File size: 19,088 Bytes
b4c75b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
"""
This module implements the Sequential Least Squares Programming optimization
algorithm (SLSQP), originally developed by Dieter Kraft.
See http://www.netlib.org/toms/733

Functions
---------
.. autosummary::
   :toctree: generated/

    approx_jacobian
    fmin_slsqp

"""

__all__ = ['approx_jacobian', 'fmin_slsqp']

import numpy as np
from scipy.optimize._slsqp import slsqp
from numpy import (zeros, array, linalg, append, concatenate, finfo,
                   sqrt, vstack, isfinite, atleast_1d)
from ._optimize import (OptimizeResult, _check_unknown_options,
                        _prepare_scalar_function, _clip_x_for_func,
                        _check_clip_x)
from ._numdiff import approx_derivative
from ._constraints import old_bound_to_new, _arr_to_scalar
from scipy._lib._array_api import atleast_nd, array_namespace

# deprecated imports to be removed in SciPy 1.13.0
from numpy import exp, inf  # noqa: F401


__docformat__ = "restructuredtext en"

_epsilon = sqrt(finfo(float).eps)


def approx_jacobian(x, func, epsilon, *args):
    """
    Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x,*args)
        The vector-valued function.
    epsilon : float
        The perturbation used to determine the partial derivatives.
    args : sequence
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    """
    # approx_derivative returns (m, n) == (lenf, lenx)
    jac = approx_derivative(func, x, method='2-point', abs_step=epsilon,
                            args=args)
    # if func returns a scalar jac.shape will be (lenx,). Make sure
    # it's at least a 2D array.
    return np.atleast_2d(jac)


def fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None,
               bounds=(), fprime=None, fprime_eqcons=None,
               fprime_ieqcons=None, args=(), iter=100, acc=1.0E-6,
               iprint=1, disp=None, full_output=0, epsilon=_epsilon,
               callback=None):
    """
    Minimize a function using Sequential Least Squares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.  Must return a scalar.
    x0 : 1-D ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list, optional
        A list of functions of length n such that
        eqcons[j](x,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args), optional
        Returns a 1-D array in which each element must equal 0.0 in a
        successfully optimized problem. If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list, optional
        A list of functions of length n such that
        ieqcons[j](x,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x,*args), optional
        Returns a 1-D ndarray in which each element must be greater or
        equal to 0.0 in a successfully optimized problem. If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list, optional
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
        Infinite values will be interpreted as large floating values.
    fprime : callable `f(x,*args)`, optional
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of equality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of inequality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence, optional
        Additional arguments passed to func and fprime.
    iter : int, optional
        The maximum number of iterations.
    acc : float, optional
        Requested accuracy.
    iprint : int, optional
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    disp : int, optional
        Overrides the iprint interface (preferred).
    full_output : bool, optional
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float, optional
        The step size for finite-difference derivative estimates.
    callback : callable, optional
        Called after each iteration, as ``callback(x)``, where ``x`` is the
        current parameter vector.

    Returns
    -------
    out : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'SLSQP' `method` in particular.

    Notes
    -----
    Exit modes are defined as follows ::

        -1 : Gradient evaluation required (g & a)
         0 : Optimization terminated successfully
         1 : Function evaluation required (f & c)
         2 : More equality constraints than independent variables
         3 : More than 3*n iterations in LSQ subproblem
         4 : Inequality constraints incompatible
         5 : Singular matrix E in LSQ subproblem
         6 : Singular matrix C in LSQ subproblem
         7 : Rank-deficient equality constraint subproblem HFTI
         8 : Positive directional derivative for linesearch
         9 : Iteration limit reached

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    """
    if disp is not None:
        iprint = disp

    opts = {'maxiter': iter,
            'ftol': acc,
            'iprint': iprint,
            'disp': iprint != 0,
            'eps': epsilon,
            'callback': callback}

    # Build the constraints as a tuple of dictionaries
    cons = ()
    # 1. constraints of the 1st kind (eqcons, ieqcons); no Jacobian; take
    #    the same extra arguments as the objective function.
    cons += tuple({'type': 'eq', 'fun': c, 'args': args} for c in eqcons)
    cons += tuple({'type': 'ineq', 'fun': c, 'args': args} for c in ieqcons)
    # 2. constraints of the 2nd kind (f_eqcons, f_ieqcons) and their Jacobian
    #    (fprime_eqcons, fprime_ieqcons); also take the same extra arguments
    #    as the objective function.
    if f_eqcons:
        cons += ({'type': 'eq', 'fun': f_eqcons, 'jac': fprime_eqcons,
                  'args': args}, )
    if f_ieqcons:
        cons += ({'type': 'ineq', 'fun': f_ieqcons, 'jac': fprime_ieqcons,
                  'args': args}, )

    res = _minimize_slsqp(func, x0, args, jac=fprime, bounds=bounds,
                          constraints=cons, **opts)
    if full_output:
        return res['x'], res['fun'], res['nit'], res['status'], res['message']
    else:
        return res['x']


def _minimize_slsqp(func, x0, args=(), jac=None, bounds=None,
                    constraints=(),
                    maxiter=100, ftol=1.0E-6, iprint=1, disp=False,
                    eps=_epsilon, callback=None, finite_diff_rel_step=None,
                    **unknown_options):
    """
    Minimize a scalar function of one or more variables using Sequential
    Least Squares Programming (SLSQP).

    Options
    -------
    ftol : float
        Precision goal for the value of f in the stopping criterion.
    eps : float
        Step size used for numerical approximation of the Jacobian.
    disp : bool
        Set to True to print convergence messages. If False,
        `verbosity` is ignored and set to 0.
    maxiter : int
        Maximum number of iterations.
    finite_diff_rel_step : None or array_like, optional
        If `jac in ['2-point', '3-point', 'cs']` the relative step size to
        use for numerical approximation of `jac`. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``method='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    """
    _check_unknown_options(unknown_options)
    iter = maxiter - 1
    acc = ftol
    epsilon = eps

    if not disp:
        iprint = 0

    # Transform x0 into an array.
    xp = array_namespace(x0)
    x0 = atleast_nd(x0, ndim=1, xp=xp)
    dtype = xp.float64
    if xp.isdtype(x0.dtype, "real floating"):
        dtype = x0.dtype
    x = xp.reshape(xp.astype(x0, dtype), -1)

    # SLSQP is sent 'old-style' bounds, 'new-style' bounds are required by
    # ScalarFunction
    if bounds is None or len(bounds) == 0:
        new_bounds = (-np.inf, np.inf)
    else:
        new_bounds = old_bound_to_new(bounds)

    # clip the initial guess to bounds, otherwise ScalarFunction doesn't work
    x = np.clip(x, new_bounds[0], new_bounds[1])

    # Constraints are triaged per type into a dictionary of tuples
    if isinstance(constraints, dict):
        constraints = (constraints, )

    cons = {'eq': (), 'ineq': ()}
    for ic, con in enumerate(constraints):
        # check type
        try:
            ctype = con['type'].lower()
        except KeyError as e:
            raise KeyError('Constraint %d has no type defined.' % ic) from e
        except TypeError as e:
            raise TypeError('Constraints must be defined using a '
                            'dictionary.') from e
        except AttributeError as e:
            raise TypeError("Constraint's type must be a string.") from e
        else:
            if ctype not in ['eq', 'ineq']:
                raise ValueError("Unknown constraint type '%s'." % con['type'])

        # check function
        if 'fun' not in con:
            raise ValueError('Constraint %d has no function defined.' % ic)

        # check Jacobian
        cjac = con.get('jac')
        if cjac is None:
            # approximate Jacobian function. The factory function is needed
            # to keep a reference to `fun`, see gh-4240.
            def cjac_factory(fun):
                def cjac(x, *args):
                    x = _check_clip_x(x, new_bounds)

                    if jac in ['2-point', '3-point', 'cs']:
                        return approx_derivative(fun, x, method=jac, args=args,
                                                 rel_step=finite_diff_rel_step,
                                                 bounds=new_bounds)
                    else:
                        return approx_derivative(fun, x, method='2-point',
                                                 abs_step=epsilon, args=args,
                                                 bounds=new_bounds)

                return cjac
            cjac = cjac_factory(con['fun'])

        # update constraints' dictionary
        cons[ctype] += ({'fun': con['fun'],
                         'jac': cjac,
                         'args': con.get('args', ())}, )

    exit_modes = {-1: "Gradient evaluation required (g & a)",
                   0: "Optimization terminated successfully",
                   1: "Function evaluation required (f & c)",
                   2: "More equality constraints than independent variables",
                   3: "More than 3*n iterations in LSQ subproblem",
                   4: "Inequality constraints incompatible",
                   5: "Singular matrix E in LSQ subproblem",
                   6: "Singular matrix C in LSQ subproblem",
                   7: "Rank-deficient equality constraint subproblem HFTI",
                   8: "Positive directional derivative for linesearch",
                   9: "Iteration limit reached"}

    # Set the parameters that SLSQP will need
    # meq, mieq: number of equality and inequality constraints
    meq = sum(map(len, [atleast_1d(c['fun'](x, *c['args']))
              for c in cons['eq']]))
    mieq = sum(map(len, [atleast_1d(c['fun'](x, *c['args']))
               for c in cons['ineq']]))
    # m = The total number of constraints
    m = meq + mieq
    # la = The number of constraints, or 1 if there are no constraints
    la = array([1, m]).max()
    # n = The number of independent variables
    n = len(x)

    # Define the workspaces for SLSQP
    n1 = n + 1
    mineq = m - meq + n1 + n1
    len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \
            + 2*meq + n1 + ((n+1)*n)//2 + 2*m + 3*n + 3*n1 + 1
    len_jw = mineq
    w = zeros(len_w)
    jw = zeros(len_jw)

    # Decompose bounds into xl and xu
    if bounds is None or len(bounds) == 0:
        xl = np.empty(n, dtype=float)
        xu = np.empty(n, dtype=float)
        xl.fill(np.nan)
        xu.fill(np.nan)
    else:
        bnds = array([(_arr_to_scalar(l), _arr_to_scalar(u))
                      for (l, u) in bounds], float)
        if bnds.shape[0] != n:
            raise IndexError('SLSQP Error: the length of bounds is not '
                             'compatible with that of x0.')

        with np.errstate(invalid='ignore'):
            bnderr = bnds[:, 0] > bnds[:, 1]

        if bnderr.any():
            raise ValueError('SLSQP Error: lb > ub in bounds %s.' %
                             ', '.join(str(b) for b in bnderr))
        xl, xu = bnds[:, 0], bnds[:, 1]

        # Mark infinite bounds with nans; the Fortran code understands this
        infbnd = ~isfinite(bnds)
        xl[infbnd[:, 0]] = np.nan
        xu[infbnd[:, 1]] = np.nan

    # ScalarFunction provides function and gradient evaluation
    sf = _prepare_scalar_function(func, x, jac=jac, args=args, epsilon=eps,
                                  finite_diff_rel_step=finite_diff_rel_step,
                                  bounds=new_bounds)
    # gh11403 SLSQP sometimes exceeds bounds by 1 or 2 ULP, make sure this
    # doesn't get sent to the func/grad evaluator.
    wrapped_fun = _clip_x_for_func(sf.fun, new_bounds)
    wrapped_grad = _clip_x_for_func(sf.grad, new_bounds)

    # Initialize the iteration counter and the mode value
    mode = array(0, int)
    acc = array(acc, float)
    majiter = array(iter, int)
    majiter_prev = 0

    # Initialize internal SLSQP state variables
    alpha = array(0, float)
    f0 = array(0, float)
    gs = array(0, float)
    h1 = array(0, float)
    h2 = array(0, float)
    h3 = array(0, float)
    h4 = array(0, float)
    t = array(0, float)
    t0 = array(0, float)
    tol = array(0, float)
    iexact = array(0, int)
    incons = array(0, int)
    ireset = array(0, int)
    itermx = array(0, int)
    line = array(0, int)
    n1 = array(0, int)
    n2 = array(0, int)
    n3 = array(0, int)

    # Print the header if iprint >= 2
    if iprint >= 2:
        print("%5s %5s %16s %16s" % ("NIT", "FC", "OBJFUN", "GNORM"))

    # mode is zero on entry, so call objective, constraints and gradients
    # there should be no func evaluations here because it's cached from
    # ScalarFunction
    fx = wrapped_fun(x)
    g = append(wrapped_grad(x), 0.0)
    c = _eval_constraint(x, cons)
    a = _eval_con_normals(x, cons, la, n, m, meq, mieq)

    while 1:
        # Call SLSQP
        slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw,
              alpha, f0, gs, h1, h2, h3, h4, t, t0, tol,
              iexact, incons, ireset, itermx, line,
              n1, n2, n3)

        if mode == 1:  # objective and constraint evaluation required
            fx = wrapped_fun(x)
            c = _eval_constraint(x, cons)

        if mode == -1:  # gradient evaluation required
            g = append(wrapped_grad(x), 0.0)
            a = _eval_con_normals(x, cons, la, n, m, meq, mieq)

        if majiter > majiter_prev:
            # call callback if major iteration has incremented
            if callback is not None:
                callback(np.copy(x))

            # Print the status of the current iterate if iprint > 2
            if iprint >= 2:
                print("%5i %5i % 16.6E % 16.6E" % (majiter, sf.nfev,
                                                   fx, linalg.norm(g)))

        # If exit mode is not -1 or 1, slsqp has completed
        if abs(mode) != 1:
            break

        majiter_prev = int(majiter)

    # Optimization loop complete. Print status if requested
    if iprint >= 1:
        print(exit_modes[int(mode)] + "    (Exit mode " + str(mode) + ')')
        print("            Current function value:", fx)
        print("            Iterations:", majiter)
        print("            Function evaluations:", sf.nfev)
        print("            Gradient evaluations:", sf.ngev)

    return OptimizeResult(x=x, fun=fx, jac=g[:-1], nit=int(majiter),
                          nfev=sf.nfev, njev=sf.ngev, status=int(mode),
                          message=exit_modes[int(mode)], success=(mode == 0))


def _eval_constraint(x, cons):
    # Compute constraints
    if cons['eq']:
        c_eq = concatenate([atleast_1d(con['fun'](x, *con['args']))
                            for con in cons['eq']])
    else:
        c_eq = zeros(0)

    if cons['ineq']:
        c_ieq = concatenate([atleast_1d(con['fun'](x, *con['args']))
                             for con in cons['ineq']])
    else:
        c_ieq = zeros(0)

    # Now combine c_eq and c_ieq into a single matrix
    c = concatenate((c_eq, c_ieq))
    return c


def _eval_con_normals(x, cons, la, n, m, meq, mieq):
    # Compute the normals of the constraints
    if cons['eq']:
        a_eq = vstack([con['jac'](x, *con['args'])
                       for con in cons['eq']])
    else:  # no equality constraint
        a_eq = zeros((meq, n))

    if cons['ineq']:
        a_ieq = vstack([con['jac'](x, *con['args'])
                        for con in cons['ineq']])
    else:  # no inequality constraint
        a_ieq = zeros((mieq, n))

    # Now combine a_eq and a_ieq into a single a matrix
    if m == 0:  # no constraints
        a = zeros((la, n))
    else:
        a = vstack((a_eq, a_ieq))
    a = concatenate((a, zeros([la, 1])), 1)

    return a