File size: 9,109 Bytes
6d870c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
The :mod:`sklearn.utils.discovery` module includes utilities to discover
objects (i.e. estimators, displays, functions) from the `sklearn` package.
"""

import inspect
import pkgutil
from importlib import import_module
from operator import itemgetter
from pathlib import Path

_MODULE_TO_IGNORE = {
    "tests",
    "externals",
    "setup",
    "conftest",
    "experimental",
    "estimator_checks",
}


def all_estimators(type_filter=None):
    """Get a list of all estimators from `sklearn`.

    This function crawls the module and gets all classes that inherit
    from BaseEstimator. Classes that are defined in test-modules are not
    included.

    Parameters
    ----------
    type_filter : {"classifier", "regressor", "cluster", "transformer"} \
            or list of such str, default=None
        Which kind of estimators should be returned. If None, no filter is
        applied and all estimators are returned.  Possible values are
        'classifier', 'regressor', 'cluster' and 'transformer' to get
        estimators only of these specific types, or a list of these to
        get the estimators that fit at least one of the types.

    Returns
    -------
    estimators : list of tuples
        List of (name, class), where ``name`` is the class name as string
        and ``class`` is the actual type of the class.

    Examples
    --------
    >>> from sklearn.utils.discovery import all_estimators
    >>> estimators = all_estimators()
    >>> type(estimators)
    <class 'list'>
    >>> type(estimators[0])
    <class 'tuple'>
    >>> estimators[:2]
    [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
     ('AdaBoostClassifier',
      <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
    >>> classifiers = all_estimators(type_filter="classifier")
    >>> classifiers[:2]
    [('AdaBoostClassifier',
      <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>),
     ('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)]
    >>> regressors = all_estimators(type_filter="regressor")
    >>> regressors[:2]
    [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
     ('AdaBoostRegressor',
      <class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)]
    >>> both = all_estimators(type_filter=["classifier", "regressor"])
    >>> both[:2]
    [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
     ('AdaBoostClassifier',
      <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
    """
    # lazy import to avoid circular imports from sklearn.base
    from ..base import (
        BaseEstimator,
        ClassifierMixin,
        ClusterMixin,
        RegressorMixin,
        TransformerMixin,
    )
    from . import IS_PYPY
    from ._testing import ignore_warnings

    def is_abstract(c):
        if not (hasattr(c, "__abstractmethods__")):
            return False
        if not len(c.__abstractmethods__):
            return False
        return True

    all_classes = []
    root = str(Path(__file__).parent.parent)  # sklearn package
    # Ignore deprecation warnings triggered at import time and from walking
    # packages
    with ignore_warnings(category=FutureWarning):
        for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
            module_parts = module_name.split(".")
            if (
                any(part in _MODULE_TO_IGNORE for part in module_parts)
                or "._" in module_name
            ):
                continue
            module = import_module(module_name)
            classes = inspect.getmembers(module, inspect.isclass)
            classes = [
                (name, est_cls) for name, est_cls in classes if not name.startswith("_")
            ]

            # TODO: Remove when FeatureHasher is implemented in PYPY
            # Skips FeatureHasher for PYPY
            if IS_PYPY and "feature_extraction" in module_name:
                classes = [
                    (name, est_cls)
                    for name, est_cls in classes
                    if name == "FeatureHasher"
                ]

            all_classes.extend(classes)

    all_classes = set(all_classes)

    estimators = [
        c
        for c in all_classes
        if (issubclass(c[1], BaseEstimator) and c[0] != "BaseEstimator")
    ]
    # get rid of abstract base classes
    estimators = [c for c in estimators if not is_abstract(c[1])]

    if type_filter is not None:
        if not isinstance(type_filter, list):
            type_filter = [type_filter]
        else:
            type_filter = list(type_filter)  # copy
        filtered_estimators = []
        filters = {
            "classifier": ClassifierMixin,
            "regressor": RegressorMixin,
            "transformer": TransformerMixin,
            "cluster": ClusterMixin,
        }
        for name, mixin in filters.items():
            if name in type_filter:
                type_filter.remove(name)
                filtered_estimators.extend(
                    [est for est in estimators if issubclass(est[1], mixin)]
                )
        estimators = filtered_estimators
        if type_filter:
            raise ValueError(
                "Parameter type_filter must be 'classifier', "
                "'regressor', 'transformer', 'cluster' or "
                "None, got"
                f" {repr(type_filter)}."
            )

    # drop duplicates, sort for reproducibility
    # itemgetter is used to ensure the sort does not extend to the 2nd item of
    # the tuple
    return sorted(set(estimators), key=itemgetter(0))


def all_displays():
    """Get a list of all displays from `sklearn`.

    Returns
    -------
    displays : list of tuples
        List of (name, class), where ``name`` is the display class name as
        string and ``class`` is the actual type of the class.

    Examples
    --------
    >>> from sklearn.utils.discovery import all_displays
    >>> displays = all_displays()
    >>> displays[0]
    ('CalibrationDisplay', <class 'sklearn.calibration.CalibrationDisplay'>)
    """
    # lazy import to avoid circular imports from sklearn.base
    from ._testing import ignore_warnings

    all_classes = []
    root = str(Path(__file__).parent.parent)  # sklearn package
    # Ignore deprecation warnings triggered at import time and from walking
    # packages
    with ignore_warnings(category=FutureWarning):
        for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
            module_parts = module_name.split(".")
            if (
                any(part in _MODULE_TO_IGNORE for part in module_parts)
                or "._" in module_name
            ):
                continue
            module = import_module(module_name)
            classes = inspect.getmembers(module, inspect.isclass)
            classes = [
                (name, display_class)
                for name, display_class in classes
                if not name.startswith("_") and name.endswith("Display")
            ]
            all_classes.extend(classes)

    return sorted(set(all_classes), key=itemgetter(0))


def _is_checked_function(item):
    if not inspect.isfunction(item):
        return False

    if item.__name__.startswith("_"):
        return False

    mod = item.__module__
    if not mod.startswith("sklearn.") or mod.endswith("estimator_checks"):
        return False

    return True


def all_functions():
    """Get a list of all functions from `sklearn`.

    Returns
    -------
    functions : list of tuples
        List of (name, function), where ``name`` is the function name as
        string and ``function`` is the actual function.

    Examples
    --------
    >>> from sklearn.utils.discovery import all_functions
    >>> functions = all_functions()
    >>> name, function = functions[0]
    >>> name
    'accuracy_score'
    """
    # lazy import to avoid circular imports from sklearn.base
    from ._testing import ignore_warnings

    all_functions = []
    root = str(Path(__file__).parent.parent)  # sklearn package
    # Ignore deprecation warnings triggered at import time and from walking
    # packages
    with ignore_warnings(category=FutureWarning):
        for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
            module_parts = module_name.split(".")
            if (
                any(part in _MODULE_TO_IGNORE for part in module_parts)
                or "._" in module_name
            ):
                continue

            module = import_module(module_name)
            functions = inspect.getmembers(module, _is_checked_function)
            functions = [
                (func.__name__, func)
                for name, func in functions
                if not name.startswith("_")
            ]
            all_functions.extend(functions)

    # drop duplicates, sort for reproducibility
    # itemgetter is used to ensure the sort does not extend to the 2nd item of
    # the tuple
    return sorted(set(all_functions), key=itemgetter(0))