File size: 6,545 Bytes
2f1dfc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose,
                           assert_array_almost_equal, assert_)

from scipy.special import logsumexp, softmax


def test_logsumexp():
    # Test whether logsumexp() function correctly handles large inputs.
    a = np.arange(200)
    desired = np.log(np.sum(np.exp(a)))
    assert_almost_equal(logsumexp(a), desired)

    # Now test with large numbers
    b = [1000, 1000]
    desired = 1000.0 + np.log(2.0)
    assert_almost_equal(logsumexp(b), desired)

    n = 1000
    b = np.full(n, 10000, dtype='float64')
    desired = 10000.0 + np.log(n)
    assert_almost_equal(logsumexp(b), desired)

    x = np.array([1e-40] * 1000000)
    logx = np.log(x)

    X = np.vstack([x, x])
    logX = np.vstack([logx, logx])
    assert_array_almost_equal(np.exp(logsumexp(logX)), X.sum())
    assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
    assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))

    # Handling special values properly
    assert_equal(logsumexp(np.inf), np.inf)
    assert_equal(logsumexp(-np.inf), -np.inf)
    assert_equal(logsumexp(np.nan), np.nan)
    assert_equal(logsumexp([-np.inf, -np.inf]), -np.inf)

    # Handling an array with different magnitudes on the axes
    assert_array_almost_equal(logsumexp([[1e10, 1e-10],
                                         [-1e10, -np.inf]], axis=-1),
                              [1e10, -1e10])

    # Test keeping dimensions
    assert_array_almost_equal(logsumexp([[1e10, 1e-10],
                                         [-1e10, -np.inf]],
                                        axis=-1,
                                        keepdims=True),
                              [[1e10], [-1e10]])

    # Test multiple axes
    assert_array_almost_equal(logsumexp([[1e10, 1e-10],
                                         [-1e10, -np.inf]],
                                        axis=(-1,-2)),
                              1e10)


def test_logsumexp_b():
    a = np.arange(200)
    b = np.arange(200, 0, -1)
    desired = np.log(np.sum(b*np.exp(a)))
    assert_almost_equal(logsumexp(a, b=b), desired)

    a = [1000, 1000]
    b = [1.2, 1.2]
    desired = 1000 + np.log(2 * 1.2)
    assert_almost_equal(logsumexp(a, b=b), desired)

    x = np.array([1e-40] * 100000)
    b = np.linspace(1, 1000, 100000)
    logx = np.log(x)

    X = np.vstack((x, x))
    logX = np.vstack((logx, logx))
    B = np.vstack((b, b))
    assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
    assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
                                (B * X).sum(axis=0))
    assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
                                (B * X).sum(axis=1))


def test_logsumexp_sign():
    a = [1,1,1]
    b = [1,-1,-1]

    r, s = logsumexp(a, b=b, return_sign=True)
    assert_almost_equal(r,1)
    assert_equal(s,-1)


def test_logsumexp_sign_zero():
    a = [1,1]
    b = [1,-1]

    r, s = logsumexp(a, b=b, return_sign=True)
    assert_(not np.isfinite(r))
    assert_(not np.isnan(r))
    assert_(r < 0)
    assert_equal(s,0)


def test_logsumexp_sign_shape():
    a = np.ones((1,2,3,4))
    b = np.ones_like(a)

    r, s = logsumexp(a, axis=2, b=b, return_sign=True)

    assert_equal(r.shape, s.shape)
    assert_equal(r.shape, (1,2,4))

    r, s = logsumexp(a, axis=(1,3), b=b, return_sign=True)

    assert_equal(r.shape, s.shape)
    assert_equal(r.shape, (1,3))


def test_logsumexp_complex_sign():
    a = np.array([1 + 1j, 2 - 1j, -2 + 3j])

    r, s = logsumexp(a, return_sign=True)

    expected_sumexp = np.exp(a).sum()
    # This is the numpy>=2.0 convention for np.sign
    expected_sign = expected_sumexp / abs(expected_sumexp)

    assert_allclose(s, expected_sign)
    assert_allclose(s * np.exp(r), expected_sumexp)


def test_logsumexp_shape():
    a = np.ones((1, 2, 3, 4))
    b = np.ones_like(a)

    r = logsumexp(a, axis=2, b=b)
    assert_equal(r.shape, (1, 2, 4))

    r = logsumexp(a, axis=(1, 3), b=b)
    assert_equal(r.shape, (1, 3))


def test_logsumexp_b_zero():
    a = [1,10000]
    b = [1,0]

    assert_almost_equal(logsumexp(a, b=b), 1)


def test_logsumexp_b_shape():
    a = np.zeros((4,1,2,1))
    b = np.ones((3,1,5))

    logsumexp(a, b=b)


def test_softmax_fixtures():
    assert_allclose(softmax([1000, 0, 0, 0]), np.array([1, 0, 0, 0]),
                    rtol=1e-13)
    assert_allclose(softmax([1, 1]), np.array([.5, .5]), rtol=1e-13)
    assert_allclose(softmax([0, 1]), np.array([1, np.e])/(1 + np.e),
                    rtol=1e-13)

    # Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
    # converted to float.
    x = np.arange(4)
    expected = np.array([0.03205860328008499,
                         0.08714431874203256,
                         0.23688281808991013,
                         0.6439142598879722])

    assert_allclose(softmax(x), expected, rtol=1e-13)

    # Translation property.  If all the values are changed by the same amount,
    # the softmax result does not change.
    assert_allclose(softmax(x + 100), expected, rtol=1e-13)

    # When axis=None, softmax operates on the entire array, and preserves
    # the shape.
    assert_allclose(softmax(x.reshape(2, 2)), expected.reshape(2, 2),
                    rtol=1e-13)


def test_softmax_multi_axes():
    assert_allclose(softmax([[1000, 0], [1000, 0]], axis=0),
                    np.array([[.5, .5], [.5, .5]]), rtol=1e-13)
    assert_allclose(softmax([[1000, 0], [1000, 0]], axis=1),
                    np.array([[1, 0], [1, 0]]), rtol=1e-13)

    # Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
    # converted to float.
    x = np.array([[-25, 0, 25, 50],
                  [1, 325, 749, 750]])
    expected = np.array([[2.678636961770877e-33,
                          1.9287498479371314e-22,
                          1.3887943864771144e-11,
                          0.999999999986112],
                         [0.0,
                          1.9444526359919372e-185,
                          0.2689414213699951,
                          0.7310585786300048]])
    assert_allclose(softmax(x, axis=1), expected, rtol=1e-13)
    assert_allclose(softmax(x.T, axis=0), expected.T, rtol=1e-13)

    # 3-d input, with a tuple for the axis.
    x3d = x.reshape(2, 2, 2)
    assert_allclose(softmax(x3d, axis=(1, 2)), expected.reshape(2, 2, 2),
                    rtol=1e-13)