File size: 11,519 Bytes
958bc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
Metadata-Version: 2.1
Name: DataProperty
Version: 1.0.1
Summary: Python library for extract property from data.
Home-page: https://github.com/thombashi/DataProperty
Author: Tsuyoshi Hombashi
Author-email: tsuyoshi.hombashi@gmail.com
Maintainer: Tsuyoshi Hombashi
Maintainer-email: tsuyoshi.hombashi@gmail.com
License: MIT License
Project-URL: Source, https://github.com/thombashi/DataProperty
Project-URL: Tracker, https://github.com/thombashi/DataProperty/issues
Keywords: data,library,property
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.7
Description-Content-Type: text/x-rst
License-File: LICENSE
Requires-Dist: mbstrdecoder (<2,>=1.0.0)
Requires-Dist: typepy[datetime] (<2,>=1.2.0)
Provides-Extra: logging
Requires-Dist: loguru (<1,>=0.4.1) ; extra == 'logging'
Provides-Extra: test
Requires-Dist: pytest (>=6.0.1) ; extra == 'test'
Requires-Dist: pytest-md-report (>=0.3) ; extra == 'test'
Requires-Dist: tcolorpy (>=0.1.2) ; extra == 'test'

.. contents:: **DataProperty**
   :backlinks: top
   :local:


Summary
=======
A Python library for extract property from data.


.. image:: https://badge.fury.io/py/DataProperty.svg
    :target: https://badge.fury.io/py/DataProperty
    :alt: PyPI package version

.. image:: https://anaconda.org/conda-forge/DataProperty/badges/version.svg
    :target: https://anaconda.org/conda-forge/DataProperty
    :alt: conda-forge package version

.. image:: https://img.shields.io/pypi/pyversions/DataProperty.svg
   :target: https://pypi.org/project/DataProperty
    :alt: Supported Python versions

.. image:: https://img.shields.io/pypi/implementation/DataProperty.svg
    :target: https://pypi.org/project/DataProperty
    :alt: Supported Python implementations

.. image:: https://github.com/thombashi/DataProperty/actions/workflows/ci.yml/badge.svg
    :target: https://github.com/thombashi/DataProperty/actions/workflows/ci.yml
    :alt: CI status of Linux/macOS/Windows

.. image:: https://coveralls.io/repos/github/thombashi/DataProperty/badge.svg?branch=master
    :target: https://coveralls.io/github/thombashi/DataProperty?branch=master
    :alt: Test coverage

.. image:: https://github.com/thombashi/DataProperty/actions/workflows/github-code-scanning/codeql/badge.svg
    :target: https://github.com/thombashi/DataProperty/actions/workflows/github-code-scanning/codeql
    :alt: CodeQL


Installation
============

Installation: pip
------------------------------
::

    pip install DataProperty

Installation: conda
------------------------------
::

    conda install -c conda-forge dataproperty

Installation: apt
------------------------------
::

    sudo add-apt-repository ppa:thombashi/ppa
    sudo apt update
    sudo apt install python3-dataproperty


Usage
=====

Extract property of data
------------------------

e.g. Extract a ``float`` value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python

    >>> from dataproperty import DataProperty
    >>> DataProperty(-1.1)
    data=-1.1, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=1, extra_len=1

e.g. Extract a ``int`` value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python

    >>> from dataproperty import DataProperty
    >>> DataProperty(123456789)
    data=123456789, type=INTEGER, align=right, ascii_width=9, int_digits=9, decimal_places=0, extra_len=0

e.g. Extract a ``str`` (ascii) value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python

    >>> from dataproperty import DataProperty
    >>> DataProperty("sample string")
    data=sample string, type=STRING, align=left, length=13, ascii_width=13, extra_len=0

e.g. Extract a ``str`` (multi-byte) value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python

    >>> from dataproperty import DataProperty
    >>> str(DataProperty("吾輩は猫である"))
    data=吾輩は猫である, type=STRING, align=left, length=7, ascii_width=14, extra_len=0

e.g. Extract a time (``datetime``) value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python

    >>> import datetime
    >>> from dataproperty import DataProperty
    >>> DataProperty(datetime.datetime(2017, 1, 1, 0, 0, 0))
    data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0

e.g. Extract a ``bool`` value property
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python

    >>> from dataproperty import DataProperty
    >>> DataProperty(True)
    data=True, type=BOOL, align=left, ascii_width=4, extra_len=0


Extract data property for each element from a matrix
----------------------------------------------------
``DataPropertyExtractor.to_dp_matrix`` method returns a matrix of ``DataProperty`` instances from a data matrix.
An example data set and the result are as follows:

:Sample Code:
    .. code:: python

        import datetime
        from dataproperty import DataPropertyExtractor

        dp_extractor = DataPropertyExtractor()
        dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
        inf = float("inf")
        nan = float("nan")

        dp_matrix = dp_extractor.to_dp_matrix([
            [1, 1.1, "aa", 1, 1, True, inf, nan, dt],
            [2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt],
            [3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"],
        ])

        for row, dp_list in enumerate(dp_matrix):
            for col, dp in enumerate(dp_list):
                print("row={:d}, col={:d}, {}".format(row, col, str(dp)))

:Output:
    ::

        row=0, col=0, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
        row=0, col=1, data=1.1, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
        row=0, col=2, data=aa, type=STRING, align=left, ascii_width=2, length=2, extra_len=0
        row=0, col=3, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
        row=0, col=4, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
        row=0, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
        row=0, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
        row=0, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
        row=0, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
        row=1, col=0, data=2, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
        row=1, col=1, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
        row=1, col=2, data=bbb, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
        row=1, col=3, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
        row=1, col=4, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
        row=1, col=5, data=False, type=BOOL, align=left, ascii_width=5, extra_len=0
        row=1, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
        row=1, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
        row=1, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
        row=2, col=0, data=3, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
        row=2, col=1, data=3.33, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=2, extra_len=0
        row=2, col=2, data=cccc, type=STRING, align=left, ascii_width=4, length=4, extra_len=0
        row=2, col=3, data=-3, type=INTEGER, align=right, ascii_width=2, int_digits=1, decimal_places=0, extra_len=1
        row=2, col=4, data=ccc, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
        row=2, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
        row=2, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
        row=2, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
        row=2, col=8, data=2017-01-01T01:23:45+0900, type=STRING, align=left, ascii_width=24, length=24, extra_len=0


Full example source code can be found at *examples/py/to_dp_matrix.py*


Extract properties for each column from a matrix
------------------------------------------------------
``DataPropertyExtractor.to_column_dp_list`` method returns a list of ``DataProperty`` instances from a data matrix. The list represents the properties for each column.
An example data set and the result are as follows:

Example data set and result are as follows:

:Sample Code:
    .. code:: python

        import datetime
        from dataproperty import DataPropertyExtractor

        dp_extractor = DataPropertyExtractor()
        dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
        inf = float("inf")
        nan = float("nan")

        data_matrix = [
            [1, 1.1,  "aa",   1,   1,     True,   inf,   nan,   dt],
            [2, 2.2,  "bbb",  2.2, 2.2,   False,  "inf", "nan", dt],
            [3, 3.33, "cccc", -3,  "ccc", "true", inf,   "NAN", "2017-01-01T01:23:45+0900"],
        ]

        dp_extractor.headers = ["int", "float", "str", "num", "mix", "bool", "inf", "nan", "time"]
        col_dp_list = dp_extractor.to_column_dp_list(dp_extractor.to_dp_matrix(dp_matrix))

        for col_idx, col_dp in enumerate(col_dp_list):
            print(str(col_dp))

:Output:
    ::

        column=0, type=INTEGER, align=right, ascii_width=3, bit_len=2, int_digits=1, decimal_places=0
        column=1, type=REAL_NUMBER, align=right, ascii_width=5, int_digits=1, decimal_places=(min=1, max=2)
        column=2, type=STRING, align=left, ascii_width=4
        column=3, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=(min=0, max=1), extra_len=(min=0, max=1)
        column=4, type=STRING, align=left, ascii_width=3, int_digits=1, decimal_places=(min=0, max=1)
        column=5, type=BOOL, align=left, ascii_width=5
        column=6, type=INFINITY, align=left, ascii_width=8
        column=7, type=NAN, align=left, ascii_width=3
        column=8, type=STRING, align=left, ascii_width=24


Full example source code can be found at *examples/py/to_column_dp_list.py*


Dependencies
============
- Python 3.7+
- `Python package dependencies (automatically installed) <https://github.com/thombashi/DataProperty/network/dependencies>`__

Optional dependencies
---------------------
- `loguru <https://github.com/Delgan/loguru>`__
    - Used for logging if the package installed