File size: 17,441 Bytes
2f1dfc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""
Test cdflib functions versus mpmath, if available.

The following functions still need tests:

- ncfdtr
- ncfdtri
- ncfdtridfn
- ncfdtridfd
- ncfdtrinc
- nbdtrik
- nbdtrin
- pdtrik
- nctdtr
- nctdtrit
- nctdtridf
- nctdtrinc

"""
import itertools

import numpy as np
from numpy.testing import assert_equal, assert_allclose
import pytest

import scipy.special as sp
from scipy.special._testutils import (
    MissingModule, check_version, FuncData)
from scipy.special._mptestutils import (
    Arg, IntArg, get_args, mpf2float, assert_mpmath_equal)

try:
    import mpmath
except ImportError:
    mpmath = MissingModule('mpmath')


class ProbArg:
    """Generate a set of probabilities on [0, 1]."""

    def __init__(self):
        # Include the endpoints for compatibility with Arg et. al.
        self.a = 0
        self.b = 1

    def values(self, n):
        """Return an array containing approximately n numbers."""
        m = max(1, n//3)
        v1 = np.logspace(-30, np.log10(0.3), m)
        v2 = np.linspace(0.3, 0.7, m + 1, endpoint=False)[1:]
        v3 = 1 - np.logspace(np.log10(0.3), -15, m)
        v = np.r_[v1, v2, v3]
        return np.unique(v)


class EndpointFilter:
    def __init__(self, a, b, rtol, atol):
        self.a = a
        self.b = b
        self.rtol = rtol
        self.atol = atol

    def __call__(self, x):
        mask1 = np.abs(x - self.a) < self.rtol*np.abs(self.a) + self.atol
        mask2 = np.abs(x - self.b) < self.rtol*np.abs(self.b) + self.atol
        return np.where(mask1 | mask2, False, True)


class _CDFData:
    def __init__(self, spfunc, mpfunc, index, argspec, spfunc_first=True,
                 dps=20, n=5000, rtol=None, atol=None,
                 endpt_rtol=None, endpt_atol=None):
        self.spfunc = spfunc
        self.mpfunc = mpfunc
        self.index = index
        self.argspec = argspec
        self.spfunc_first = spfunc_first
        self.dps = dps
        self.n = n
        self.rtol = rtol
        self.atol = atol

        if not isinstance(argspec, list):
            self.endpt_rtol = None
            self.endpt_atol = None
        elif endpt_rtol is not None or endpt_atol is not None:
            if isinstance(endpt_rtol, list):
                self.endpt_rtol = endpt_rtol
            else:
                self.endpt_rtol = [endpt_rtol]*len(self.argspec)
            if isinstance(endpt_atol, list):
                self.endpt_atol = endpt_atol
            else:
                self.endpt_atol = [endpt_atol]*len(self.argspec)
        else:
            self.endpt_rtol = None
            self.endpt_atol = None

    def idmap(self, *args):
        if self.spfunc_first:
            res = self.spfunc(*args)
            if np.isnan(res):
                return np.nan
            args = list(args)
            args[self.index] = res
            with mpmath.workdps(self.dps):
                res = self.mpfunc(*tuple(args))
                # Imaginary parts are spurious
                res = mpf2float(res.real)
        else:
            with mpmath.workdps(self.dps):
                res = self.mpfunc(*args)
                res = mpf2float(res.real)
            args = list(args)
            args[self.index] = res
            res = self.spfunc(*tuple(args))
        return res

    def get_param_filter(self):
        if self.endpt_rtol is None and self.endpt_atol is None:
            return None

        filters = []
        for rtol, atol, spec in zip(self.endpt_rtol, self.endpt_atol, self.argspec):
            if rtol is None and atol is None:
                filters.append(None)
                continue
            elif rtol is None:
                rtol = 0.0
            elif atol is None:
                atol = 0.0

            filters.append(EndpointFilter(spec.a, spec.b, rtol, atol))
        return filters

    def check(self):
        # Generate values for the arguments
        args = get_args(self.argspec, self.n)
        param_filter = self.get_param_filter()
        param_columns = tuple(range(args.shape[1]))
        result_columns = args.shape[1]
        args = np.hstack((args, args[:, self.index].reshape(args.shape[0], 1)))
        FuncData(self.idmap, args,
                 param_columns=param_columns, result_columns=result_columns,
                 rtol=self.rtol, atol=self.atol, vectorized=False,
                 param_filter=param_filter).check()


def _assert_inverts(*a, **kw):
    d = _CDFData(*a, **kw)
    d.check()


def _binomial_cdf(k, n, p):
    k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
    if k <= 0:
        return mpmath.mpf(0)
    elif k >= n:
        return mpmath.mpf(1)

    onemp = mpmath.fsub(1, p, exact=True)
    return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)


def _f_cdf(dfn, dfd, x):
    if x < 0:
        return mpmath.mpf(0)
    dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
    ub = dfn*x/(dfn*x + dfd)
    res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
    return res


def _student_t_cdf(df, t, dps=None):
    if dps is None:
        dps = mpmath.mp.dps
    with mpmath.workdps(dps):
        df, t = mpmath.mpf(df), mpmath.mpf(t)
        fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df)
        fac *= t*mpmath.gamma(0.5*(df + 1))
        fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df)
        return 0.5 + fac


def _noncentral_chi_pdf(t, df, nc):
    res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
    res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
    return res


def _noncentral_chi_cdf(x, df, nc, dps=None):
    if dps is None:
        dps = mpmath.mp.dps
    x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
    with mpmath.workdps(dps):
        res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
        return res


def _tukey_lmbda_quantile(p, lmbda):
    # For lmbda != 0
    return (p**lmbda - (1 - p)**lmbda)/lmbda


@pytest.mark.slow
@check_version(mpmath, '0.19')
class TestCDFlib:

    @pytest.mark.xfail(run=False)
    def test_bdtrik(self):
        _assert_inverts(
            sp.bdtrik,
            _binomial_cdf,
            0, [ProbArg(), IntArg(1, 1000), ProbArg()],
            rtol=1e-4)

    def test_bdtrin(self):
        _assert_inverts(
            sp.bdtrin,
            _binomial_cdf,
            1, [IntArg(1, 1000), ProbArg(), ProbArg()],
            rtol=1e-4, endpt_atol=[None, None, 1e-6])

    def test_btdtria(self):
        _assert_inverts(
            sp.btdtria,
            lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
            0, [ProbArg(), Arg(0, 1e2, inclusive_a=False),
                Arg(0, 1, inclusive_a=False, inclusive_b=False)],
            rtol=1e-6)

    def test_btdtrib(self):
        # Use small values of a or mpmath doesn't converge
        _assert_inverts(
            sp.btdtrib,
            lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
            1,
            [Arg(0, 1e2, inclusive_a=False), ProbArg(),
             Arg(0, 1, inclusive_a=False, inclusive_b=False)],
            rtol=1e-7,
            endpt_atol=[None, 1e-18, 1e-15])

    @pytest.mark.xfail(run=False)
    def test_fdtridfd(self):
        _assert_inverts(
            sp.fdtridfd,
            _f_cdf,
            1,
            [IntArg(1, 100), ProbArg(), Arg(0, 100, inclusive_a=False)],
            rtol=1e-7)

    def test_gdtria(self):
        _assert_inverts(
            sp.gdtria,
            lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
            0,
            [ProbArg(), Arg(0, 1e3, inclusive_a=False),
             Arg(0, 1e4, inclusive_a=False)],
            rtol=1e-7,
            endpt_atol=[None, 1e-7, 1e-10])

    def test_gdtrib(self):
        # Use small values of a and x or mpmath doesn't converge
        _assert_inverts(
            sp.gdtrib,
            lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
            1,
            [Arg(0, 1e2, inclusive_a=False), ProbArg(),
             Arg(0, 1e3, inclusive_a=False)],
            rtol=1e-5)

    def test_gdtrix(self):
        _assert_inverts(
            sp.gdtrix,
            lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
            2,
            [Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
             ProbArg()],
            rtol=1e-7,
            endpt_atol=[None, 1e-7, 1e-10])

    # Overall nrdtrimn and nrdtrisd are not performing well with infeasible/edge
    # combinations of sigma and x, hence restricted the domains to still use the
    # testing machinery, also see gh-20069

    # nrdtrimn signature: p, sd, x
    # nrdtrisd signature: mn, p, x
    def test_nrdtrimn(self):
        _assert_inverts(
            sp.nrdtrimn,
            lambda x, y, z: mpmath.ncdf(z, x, y),
            0,
            [ProbArg(),  # CDF value p
             Arg(0.1, np.inf, inclusive_a=False, inclusive_b=False),  # sigma
             Arg(-1e10, 1e10)],  # x
            rtol=1e-5)

    def test_nrdtrisd(self):
        _assert_inverts(
            sp.nrdtrisd,
            lambda x, y, z: mpmath.ncdf(z, x, y),
            1,
            [Arg(-np.inf, 10, inclusive_a=False, inclusive_b=False),  # mn
             ProbArg(),  # CDF value p
             Arg(10, 1e100)],  # x
            rtol=1e-5)

    def test_stdtr(self):
        # Ideally the left endpoint for Arg() should be 0.
        assert_mpmath_equal(
            sp.stdtr,
            _student_t_cdf,
            [IntArg(1, 100), Arg(1e-10, np.inf)], rtol=1e-7)

    @pytest.mark.xfail(run=False)
    def test_stdtridf(self):
        _assert_inverts(
            sp.stdtridf,
            _student_t_cdf,
            0, [ProbArg(), Arg()], rtol=1e-7)

    def test_stdtrit(self):
        _assert_inverts(
            sp.stdtrit,
            _student_t_cdf,
            1, [IntArg(1, 100), ProbArg()], rtol=1e-7,
            endpt_atol=[None, 1e-10])

    def test_chdtriv(self):
        _assert_inverts(
            sp.chdtriv,
            lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True),
            0, [ProbArg(), IntArg(1, 100)], rtol=1e-4)

    @pytest.mark.xfail(run=False)
    def test_chndtridf(self):
        # Use a larger atol since mpmath is doing numerical integration
        _assert_inverts(
            sp.chndtridf,
            _noncentral_chi_cdf,
            1, [Arg(0, 100, inclusive_a=False), ProbArg(),
                Arg(0, 100, inclusive_a=False)],
            n=1000, rtol=1e-4, atol=1e-15)

    @pytest.mark.xfail(run=False)
    def test_chndtrinc(self):
        # Use a larger atol since mpmath is doing numerical integration
        _assert_inverts(
            sp.chndtrinc,
            _noncentral_chi_cdf,
            2, [Arg(0, 100, inclusive_a=False), IntArg(1, 100), ProbArg()],
            n=1000, rtol=1e-4, atol=1e-15)

    def test_chndtrix(self):
        # Use a larger atol since mpmath is doing numerical integration
        _assert_inverts(
            sp.chndtrix,
            _noncentral_chi_cdf,
            0, [ProbArg(), IntArg(1, 100), Arg(0, 100, inclusive_a=False)],
            n=1000, rtol=1e-4, atol=1e-15,
            endpt_atol=[1e-6, None, None])

    def test_tklmbda_zero_shape(self):
        # When lmbda = 0 the CDF has a simple closed form
        one = mpmath.mpf(1)
        assert_mpmath_equal(
            lambda x: sp.tklmbda(x, 0),
            lambda x: one/(mpmath.exp(-x) + one),
            [Arg()], rtol=1e-7)

    def test_tklmbda_neg_shape(self):
        _assert_inverts(
            sp.tklmbda,
            _tukey_lmbda_quantile,
            0, [ProbArg(), Arg(-25, 0, inclusive_b=False)],
            spfunc_first=False, rtol=1e-5,
            endpt_atol=[1e-9, 1e-5])

    @pytest.mark.xfail(run=False)
    def test_tklmbda_pos_shape(self):
        _assert_inverts(
            sp.tklmbda,
            _tukey_lmbda_quantile,
            0, [ProbArg(), Arg(0, 100, inclusive_a=False)],
            spfunc_first=False, rtol=1e-5)

    # The values of lmdba are chosen so that 1/lmbda is exact.
    @pytest.mark.parametrize('lmbda', [0.5, 1.0, 8.0])
    def test_tklmbda_lmbda1(self, lmbda):
        bound = 1/lmbda
        assert_equal(sp.tklmbda([-bound, bound], lmbda), [0.0, 1.0])


funcs = [
    ("btdtria", 3),
    ("btdtrib", 3),
    ("bdtrik", 3),
    ("bdtrin", 3),
    ("chdtriv", 2),
    ("chndtr", 3),
    ("chndtrix", 3),
    ("chndtridf", 3),
    ("chndtrinc", 3),
    ("fdtridfd", 3),
    ("ncfdtr", 4),
    ("ncfdtri", 4),
    ("ncfdtridfn", 4),
    ("ncfdtridfd", 4),
    ("ncfdtrinc", 4),
    ("gdtrix", 3),
    ("gdtrib", 3),
    ("gdtria", 3),
    ("nbdtrik", 3),
    ("nbdtrin", 3),
    ("nrdtrimn", 3),
    ("nrdtrisd", 3),
    ("pdtrik", 2),
    ("stdtr", 2),
    ("stdtrit", 2),
    ("stdtridf", 2),
    ("nctdtr", 3),
    ("nctdtrit", 3),
    ("nctdtridf", 3),
    ("nctdtrinc", 3),
    ("tklmbda", 2),
]


@pytest.mark.parametrize('func,numargs', funcs, ids=[x[0] for x in funcs])
def test_nonfinite(func, numargs):

    rng = np.random.default_rng(1701299355559735)
    func = getattr(sp, func)
    args_choices = [(float(x), np.nan, np.inf, -np.inf) for x in rng.random(numargs)]

    for args in itertools.product(*args_choices):
        res = func(*args)

        if any(np.isnan(x) for x in args):
            # Nan inputs should result to nan output
            assert_equal(res, np.nan)
        else:
            # All other inputs should return something (but not
            # raise exceptions or cause hangs)
            pass


def test_chndtrix_gh2158():
    # test that gh-2158 is resolved; previously this blew up
    res = sp.chndtrix(0.999999, 2, np.arange(20.)+1e-6)

    # Generated in R
    # options(digits=16)
    # ncp <- seq(0, 19) + 1e-6
    # print(qchisq(0.999999, df = 2, ncp = ncp))
    res_exp = [27.63103493142305, 35.25728589950540, 39.97396073236288,
               43.88033702110538, 47.35206403482798, 50.54112500166103,
               53.52720257322766, 56.35830042867810, 59.06600769498512,
               61.67243118946381, 64.19376191277179, 66.64228141346548,
               69.02756927200180, 71.35726934749408, 73.63759723904816,
               75.87368842650227, 78.06984431185720, 80.22971052389806,
               82.35640899964173, 84.45263768373256]
    assert_allclose(res, res_exp)

@pytest.mark.xfail_on_32bit("32bit fails due to algorithm threshold")
def test_nctdtr_gh19896():
    # test that gh-19896 is resolved.
    # Compared to SciPy 1.11 results from Fortran code.
    dfarr = [0.98, 9.8, 98, 980]
    pnoncarr = [-3.8, 0.38, 3.8, 38]
    tarr = [0.0015, 0.15, 1.5, 15]
    resarr = [0.9999276519560749, 0.9999276519560749, 0.9999908831755221,
              0.9999990265452424, 0.3524153312279712, 0.39749697267251416,
              0.7168629634895805, 0.9656246449259646, 7.234804392512006e-05,
              7.234804392512006e-05, 0.03538804607509127, 0.795482701508521,
              0.0, 0.0, 0.0,
              0.011927908523093889, 0.9999276519560749, 0.9999276519560749,
              0.9999997441133123, 1.0, 0.3525155979118013,
              0.4076312014048369, 0.8476794017035086, 0.9999999297116268,
              7.234804392512006e-05, 7.234804392512006e-05, 0.013477443099785824,
              0.9998501512331494, 0.0, 0.0,
              0.0, 6.561112613212572e-07, 0.9999276519560749,
              0.9999276519560749, 0.9999999313496014, 1.0,
              0.3525281784865706, 0.40890253001898014, 0.8664672830017024,
              1.0, 7.234804392512006e-05, 7.234804392512006e-05,
              0.010990889489704836, 1.0, 0.0,
              0.0, 0.0, 0.0,
              0.9999276519560749, 0.9999276519560749, 0.9999999418789304,
              1.0, 0.35252945487817355, 0.40903153246690993,
              0.8684247068528264, 1.0, 7.234804392512006e-05,
              7.234804392512006e-05, 0.01075068918582911, 1.0,
              0.0, 0.0, 0.0, 0.0]
    actarr = []
    for df, p, t in itertools.product(dfarr, pnoncarr, tarr):
        actarr += [sp.nctdtr(df, p, t)]
    # The rtol is kept high on purpose to make it pass on 32bit systems
    assert_allclose(actarr, resarr, rtol=1e-6, atol=0.0)


def test_nctdtrinc_gh19896():
    # test that gh-19896 is resolved.
    # Compared to SciPy 1.11 results from Fortran code.
    dfarr = [0.001, 0.98, 9.8, 98, 980, 10000, 98, 9.8, 0.98, 0.001]
    parr = [0.001, 0.1, 0.3, 0.8, 0.999, 0.001, 0.1, 0.3, 0.8, 0.999]
    tarr = [0.0015, 0.15, 1.5, 15, 300, 0.0015, 0.15, 1.5, 15, 300]
    desired = [3.090232306168629, 1.406141304556198, 2.014225177124157,
               13.727067118283456, 278.9765683871208, 3.090232306168629,
               1.4312427877936222, 2.014225177124157, 3.712743137978295,
               -3.086951096691082]
    actual = sp.nctdtrinc(dfarr, parr, tarr)
    assert_allclose(actual, desired, rtol=5e-12, atol=0.0)


def test_stdtr_stdtrit_neg_inf():
    # -inf was treated as +inf and values from the normal were returned
    assert np.all(np.isnan(sp.stdtr(-np.inf, [-np.inf, -1.0, 0.0, 1.0, np.inf])))
    assert np.all(np.isnan(sp.stdtrit(-np.inf, [0.0, 0.25, 0.5, 0.75, 1.0])))


def test_bdtrik_nbdtrik_inf():
    y = np.array(
        [np.nan,-np.inf,-10.0, -1.0, 0.0, .00001, .5, 0.9999, 1.0, 10.0, np.inf])
    y = y[:,None]
    p = np.atleast_2d(
        [np.nan, -np.inf, -10.0, -1.0, 0.0, .00001, .5, 1.0, np.inf])
    assert np.all(np.isnan(sp.bdtrik(y, np.inf, p)))
    assert np.all(np.isnan(sp.nbdtrik(y, np.inf, p)))