File size: 11,322 Bytes
11ed373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

# DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
# https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py

import torch

import triton
import triton.language as tl


def next_power_of_2(n):
    n -= 1
    n |= n >> 1
    n |= n >> 2
    n |= n >> 4
    n |= n >> 8
    n |= n >> 16
    n += 1
    return n


def num_warps(n):
    if n < 512:
        return 4
    if n < 2048:
        return 8
    return 16


@triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[6] * meta['BLOCK'])})
@triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[6] * meta['BLOCK'])})
@triton.jit
def _forward(X, scale, LUT, RPE, KP_M, ATTN_M, sizemax, stride_zx, stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm,
             stride_zattnm, **meta):
    TN = meta['TN']
    BLOCK = meta['BLOCK']
    pidhm = tl.program_id(0)
    pidz = tl.program_id(1)
    # create index ranges
    rxm = pidhm % BLOCK
    rbm = pidhm // BLOCK
    rxn = tl.arange(0, TN) % BLOCK
    rbn = tl.arange(0, TN) // BLOCK
    # extract information from LUT
    header = LUT + rbm * 2
    size = tl.load(header + 0)
    offset = tl.load(header + 1)
    check = rbn < size
    rbmn = tl.where(check, rbn, size - 1)
    # block id and column id
    blockid = tl.load(LUT + offset + rbmn * 4 + 0)
    columnid = tl.load(LUT + offset + rbmn * 4 + 1)
    rowid = tl.load(LUT + offset + rbmn * 4 + 2)
    headid = tl.load(LUT + offset + rbmn * 4 + 3)
    # pointers to X
    px = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
    x = tl.load(px, mask=check, other=-float('inf'))
    x = x.to(tl.float32)
    # apply scale
    if meta['APPLY_SCALE']:
        x = x * scale
    # apply RPE
    if meta['APPLY_RPE']:
        prpe = RPE + pidz * stride_zrpe + headid * stride_hrpe + columnid * BLOCK + rowid * BLOCK * stride_srpe + rxm * stride_srpe + rxn
        rpe = tl.load(prpe, mask=check, other=0)
        x = x + rpe
    # apply key-padding mask
    if meta['APPLY_KP_MASK']:
        pkp_m = KP_M + pidz * stride_zkpm + columnid * BLOCK + rxn
        kp_m = tl.load(pkp_m, mask=check, other=-float('inf'))
        if meta['KP_MASK_MUL']:
            kp_m = tl.where(kp_m == 0, -float('inf'), 0.)
        x = x + kp_m
    # apply attention mask
    if meta['APPLY_ATTN_MASK']:
        pattn_m = ATTN_M + columnid * BLOCK + rowid * BLOCK * stride_zattnm + rxm * stride_zattnm + rxn
        attn_m = tl.load(pattn_m, mask=check, other=-float('inf'))
        if meta['ATTN_MASK_MUL']:
            attn_m = tl.where(attn_m == 0, -float('inf'), 0.)
        x = x + attn_m
    # computation
    x = tl.softmax(x)
    tl.store(px, x, mask=check)


@triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[4] * meta['BLOCK'])})
@triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[4]) * meta['BLOCK']})
@triton.jit
def _backward(X, scale, DX, LUT, sizemax, stride_zx, stride_zdx, **meta):
    pidhm = tl.program_id(0)
    pidz = tl.program_id(1)
    TN = meta['TN']
    BLOCK = meta['BLOCK']
    # create index ranges
    rxm = pidhm % BLOCK
    rbm = pidhm // BLOCK
    rxn = tl.arange(0, TN) % BLOCK
    rbn = tl.arange(0, TN) // BLOCK
    # extract information from look-up table
    header = LUT + rbm * 2
    size = tl.load(header + 0)
    offset = tl.load(header + 1)
    # bounds checking on lut
    check = rbn < size
    rbmn = tl.where(check, rbn, size - 1)
    # initialize pointers to block-sparse input
    blockid = tl.load(LUT + offset + rbmn * 4)
    X = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
    DX = DX + pidz * stride_zdx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
    # compute fused softmax backward
    x = tl.load(X, mask=check, other=0)
    dx = tl.load(DX, mask=check, other=0)
    x = x.to(tl.float32)
    dx = dx.to(tl.float32)
    y = x * (dx - tl.sum(x * dx, 0)) * scale
    tl.store(DX, y, mask=check)


class _sparse_softmax(torch.autograd.Function):

    bwd_kernels = dict()

    @staticmethod
    def make_lut(layout, block, device):
        _empty = torch.tensor([], dtype=torch.int64, device=layout.device)
        sizes = _empty.clone()
        # sizes along rows
        for h in range(layout.shape[0]):
            sizes = torch.cat((sizes, layout[h, :, :].sum(-1)))
        # offsets in block format
        offsets = torch.zeros_like(sizes)
        offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
        # block indices
        idx = torch.arange(layout.sum())
        head = layout.nonzero()[:, 0]
        rows = layout.nonzero()[:, 1]
        columns = layout.nonzero()[:, 2]
        core = torch.stack((idx, columns, rows, head), dim=1).view(-1)
        # construct look-up table
        offsets = offsets * 4 + 2 * sizes.numel()
        header = torch.stack((sizes, offsets), dim=1).view(-1)
        lut = torch.cat((header, core)).type(torch.int32).to(device)
        return lut, int(sizes.max())

    @staticmethod
    def forward(ctx, x, scale, rpe, key_padding_mask, attn_mask, kp_mask_mode, attn_mask_mode, spdims, block, lut,
                num_blocks, maxlut, bench, time):

        apply_scale = False if scale == 1.0 else True

        # handle None rpe
        if rpe is None:
            apply_rpe = False
            stride_zrpe, stride_hrpe, stride_srpe = 0, 0, 0
            rpe = torch.empty(0, dtype=x.dtype, device=x.device)
        else:
            apply_rpe = True
            stride_zrpe, stride_hrpe, stride_srpe = rpe.stride(0), rpe.stride(1), rpe.stride(2)

        # handle None key_padding_mask
        if key_padding_mask is None:
            apply_kp_mask = False
            stride_zkpm = 0
            key_padding_mask = torch.empty(0, dtype=x.dtype, device=x.device)
        else:
            apply_kp_mask = True
            stride_zkpm = key_padding_mask.stride(0)

        # handle None attention_mask
        if attn_mask is None:
            apply_attn_mask = False
            stride_zattnm = 0
            attn_mask = torch.empty(0, dtype=x.dtype, device=x.device)
        else:
            apply_attn_mask = True
            stride_zattnm = attn_mask.stride(0)

        # run kernel
        M = x.shape[0]
        meta = {
            'BLOCK': block,
            'APPLY_SCALE': apply_scale,
            'APPLY_RPE': apply_rpe,
            'APPLY_KP_MASK': apply_kp_mask,
            'APPLY_ATTN_MASK': apply_attn_mask,
            'KP_MASK_MUL': kp_mask_mode == 'mul',
            'ATTN_MASK_MUL': attn_mask_mode == 'mul',
        }
        grid = lambda opt: [spdims[0] * spdims[1] * block, M]
        _forward[grid](x, scale, lut, rpe, key_padding_mask, attn_mask, maxlut, x.stride(0),\
                       stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm, **meta)

        # save to context
        ctx.mark_dirty(x)
        ctx.save_for_backward(x, lut)
        ctx.spdims = spdims
        ctx.block = block
        ctx.maxlut = maxlut
        ctx.scale = scale
        ctx.apply_scale = apply_scale
        ctx.apply_rpe = apply_rpe
        ctx.apply_kp_mask = apply_kp_mask
        ctx.apply_attn_mask = apply_attn_mask
        ctx.kp_mask_mode = kp_mask_mode
        ctx.attn_mask_mode = attn_mask_mode
        return x

    @staticmethod
    def backward(ctx, dx):

        # retrieve from context
        x, lut = ctx.saved_tensors
        # run kernel
        M = x.shape[0]
        grid = lambda opt: [ctx.spdims[0] * ctx.spdims[1] * ctx.block, M]
        _backward[grid](x, ctx.scale, dx, lut, ctx.maxlut, x.stride(0), dx.stride(0), BLOCK=ctx.block)
        return dx, None, None, None, None, None, None, None, None, None, None, None, None, None, None


class Softmax:
    """Block-Sparse Softmax class; this class computes softmax on a block sparse matrix. It is also able to apply either/all of the following masks:
       - relative position embedding
       - key padding mask
       - attention mask

    For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
    """

    def sparse_softmax(*args, **kwargs):
        return _sparse_softmax.apply(*args, **kwargs)

    def make_lut(self, device):
        """Generates the sparsity layout used in block-sparse softmax
        """
        key = (device, )
        if key not in self.lut_cache:
            self.lut_cache[key] = _sparse_softmax.make_lut(self.layout, self.block, device)
        return self.lut_cache[key]

    def __init__(self, layout, block, bench=False):
        """Initialize the Block-Sparse Softmax class.

        Arguments:
             layout: required: sparsity layout tensor
             block: required: an integer determining the block size.
             bench: optional: set if you want to do benchmarking
        """

        self.num_blocks = layout.sum().item()
        self.spdims = layout.shape
        self.layout = layout
        self.block = block
        self.bench = bench
        self.lut_cache = dict()

    def __call__(self,
                 x,
                 scale=1.,
                 rpe=None,
                 key_padding_mask=None,
                 attn_mask=None,
                 key_padding_mask_mode='add',
                 attn_mask_mode='add'):
        """Applies softmax on a Block-Sparse input tensor.

        For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509

        Arguments:
             x: required: a block-sparse tensor that softmax is applied on it; computation will be in place and result will be returned in the same tensor
             scale: optional: a float value; x values will be multiplied by this value before normalization. Default value is 1.0.
             rpe: optional: a tensor same dimension as x that is used as relative position embedding
             key_padding_mask: optional: a mask tensor of size (BatchSize X SequenceLength)
             attn_mask: optional: a mask tensor of size (SequenceLength X SequenceLength); currently only 2D is supported
             key_padding_mask_mode: optional: a boolean determining if key_padding_mask needs to be added or multiplied
             attn_mask_mode: optional: a boolean determining if attn_mask needs to be added or multiplied

        Return:
             x: a block-sparse tensor contains normalized input x using softmax; and masks applied if given
        """

        time_y = [None]
        if rpe is not None and rpe.dtype != x.dtype:
            raise ValueError('relative position embedding must be %s' % x.dtype)
        if attn_mask is not None and attn_mask.dtype != x.dtype:
            raise ValueError('Attention mask must be %s' % x.dtype)
        if key_padding_mask is not None and key_padding_mask.dtype != x.dtype:
            raise ValueError('Key padding mask must be %s' % x.dtype)
        lut, maxlut = self.make_lut(x.device)
        x = Softmax.sparse_softmax(x, scale, rpe, key_padding_mask, attn_mask, key_padding_mask_mode, attn_mask_mode,
                                   self.spdims, self.block, lut, self.num_blocks, maxlut, self.bench, time_y)
        self.time_y = time_y[0]
        return x