File size: 19,246 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import types
import torch
import numpy as np
from deepspeed.accelerator import get_accelerator
from deepspeed.utils.torch import required_torch_version
from deepspeed import comm as dist


class ZeroOneAdam(torch.optim.Optimizer):
    """Implements the 0/1 Adam algorithm. Currently GPU-only.
    For usage example please see https://www.deepspeed.ai/tutorials/zero-one-adam/
    For technical details please read https://arxiv.org/abs/2202.06009
    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square. (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability. (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        var_freeze_step (int, optional): The latest step to update the variance,
            using the notation from https://arxiv.org/abs/2202.06009, it denotes the
            max{i|i in T_v}. Note that this is different from the freeze step from the
            1-bit Adam. The var_freeze_step is usually the end of the learning rate warmup
            and thus does not require tuning. (default: 100000)
        var_update_scaler (int, optional): The interval to update the variance. Note that
            the update policy for variance follows an exponential rule, where var_update_scaler
            denotes the kappa in the 0/1 Adam paper. (default: 16)
        local_step_scaler (int, optional): The interval to scale the local steps interval
            according to the learning rate policy. (default: 32678)
        local_step_clipper (int, optional): The largest interval for local steps with
            learning rate policy. This corresponds to the variable H in the 0/1 Adam paper.
            (default: 16)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False) NOT SUPPORTED in 0/1 Adam!
        eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
            adds eps to the bias-corrected second moment estimate before
            evaluating square root instead of adding it to the square root of
            second moment estimate as in the original paper. (default: False)
        cuda_aware (boolean, required): Set True if the underlying MPI implementation
            supports CUDA-Aware communication. (default: False)
        comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl')
    .. _Adam\\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

    def __init__(self,
                 params,
                 deepspeed=None,
                 lr=1e-3,
                 bias_correction=True,
                 betas=(0.9, 0.999),
                 eps=1e-8,
                 eps_inside_sqrt=False,
                 weight_decay=0.,
                 max_grad_norm=0.,
                 var_freeze_step=100000,
                 var_update_scaler=16,
                 local_step_scaler=32678,
                 local_step_clipper=16,
                 amsgrad=False,
                 cuda_aware=False,
                 comm_backend_name='nccl'):

        if amsgrad:
            raise RuntimeError('0/1 Adam does not support the AMSGrad variant.')

        defaults = dict(lr=lr,
                        bias_correction=bias_correction,
                        betas=betas,
                        eps=eps,
                        weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm)

        super(ZeroOneAdam, self).__init__(params, defaults)
        self.eps_mode = 0 if eps_inside_sqrt else 1
        self.deepspeed = deepspeed
        self.initialize = False
        self.cuda_aware = cuda_aware
        self.using_pipeline = False

        self.var_freeze_step = var_freeze_step
        self.var_update_scaler = var_update_scaler
        self.local_step_scaler = local_step_scaler
        self.local_step_clipper = local_step_clipper
        self.freeze_key = False
        self.reinitial_error_buffer = False

        self.comm_backend_name = comm_backend_name

        assert dist.is_initialized(), "Please initialize the torch distributed backend."
        # Empty initializer. Set handle based on the comm backend as follows.
        self.comm_backend_handle = None
        if self.comm_backend_name == 'nccl':
            assert (
                required_torch_version(min_version=1.8)
            ), "Please use torch 1.8 or greater to enable NCCL backend in 0/1 Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend"
            from deepspeed.runtime.comm.nccl import NcclBackend
            self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
            self.comm_backend_handle = NcclBackend(self.deepspeed.mpu)
        elif self.comm_backend_name == 'mpi':
            from deepspeed.runtime.comm.mpi import MpiBackend
            self.comm_backend_handle = MpiBackend(cuda_aware)
        elif self.comm_backend_name == 'hccl':
            from deepspeed.runtime.comm.hccl import HcclBackend
            self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
            self.comm_backend_handle = HcclBackend(self.deepspeed.mpu)
        self.size = self.comm_backend_handle.size

        self.divider = int(self.size * 8 / np.gcd(self.size, 8))

    def step(self, closure=None, grads=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
            grads (list of tensors, optional): weight gradient to use for the
                optimizer update. If gradients have type torch.half, parameters
                are expected to be in type torch.float. (default: None)
            output params (list of tensors, optional): A reduced precision copy
                of the updated weights written out in addition to the regular
                updated weights. Have to be of same type as gradients. (default: None)
            scale (float, optional): factor to divide gradient tensor values
                by before applying to weights. (default: 1)
        """
        loss = None
        if closure is not None:
            loss = closure()

        if grads is None:
            grads_group = [None] * len(self.param_groups)
        # backward compatibility
        # assuming a list/generator of parameter means single group
        elif isinstance(grads, types.GeneratorType):
            grads_group = [grads]
        elif type(grads[0]) != list:
            grads_group = [grads]
        else:
            grads_group = grads

        for group, grads_this_group in zip(self.param_groups, grads_group):
            if grads_this_group is None:
                grads_this_group = [None] * len(group['params'])

            bias_correction = 1 if group['bias_correction'] else 0

            for p, grad in zip(group['params'], grads_this_group):
                if p.grad is None and grad is None:
                    continue
                if grad is None:
                    grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('0/1 Adam does not support sparse gradients')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                if not self.initialize or 'worker_error' not in state.keys():
                    # Some scalars to help scale the variance update/local step policies
                    state['var_interval'] = 1
                    state['var_counter'] = 0
                    state['local_step_interval'] = 1
                    state['local_step_counter'] = 0
                    state['lrs'] = 0
                    state['tensor_size'] = torch.numel(p.data)
                    state['corrected_tensor_size'] = state['tensor_size']

                    if state['tensor_size'] % (self.size * self.divider) != 0:
                        state['corrected_tensor_size'] += ((self.size * self.divider) - (state['tensor_size'] %
                                                                                         (self.size * self.divider)))
                    state['server_chunk_size'] = state['corrected_tensor_size'] // self.size
                    get_accelerator().empty_cache()
                    state['worker_error'] = torch.zeros(state['corrected_tensor_size'], device=p.device)
                    state['server_error'] = torch.zeros(state['server_chunk_size'], device=p.device)
                    # Accumulation of momentum, i.e., the u variable in the 0/1 Adam paper
                    state['momentum_accumulator'] = torch.zeros_like(p.data)
                    get_accelerator().empty_cache()
                    # self.freeze_key = True
                    if not self.initialize and dist.get_rank() == 0:
                        print("Cupy Buffers Initialized Successfully.")

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                comm_buffer = state['momentum_accumulator']
                beta1, beta2 = group['betas']

                state['step'] += 1

                if self.initialize:
                    if self.freeze_key is False:
                        if state['step'] % state['var_interval'] == 0:
                            exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                            exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
                        else:
                            if self.size > 1:
                                with torch.no_grad():
                                    grad_onebit = self.comm_backend_handle.compressed_allreduce(
                                        grad, state['worker_error'], state['server_error'], self.deepspeed.local_rank)
                                    if 'exp_avg_mask' in group:
                                        if grad_onebit.device != group['exp_avg_mask'].device:
                                            group['exp_avg_mask'] = group['exp_avg_mask'].to(device=grad_onebit.device)
                                        grad_onebit.mul_(group['exp_avg_mask'])
                                    exp_avg.mul_(beta1).add_(1 - beta1, grad_onebit)
                    else:
                        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
                        state['lrs'] += group['lr']
                    grad = None

                if not self.initialize:
                    if self.size > 1:
                        comm_buffer.set_(
                            self.comm_backend_handle.compressed_allreduce(comm_buffer, state['worker_error'],
                                                                          state['server_error'],
                                                                          self.deepspeed.local_rank))
                        if 'exp_avg_mask' in group:
                            if comm_buffer.device != group['exp_avg_mask'].device:
                                group['exp_avg_mask'] = group['exp_avg_mask'].to(device=comm_buffer.device)
                            comm_buffer.mul_(group['exp_avg_mask'])

                if self.initialize:
                    update = exp_avg / (exp_avg_sq.sqrt() + group['eps'])
                    if group['weight_decay'] > 0.0:
                        update += group['weight_decay'] * p.data
                    with torch.no_grad():
                        p.data.add_(-group['lr'] * update)
                        if self.freeze_key is True:
                            comm_buffer.add_(-group['lr'] * update)
                    if state['step'] % state['local_step_interval'] == 0 and self.freeze_key:
                        with torch.no_grad():
                            p.data.add_(-1 * comm_buffer)
                            comm_buffer.mul_(exp_avg_sq.sqrt() + group['eps'])
                            if self.size > 1:
                                comm_buffer.copy_(
                                    self.comm_backend_handle.compressed_allreduce(comm_buffer, state['worker_error'],
                                                                                  state['server_error'],
                                                                                  self.deepspeed.local_rank))
                                if 'exp_avg_mask' in group:
                                    if comm_buffer.device != group['exp_avg_mask'].device:
                                        group['exp_avg_mask'] = group['exp_avg_mask'].to(device=comm_buffer.device)
                                    comm_buffer.mul_(group['exp_avg_mask'])
                            exp_avg.zero_().add_(comm_buffer / state['lrs'], alpha=-1)
                            p.data.add_(comm_buffer / (exp_avg_sq.sqrt() + group['eps']))
                            comm_buffer.zero_()

                            state['lrs'] = 0

                    # According to 0/1 Adam theory, a fixed variance would allow more accurate estimation of momentum
                    # However, in practice, we can also disable the manual freezing of variance, since the interval of
                    # updating variance will increase exponentially, so that it has negligible effect on the estimation.
                    if self.freeze_key is False:
                        if state['step'] % state['var_interval'] == 0:
                            state['var_counter'] += 1
                            if state['var_counter'] == self.var_update_scaler:
                                state['var_counter'] = 0
                                state['var_interval'] *= 2
                        if (state['step'] + 1) % state['var_interval'] == 0:
                            if self.using_pipeline:
                                self.deepspeed.pipeline_enable_backward_allreduce = True
                            else:
                                self.deepspeed.enable_backward_allreduce = True
                        else:
                            if self.using_pipeline:
                                self.deepspeed.pipeline_enable_backward_allreduce = False
                            else:
                                self.deepspeed.enable_backward_allreduce = False
                    else:
                        state['local_step_counter'] += 1
                        if state['local_step_counter'] == self.local_step_scaler:
                            state['local_step_counter'] = 0
                            state['local_step_interval'] = min(self.local_step_clipper,
                                                               state['local_step_interval'] * 2)

            if not self.initialize:
                print('Pop out errors', flush=True)
                self.freeze_key = False
                state.pop('worker_error')
                state.pop('server_error')

        if not self.initialize:
            self.initialize = True
            print(f"Finished the initialization step at rank {dist.get_rank()}")
            return loss

        if self.state[self.param_groups[0]['params'][0]]['step'] > self.var_freeze_step:
            self.freeze_key = True
            if self.using_pipeline:
                self.deepspeed.pipeline_enable_backward_allreduce = False
            else:
                self.deepspeed.enable_backward_allreduce = False

        if self.freeze_key is True and self.reinitial_error_buffer is False:
            # We need to reinitialize the error buffers when local step > 1 since
            # the errors will be logged for different metrics (gradient vs. accumulated momentum).
            for group in self.param_groups:
                for p in group['params']:
                    self.state[p]['worker_error'].zero_()
                    self.state[p]['server_error'].zero_()
            self.reinitial_error_buffer = True

        return loss

    def load_state_dict(self, state_dict):
        """
        Overrides load_state_dict() to add special handling when loading checkpoints
        """
        # Because at different stage exp_avg_mask may change (e.g.,
        # BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask
        # in checkpoints but always use the one user provided in training script.
        # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.)
        # Thus here we keep the exp_avg_mask unchanged when loading checkpoint
        for i, group in enumerate(self.param_groups):
            if 'exp_avg_mask' in group:
                state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask']
            elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]:
                state_dict['param_groups'][i].pop('exp_avg_mask')
        super().load_state_dict(state_dict)
        if self.state[self.param_groups[0]['params'][0]]['step'] < self.var_freeze_step:
            self.var_freeze_key = False
            if (self.state[self.param_groups[0]['params'][0]]['step'] +
                    1) % self.state[self.param_groups[0]['params'][0]]['var_interval'] == 0:
                if self.using_pipeline:
                    self.deepspeed.pipeline_enable_backward_allreduce = True
                else:
                    self.deepspeed.enable_backward_allreduce = True
            else:
                if self.using_pipeline:
                    self.deepspeed.pipeline_enable_backward_allreduce = False
                else:
                    self.deepspeed.enable_backward_allreduce = False
        else:
            self.var_freeze_key = True
            if self.using_pipeline:
                self.deepspeed.pipeline_enable_backward_allreduce = False
            else:
                self.deepspeed.enable_backward_allreduce = False
        self.reinitial_error_buffer = False
        for group in self.param_groups:
            for p in group['params']:
                if 'worker_error' in self.state[p]:
                    self.state[p].pop('worker_error')
                if 'server_error' in self.state[p]:
                    self.state[p].pop('server_error')
                if 'momentum_accumulator' in self.state[p]:
                    self.state[p].pop('momentum_accumulator')