File size: 5,484 Bytes
b4c75b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from scipy.linalg import solve, LinAlgWarning
import warnings

__all__ = ['nnls']


def nnls(A, b, maxiter=None, *, atol=None):
    """
    Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``.

    This problem, often called as NonNegative Least Squares, is a convex
    optimization problem with convex constraints. It typically arises when
    the ``x`` models quantities for which only nonnegative values are
    attainable; weight of ingredients, component costs and so on.

    Parameters
    ----------
    A : (m, n) ndarray
        Coefficient array
    b : (m,) ndarray, float
        Right-hand side vector.
    maxiter: int, optional
        Maximum number of iterations, optional. Default value is ``3 * n``.
    atol: float
        Tolerance value used in the algorithm to assess closeness to zero in
        the projected residual ``(A.T @ (A x - b)`` entries. Increasing this
        value relaxes the solution constraints. A typical relaxation value can
        be selected as ``max(m, n) * np.linalg.norm(a, 1) * np.spacing(1.)``.
        This value is not set as default since the norm operation becomes
        expensive for large problems hence can be used only when necessary.

    Returns
    -------
    x : ndarray
        Solution vector.
    rnorm : float
        The 2-norm of the residual, ``|| Ax-b ||_2``.

    See Also
    --------
    lsq_linear : Linear least squares with bounds on the variables

    Notes
    -----
    The code is based on [2]_ which is an improved version of the classical
    algorithm of [1]_. It utilizes an active set method and solves the KKT
    (Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.

    References
    ----------
    .. [1] : Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM,
       1995, :doi:`10.1137/1.9781611971217`
    .. [2] : Bro, Rasmus and de Jong, Sijmen, "A Fast Non-Negativity-
       Constrained Least Squares Algorithm", Journal Of Chemometrics, 1997,
       :doi:`10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L`

     Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import nnls
    ...
    >>> A = np.array([[1, 0], [1, 0], [0, 1]])
    >>> b = np.array([2, 1, 1])
    >>> nnls(A, b)
    (array([1.5, 1. ]), 0.7071067811865475)

    >>> b = np.array([-1, -1, -1])
    >>> nnls(A, b)
    (array([0., 0.]), 1.7320508075688772)

    """

    A = np.asarray_chkfinite(A)
    b = np.asarray_chkfinite(b)

    if len(A.shape) != 2:
        raise ValueError("Expected a two-dimensional array (matrix)" +
                         f", but the shape of A is {A.shape}")
    if len(b.shape) != 1:
        raise ValueError("Expected a one-dimensional array (vector)" +
                         f", but the shape of b is {b.shape}")

    m, n = A.shape

    if m != b.shape[0]:
        raise ValueError(
                "Incompatible dimensions. The first dimension of " +
                f"A is {m}, while the shape of b is {(b.shape[0], )}")

    x, rnorm, mode = _nnls(A, b, maxiter, tol=atol)
    if mode != 1:
        raise RuntimeError("Maximum number of iterations reached.")

    return x, rnorm


def _nnls(A, b, maxiter=None, tol=None):
    """
    This is a single RHS algorithm from ref [2] above. For multiple RHS
    support, the algorithm is given in  :doi:`10.1002/cem.889`
    """
    m, n = A.shape

    AtA = A.T @ A
    Atb = b @ A  # Result is 1D - let NumPy figure it out

    if not maxiter:
        maxiter = 3*n
    if tol is None:
        tol = 10 * max(m, n) * np.spacing(1.)

    # Initialize vars
    x = np.zeros(n, dtype=np.float64)
    s = np.zeros(n, dtype=np.float64)
    # Inactive constraint switches
    P = np.zeros(n, dtype=bool)

    # Projected residual
    w = Atb.copy().astype(np.float64)  # x=0. Skip (-AtA @ x) term

    # Overall iteration counter
    # Outer loop is not counted, inner iter is counted across outer spins
    iter = 0

    while (not P.all()) and (w[~P] > tol).any():  # B
        # Get the "most" active coeff index and move to inactive set
        k = np.argmax(w * (~P))  # B.2
        P[k] = True  # B.3

        # Iteration solution
        s[:] = 0.
        # B.4
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', message='Ill-conditioned matrix',
                                    category=LinAlgWarning)
            s[P] = solve(AtA[np.ix_(P, P)], Atb[P], assume_a='sym', check_finite=False)

        # Inner loop
        while (iter < maxiter) and (s[P].min() < 0):  # C.1
            iter += 1
            inds = P * (s < 0)
            alpha = (x[inds] / (x[inds] - s[inds])).min()  # C.2
            x *= (1 - alpha)
            x += alpha*s
            P[x <= tol] = False
            with warnings.catch_warnings():
                warnings.filterwarnings('ignore', message='Ill-conditioned matrix',
                                        category=LinAlgWarning)
                s[P] = solve(AtA[np.ix_(P, P)], Atb[P], assume_a='sym',
                             check_finite=False)
            s[~P] = 0  # C.6

        x[:] = s[:]
        w[:] = Atb - AtA @ x

        if iter == maxiter:
            # Typically following line should return
            # return x, np.linalg.norm(A@x - b), -1
            # however at the top level, -1 raises an exception wasting norm
            # Instead return dummy number 0.
            return x, 0., -1

    return x, np.linalg.norm(A@x - b), 1