cls, ann_name)
except AttributeError:
pass # indicates the attribute was on a parent class
# Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__
# to make sure the decorators have already been built for this exact class
decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']
if ann_name in decorators.computed_fields:
raise ValueError("you can't override a field with a computed field")
fields[ann_name] = field_info
if typevars_map:
for field in fields.values():
field.apply_typevars_map(typevars_map, types_namespace)
_update_fields_from_docstrings(cls, fields, config_wrapper)
return fields, class_vars
def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:
from ..fields import FieldInfo
if not is_finalvar(type_):
return False
elif val is PydanticUndefined:
return False
elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):
return False
else:
return True
def collect_dataclass_fields(
cls: type[StandardDataclass],
types_namespace: dict[str, Any] | None,
*,
typevars_map: dict[Any, Any] | None = None,
config_wrapper: ConfigWrapper | None = None,
) -> dict[str, FieldInfo]:
"""Collect the fields of a dataclass.
Args:
cls: dataclass.
types_namespace: Optional extra namespace to look for types in.
typevars_map: A dictionary mapping type variables to their concrete types.
config_wrapper: The config wrapper instance.
Returns:
The dataclass fields.
"""
from ..fields import FieldInfo
fields: dict[str, FieldInfo] = {}
dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__
cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead
source_module = sys.modules.get(cls.__module__)
if source_module is not None:
types_namespace = {**source_module.__dict__, **(types_namespace or {})}
for ann_name, dataclass_field in dataclass_fields.items():
ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns)
if is_classvar(ann_type):
continue
if (
not dataclass_field.init
and dataclass_field.default == dataclasses.MISSING
and dataclass_field.default_factory == dataclasses.MISSING
):
# TODO: We should probably do something with this so that validate_assignment behaves properly
# Issue: https://github.com/pydantic/pydantic/issues/5470
continue
if isinstance(dataclass_field.default, FieldInfo):
if dataclass_field.default.init_var:
if dataclass_field.default.init is False:
raise PydanticUserError(
f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.',
code='clashing-init-and-init-var',
)
# TODO: same note as above re validate_assignment
continue
field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default)
else:
field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field)
fields[ann_name] = field_info
if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo):
# We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo
setattr(cls, ann_name, field_info.default)
if typevars_map:
for field in fields.values():
field.apply_typevars_map(typevars_map, types_namespace)
if config_wrapper is not None:
_update_fields_from_docstrings(cls, fields, config_wrapper)
return fields
def is_valid_field_name(name: str) -> bool:
return not name.startswith('_')
def is_valid_privateattr_name(name: str) -> bool:
return name.startswith('_') and not name.startswith('__')
|