File size: 75,272 Bytes
2792309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 |
"""
This module gathers tree-based methods, including decision, regression and
randomized trees. Single and multi-output problems are both handled.
"""
# Authors: Gilles Louppe <[email protected]>
# Peter Prettenhofer <[email protected]>
# Brian Holt <[email protected]>
# Noel Dawe <[email protected]>
# Satrajit Gosh <[email protected]>
# Joly Arnaud <[email protected]>
# Fares Hedayati <[email protected]>
# Nelson Liu <[email protected]>
#
# License: BSD 3 clause
import copy
import numbers
from abc import ABCMeta, abstractmethod
from math import ceil
from numbers import Integral, Real
import numpy as np
from scipy.sparse import issparse
from ..base import (
BaseEstimator,
ClassifierMixin,
MultiOutputMixin,
RegressorMixin,
_fit_context,
clone,
is_classifier,
)
from ..utils import Bunch, check_random_state, compute_sample_weight
from ..utils._param_validation import Hidden, Interval, RealNotInt, StrOptions
from ..utils.multiclass import check_classification_targets
from ..utils.validation import (
_assert_all_finite_element_wise,
_check_sample_weight,
assert_all_finite,
check_is_fitted,
)
from . import _criterion, _splitter, _tree
from ._criterion import Criterion
from ._splitter import Splitter
from ._tree import (
BestFirstTreeBuilder,
DepthFirstTreeBuilder,
Tree,
_build_pruned_tree_ccp,
ccp_pruning_path,
)
from ._utils import _any_isnan_axis0
__all__ = [
"DecisionTreeClassifier",
"DecisionTreeRegressor",
"ExtraTreeClassifier",
"ExtraTreeRegressor",
]
# =============================================================================
# Types and constants
# =============================================================================
DTYPE = _tree.DTYPE
DOUBLE = _tree.DOUBLE
CRITERIA_CLF = {
"gini": _criterion.Gini,
"log_loss": _criterion.Entropy,
"entropy": _criterion.Entropy,
}
CRITERIA_REG = {
"squared_error": _criterion.MSE,
"friedman_mse": _criterion.FriedmanMSE,
"absolute_error": _criterion.MAE,
"poisson": _criterion.Poisson,
}
DENSE_SPLITTERS = {"best": _splitter.BestSplitter, "random": _splitter.RandomSplitter}
SPARSE_SPLITTERS = {
"best": _splitter.BestSparseSplitter,
"random": _splitter.RandomSparseSplitter,
}
# =============================================================================
# Base decision tree
# =============================================================================
class BaseDecisionTree(MultiOutputMixin, BaseEstimator, metaclass=ABCMeta):
"""Base class for decision trees.
Warning: This class should not be used directly.
Use derived classes instead.
"""
_parameter_constraints: dict = {
"splitter": [StrOptions({"best", "random"})],
"max_depth": [Interval(Integral, 1, None, closed="left"), None],
"min_samples_split": [
Interval(Integral, 2, None, closed="left"),
Interval(RealNotInt, 0.0, 1.0, closed="right"),
],
"min_samples_leaf": [
Interval(Integral, 1, None, closed="left"),
Interval(RealNotInt, 0.0, 1.0, closed="neither"),
],
"min_weight_fraction_leaf": [Interval(Real, 0.0, 0.5, closed="both")],
"max_features": [
Interval(Integral, 1, None, closed="left"),
Interval(RealNotInt, 0.0, 1.0, closed="right"),
StrOptions({"sqrt", "log2"}),
None,
],
"random_state": ["random_state"],
"max_leaf_nodes": [Interval(Integral, 2, None, closed="left"), None],
"min_impurity_decrease": [Interval(Real, 0.0, None, closed="left")],
"ccp_alpha": [Interval(Real, 0.0, None, closed="left")],
"monotonic_cst": ["array-like", None],
}
@abstractmethod
def __init__(
self,
*,
criterion,
splitter,
max_depth,
min_samples_split,
min_samples_leaf,
min_weight_fraction_leaf,
max_features,
max_leaf_nodes,
random_state,
min_impurity_decrease,
class_weight=None,
ccp_alpha=0.0,
monotonic_cst=None,
):
self.criterion = criterion
self.splitter = splitter
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
self.random_state = random_state
self.min_impurity_decrease = min_impurity_decrease
self.class_weight = class_weight
self.ccp_alpha = ccp_alpha
self.monotonic_cst = monotonic_cst
def get_depth(self):
"""Return the depth of the decision tree.
The depth of a tree is the maximum distance between the root
and any leaf.
Returns
-------
self.tree_.max_depth : int
The maximum depth of the tree.
"""
check_is_fitted(self)
return self.tree_.max_depth
def get_n_leaves(self):
"""Return the number of leaves of the decision tree.
Returns
-------
self.tree_.n_leaves : int
Number of leaves.
"""
check_is_fitted(self)
return self.tree_.n_leaves
def _support_missing_values(self, X):
return (
not issparse(X)
and self._get_tags()["allow_nan"]
and self.monotonic_cst is None
)
def _compute_missing_values_in_feature_mask(self, X, estimator_name=None):
"""Return boolean mask denoting if there are missing values for each feature.
This method also ensures that X is finite.
Parameter
---------
X : array-like of shape (n_samples, n_features), dtype=DOUBLE
Input data.
estimator_name : str or None, default=None
Name to use when raising an error. Defaults to the class name.
Returns
-------
missing_values_in_feature_mask : ndarray of shape (n_features,), or None
Missing value mask. If missing values are not supported or there
are no missing values, return None.
"""
estimator_name = estimator_name or self.__class__.__name__
common_kwargs = dict(estimator_name=estimator_name, input_name="X")
if not self._support_missing_values(X):
assert_all_finite(X, **common_kwargs)
return None
with np.errstate(over="ignore"):
overall_sum = np.sum(X)
if not np.isfinite(overall_sum):
# Raise a ValueError in case of the presence of an infinite element.
_assert_all_finite_element_wise(X, xp=np, allow_nan=True, **common_kwargs)
# If the sum is not nan, then there are no missing values
if not np.isnan(overall_sum):
return None
missing_values_in_feature_mask = _any_isnan_axis0(X)
return missing_values_in_feature_mask
def _fit(
self,
X,
y,
sample_weight=None,
check_input=True,
missing_values_in_feature_mask=None,
):
random_state = check_random_state(self.random_state)
if check_input:
# Need to validate separately here.
# We can't pass multi_output=True because that would allow y to be
# csr.
# _compute_missing_values_in_feature_mask will check for finite values and
# compute the missing mask if the tree supports missing values
check_X_params = dict(
dtype=DTYPE, accept_sparse="csc", force_all_finite=False
)
check_y_params = dict(ensure_2d=False, dtype=None)
X, y = self._validate_data(
X, y, validate_separately=(check_X_params, check_y_params)
)
missing_values_in_feature_mask = (
self._compute_missing_values_in_feature_mask(X)
)
if issparse(X):
X.sort_indices()
if X.indices.dtype != np.intc or X.indptr.dtype != np.intc:
raise ValueError(
"No support for np.int64 index based sparse matrices"
)
if self.criterion == "poisson":
if np.any(y < 0):
raise ValueError(
"Some value(s) of y are negative which is"
" not allowed for Poisson regression."
)
if np.sum(y) <= 0:
raise ValueError(
"Sum of y is not positive which is "
"necessary for Poisson regression."
)
# Determine output settings
n_samples, self.n_features_in_ = X.shape
is_classification = is_classifier(self)
y = np.atleast_1d(y)
expanded_class_weight = None
if y.ndim == 1:
# reshape is necessary to preserve the data contiguity against vs
# [:, np.newaxis] that does not.
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
if is_classification:
check_classification_targets(y)
y = np.copy(y)
self.classes_ = []
self.n_classes_ = []
if self.class_weight is not None:
y_original = np.copy(y)
y_encoded = np.zeros(y.shape, dtype=int)
for k in range(self.n_outputs_):
classes_k, y_encoded[:, k] = np.unique(y[:, k], return_inverse=True)
self.classes_.append(classes_k)
self.n_classes_.append(classes_k.shape[0])
y = y_encoded
if self.class_weight is not None:
expanded_class_weight = compute_sample_weight(
self.class_weight, y_original
)
self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)
if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
y = np.ascontiguousarray(y, dtype=DOUBLE)
max_depth = np.iinfo(np.int32).max if self.max_depth is None else self.max_depth
if isinstance(self.min_samples_leaf, numbers.Integral):
min_samples_leaf = self.min_samples_leaf
else: # float
min_samples_leaf = int(ceil(self.min_samples_leaf * n_samples))
if isinstance(self.min_samples_split, numbers.Integral):
min_samples_split = self.min_samples_split
else: # float
min_samples_split = int(ceil(self.min_samples_split * n_samples))
min_samples_split = max(2, min_samples_split)
min_samples_split = max(min_samples_split, 2 * min_samples_leaf)
if isinstance(self.max_features, str):
if self.max_features == "sqrt":
max_features = max(1, int(np.sqrt(self.n_features_in_)))
elif self.max_features == "log2":
max_features = max(1, int(np.log2(self.n_features_in_)))
elif self.max_features is None:
max_features = self.n_features_in_
elif isinstance(self.max_features, numbers.Integral):
max_features = self.max_features
else: # float
if self.max_features > 0.0:
max_features = max(1, int(self.max_features * self.n_features_in_))
else:
max_features = 0
self.max_features_ = max_features
max_leaf_nodes = -1 if self.max_leaf_nodes is None else self.max_leaf_nodes
if len(y) != n_samples:
raise ValueError(
"Number of labels=%d does not match number of samples=%d"
% (len(y), n_samples)
)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, DOUBLE)
if expanded_class_weight is not None:
if sample_weight is not None:
sample_weight = sample_weight * expanded_class_weight
else:
sample_weight = expanded_class_weight
# Set min_weight_leaf from min_weight_fraction_leaf
if sample_weight is None:
min_weight_leaf = self.min_weight_fraction_leaf * n_samples
else:
min_weight_leaf = self.min_weight_fraction_leaf * np.sum(sample_weight)
# Build tree
criterion = self.criterion
if not isinstance(criterion, Criterion):
if is_classification:
criterion = CRITERIA_CLF[self.criterion](
self.n_outputs_, self.n_classes_
)
else:
criterion = CRITERIA_REG[self.criterion](self.n_outputs_, n_samples)
else:
# Make a deepcopy in case the criterion has mutable attributes that
# might be shared and modified concurrently during parallel fitting
criterion = copy.deepcopy(criterion)
SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS
splitter = self.splitter
if self.monotonic_cst is None:
monotonic_cst = None
else:
if self.n_outputs_ > 1:
raise ValueError(
"Monotonicity constraints are not supported with multiple outputs."
)
# Check to correct monotonicity constraint' specification,
# by applying element-wise logical conjunction
# Note: we do not cast `np.asarray(self.monotonic_cst, dtype=np.int8)`
# straight away here so as to generate error messages for invalid
# values using the original values prior to any dtype related conversion.
monotonic_cst = np.asarray(self.monotonic_cst)
if monotonic_cst.shape[0] != X.shape[1]:
raise ValueError(
"monotonic_cst has shape {} but the input data "
"X has {} features.".format(monotonic_cst.shape[0], X.shape[1])
)
valid_constraints = np.isin(monotonic_cst, (-1, 0, 1))
if not np.all(valid_constraints):
unique_constaints_value = np.unique(monotonic_cst)
raise ValueError(
"monotonic_cst must be None or an array-like of -1, 0 or 1, but"
f" got {unique_constaints_value}"
)
monotonic_cst = np.asarray(monotonic_cst, dtype=np.int8)
if is_classifier(self):
if self.n_classes_[0] > 2:
raise ValueError(
"Monotonicity constraints are not supported with multiclass "
"classification"
)
# Binary classification trees are built by constraining probabilities
# of the *negative class* in order to make the implementation similar
# to regression trees.
# Since self.monotonic_cst encodes constraints on probabilities of the
# *positive class*, all signs must be flipped.
monotonic_cst *= -1
if not isinstance(self.splitter, Splitter):
splitter = SPLITTERS[self.splitter](
criterion,
self.max_features_,
min_samples_leaf,
min_weight_leaf,
random_state,
monotonic_cst,
)
if is_classifier(self):
self.tree_ = Tree(self.n_features_in_, self.n_classes_, self.n_outputs_)
else:
self.tree_ = Tree(
self.n_features_in_,
# TODO: tree shouldn't need this in this case
np.array([1] * self.n_outputs_, dtype=np.intp),
self.n_outputs_,
)
# Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
if max_leaf_nodes < 0:
builder = DepthFirstTreeBuilder(
splitter,
min_samples_split,
min_samples_leaf,
min_weight_leaf,
max_depth,
self.min_impurity_decrease,
)
else:
builder = BestFirstTreeBuilder(
splitter,
min_samples_split,
min_samples_leaf,
min_weight_leaf,
max_depth,
max_leaf_nodes,
self.min_impurity_decrease,
)
builder.build(self.tree_, X, y, sample_weight, missing_values_in_feature_mask)
if self.n_outputs_ == 1 and is_classifier(self):
self.n_classes_ = self.n_classes_[0]
self.classes_ = self.classes_[0]
self._prune_tree()
return self
def _validate_X_predict(self, X, check_input):
"""Validate the training data on predict (probabilities)."""
if check_input:
if self._support_missing_values(X):
force_all_finite = "allow-nan"
else:
force_all_finite = True
X = self._validate_data(
X,
dtype=DTYPE,
accept_sparse="csr",
reset=False,
force_all_finite=force_all_finite,
)
if issparse(X) and (
X.indices.dtype != np.intc or X.indptr.dtype != np.intc
):
raise ValueError("No support for np.int64 index based sparse matrices")
else:
# The number of features is checked regardless of `check_input`
self._check_n_features(X, reset=False)
return X
def predict(self, X, check_input=True):
"""Predict class or regression value for X.
For a classification model, the predicted class for each sample in X is
returned. For a regression model, the predicted value based on X is
returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you're doing.
Returns
-------
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
The predicted classes, or the predict values.
"""
check_is_fitted(self)
X = self._validate_X_predict(X, check_input)
proba = self.tree_.predict(X)
n_samples = X.shape[0]
# Classification
if is_classifier(self):
if self.n_outputs_ == 1:
return self.classes_.take(np.argmax(proba, axis=1), axis=0)
else:
class_type = self.classes_[0].dtype
predictions = np.zeros((n_samples, self.n_outputs_), dtype=class_type)
for k in range(self.n_outputs_):
predictions[:, k] = self.classes_[k].take(
np.argmax(proba[:, k], axis=1), axis=0
)
return predictions
# Regression
else:
if self.n_outputs_ == 1:
return proba[:, 0]
else:
return proba[:, :, 0]
def apply(self, X, check_input=True):
"""Return the index of the leaf that each sample is predicted as.
.. versionadded:: 0.17
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you're doing.
Returns
-------
X_leaves : array-like of shape (n_samples,)
For each datapoint x in X, return the index of the leaf x
ends up in. Leaves are numbered within
``[0; self.tree_.node_count)``, possibly with gaps in the
numbering.
"""
check_is_fitted(self)
X = self._validate_X_predict(X, check_input)
return self.tree_.apply(X)
def decision_path(self, X, check_input=True):
"""Return the decision path in the tree.
.. versionadded:: 0.18
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you're doing.
Returns
-------
indicator : sparse matrix of shape (n_samples, n_nodes)
Return a node indicator CSR matrix where non zero elements
indicates that the samples goes through the nodes.
"""
X = self._validate_X_predict(X, check_input)
return self.tree_.decision_path(X)
def _prune_tree(self):
"""Prune tree using Minimal Cost-Complexity Pruning."""
check_is_fitted(self)
if self.ccp_alpha == 0.0:
return
# build pruned tree
if is_classifier(self):
n_classes = np.atleast_1d(self.n_classes_)
pruned_tree = Tree(self.n_features_in_, n_classes, self.n_outputs_)
else:
pruned_tree = Tree(
self.n_features_in_,
# TODO: the tree shouldn't need this param
np.array([1] * self.n_outputs_, dtype=np.intp),
self.n_outputs_,
)
_build_pruned_tree_ccp(pruned_tree, self.tree_, self.ccp_alpha)
self.tree_ = pruned_tree
def cost_complexity_pruning_path(self, X, y, sample_weight=None):
"""Compute the pruning path during Minimal Cost-Complexity Pruning.
See :ref:`minimal_cost_complexity_pruning` for details on the pruning
process.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csc_matrix``.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels) as integers or strings.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node. Splits are also
ignored if they would result in any single class carrying a
negative weight in either child node.
Returns
-------
ccp_path : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
ccp_alphas : ndarray
Effective alphas of subtree during pruning.
impurities : ndarray
Sum of the impurities of the subtree leaves for the
corresponding alpha value in ``ccp_alphas``.
"""
est = clone(self).set_params(ccp_alpha=0.0)
est.fit(X, y, sample_weight=sample_weight)
return Bunch(**ccp_pruning_path(est.tree_))
@property
def feature_importances_(self):
"""Return the feature importances.
The importance of a feature is computed as the (normalized) total
reduction of the criterion brought by that feature.
It is also known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
Returns
-------
feature_importances_ : ndarray of shape (n_features,)
Normalized total reduction of criteria by feature
(Gini importance).
"""
check_is_fitted(self)
return self.tree_.compute_feature_importances()
# =============================================================================
# Public estimators
# =============================================================================
class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):
"""A decision tree classifier.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
criterion : {"gini", "entropy", "log_loss"}, default="gini"
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "log_loss" and "entropy" both for the
Shannon information gain, see :ref:`tree_mathematical_formulation`.
splitter : {"best", "random"}, default="best"
The strategy used to choose the split at each node. Supported
strategies are "best" to choose the best split and "random" to choose
the best random split.
max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a fraction and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
max_features : int, float or {"sqrt", "log2"}, default=None
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a fraction and
`max(1, int(max_features * n_features_in_))` features are considered at
each split.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the estimator. The features are always
randomly permuted at each split, even if ``splitter`` is set to
``"best"``. When ``max_features < n_features``, the algorithm will
select ``max_features`` at random at each split before finding the best
split among them. But the best found split may vary across different
runs, even if ``max_features=n_features``. That is the case, if the
improvement of the criterion is identical for several splits and one
split has to be selected at random. To obtain a deterministic behaviour
during fitting, ``random_state`` has to be fixed to an integer.
See :term:`Glossary <random_state>` for details.
max_leaf_nodes : int, default=None
Grow a tree with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
class_weight : dict, list of dict or "balanced", default=None
Weights associated with classes in the form ``{class_label: weight}``.
If None, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
Note that for multioutput (including multilabel) weights should be
defined for each class of every column in its own dict. For example,
for four-class multilabel classification weights should be
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed
through the fit method) if sample_weight is specified.
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
:ref:`minimal_cost_complexity_pruning` for details.
.. versionadded:: 0.22
monotonic_cst : array-like of int of shape (n_features), default=None
Indicates the monotonicity constraint to enforce on each feature.
- 1: monotonic increase
- 0: no constraint
- -1: monotonic decrease
If monotonic_cst is None, no constraints are applied.
Monotonicity constraints are not supported for:
- multiclass classifications (i.e. when `n_classes > 2`),
- multioutput classifications (i.e. when `n_outputs_ > 1`),
- classifications trained on data with missing values.
The constraints hold over the probability of the positive class.
Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.
.. versionadded:: 1.4
Attributes
----------
classes_ : ndarray of shape (n_classes,) or list of ndarray
The classes labels (single output problem),
or a list of arrays of class labels (multi-output problem).
feature_importances_ : ndarray of shape (n_features,)
The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance [4]_.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
max_features_ : int
The inferred value of max_features.
n_classes_ : int or list of int
The number of classes (for single output problems),
or a list containing the number of classes for each
output (for multi-output problems).
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_outputs_ : int
The number of outputs when ``fit`` is performed.
tree_ : Tree instance
The underlying Tree object. Please refer to
``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
:ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
for basic usage of these attributes.
See Also
--------
DecisionTreeRegressor : A decision tree regressor.
Notes
-----
The default values for the parameters controlling the size of the trees
(e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
unpruned trees which can potentially be very large on some data sets. To
reduce memory consumption, the complexity and size of the trees should be
controlled by setting those parameter values.
The :meth:`predict` method operates using the :func:`numpy.argmax`
function on the outputs of :meth:`predict_proba`. This means that in
case the highest predicted probabilities are tied, the classifier will
predict the tied class with the lowest index in :term:`classes_`.
References
----------
.. [1] https://en.wikipedia.org/wiki/Decision_tree_learning
.. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification
and Regression Trees", Wadsworth, Belmont, CA, 1984.
.. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical
Learning", Springer, 2009.
.. [4] L. Breiman, and A. Cutler, "Random Forests",
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> cross_val_score(clf, iris.data, iris.target, cv=10)
... # doctest: +SKIP
...
array([ 1. , 0.93..., 0.86..., 0.93..., 0.93...,
0.93..., 0.93..., 1. , 0.93..., 1. ])
"""
_parameter_constraints: dict = {
**BaseDecisionTree._parameter_constraints,
"criterion": [StrOptions({"gini", "entropy", "log_loss"}), Hidden(Criterion)],
"class_weight": [dict, list, StrOptions({"balanced"}), None],
}
def __init__(
self,
*,
criterion="gini",
splitter="best",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
class_weight=None,
ccp_alpha=0.0,
monotonic_cst=None,
):
super().__init__(
criterion=criterion,
splitter=splitter,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
class_weight=class_weight,
random_state=random_state,
min_impurity_decrease=min_impurity_decrease,
monotonic_cst=monotonic_cst,
ccp_alpha=ccp_alpha,
)
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None, check_input=True):
"""Build a decision tree classifier from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csc_matrix``.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels) as integers or strings.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node. Splits are also
ignored if they would result in any single class carrying a
negative weight in either child node.
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you're doing.
Returns
-------
self : DecisionTreeClassifier
Fitted estimator.
"""
super()._fit(
X,
y,
sample_weight=sample_weight,
check_input=check_input,
)
return self
def predict_proba(self, X, check_input=True):
"""Predict class probabilities of the input samples X.
The predicted class probability is the fraction of samples of the same
class in a leaf.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you're doing.
Returns
-------
proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \
such arrays if n_outputs > 1
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
check_is_fitted(self)
X = self._validate_X_predict(X, check_input)
proba = self.tree_.predict(X)
if self.n_outputs_ == 1:
return proba[:, : self.n_classes_]
else:
all_proba = []
for k in range(self.n_outputs_):
proba_k = proba[:, k, : self.n_classes_[k]]
all_proba.append(proba_k)
return all_proba
def predict_log_proba(self, X):
"""Predict class log-probabilities of the input samples X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \
such arrays if n_outputs > 1
The class log-probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return np.log(proba)
else:
for k in range(self.n_outputs_):
proba[k] = np.log(proba[k])
return proba
def _more_tags(self):
# XXX: nan is only support for dense arrays, but we set this for common test to
# pass, specifically: check_estimators_nan_inf
allow_nan = self.splitter == "best" and self.criterion in {
"gini",
"log_loss",
"entropy",
}
return {"multilabel": True, "allow_nan": allow_nan}
class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):
"""A decision tree regressor.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
criterion : {"squared_error", "friedman_mse", "absolute_error", \
"poisson"}, default="squared_error"
The function to measure the quality of a split. Supported criteria
are "squared_error" for the mean squared error, which is equal to
variance reduction as feature selection criterion and minimizes the L2
loss using the mean of each terminal node, "friedman_mse", which uses
mean squared error with Friedman's improvement score for potential
splits, "absolute_error" for the mean absolute error, which minimizes
the L1 loss using the median of each terminal node, and "poisson" which
uses reduction in Poisson deviance to find splits.
.. versionadded:: 0.18
Mean Absolute Error (MAE) criterion.
.. versionadded:: 0.24
Poisson deviance criterion.
splitter : {"best", "random"}, default="best"
The strategy used to choose the split at each node. Supported
strategies are "best" to choose the best split and "random" to choose
the best random split.
max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a fraction and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
max_features : int, float or {"sqrt", "log2"}, default=None
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a fraction and
`max(1, int(max_features * n_features_in_))` features are considered at each
split.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
random_state : int, RandomState instance or None, default=None
Controls the randomness of the estimator. The features are always
randomly permuted at each split, even if ``splitter`` is set to
``"best"``. When ``max_features < n_features``, the algorithm will
select ``max_features`` at random at each split before finding the best
split among them. But the best found split may vary across different
runs, even if ``max_features=n_features``. That is the case, if the
improvement of the criterion is identical for several splits and one
split has to be selected at random. To obtain a deterministic behaviour
during fitting, ``random_state`` has to be fixed to an integer.
See :term:`Glossary <random_state>` for details.
max_leaf_nodes : int, default=None
Grow a tree with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
:ref:`minimal_cost_complexity_pruning` for details.
.. versionadded:: 0.22
monotonic_cst : array-like of int of shape (n_features), default=None
Indicates the monotonicity constraint to enforce on each feature.
- 1: monotonic increase
- 0: no constraint
- -1: monotonic decrease
If monotonic_cst is None, no constraints are applied.
Monotonicity constraints are not supported for:
- multioutput regressions (i.e. when `n_outputs_ > 1`),
- regressions trained on data with missing values.
Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.
.. versionadded:: 1.4
Attributes
----------
feature_importances_ : ndarray of shape (n_features,)
The feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the
(normalized) total reduction of the criterion brought
by that feature. It is also known as the Gini importance [4]_.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
max_features_ : int
The inferred value of max_features.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_outputs_ : int
The number of outputs when ``fit`` is performed.
tree_ : Tree instance
The underlying Tree object. Please refer to
``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
:ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
for basic usage of these attributes.
See Also
--------
DecisionTreeClassifier : A decision tree classifier.
Notes
-----
The default values for the parameters controlling the size of the trees
(e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
unpruned trees which can potentially be very large on some data sets. To
reduce memory consumption, the complexity and size of the trees should be
controlled by setting those parameter values.
References
----------
.. [1] https://en.wikipedia.org/wiki/Decision_tree_learning
.. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification
and Regression Trees", Wadsworth, Belmont, CA, 1984.
.. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical
Learning", Springer, 2009.
.. [4] L. Breiman, and A. Cutler, "Random Forests",
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
Examples
--------
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.tree import DecisionTreeRegressor
>>> X, y = load_diabetes(return_X_y=True)
>>> regressor = DecisionTreeRegressor(random_state=0)
>>> cross_val_score(regressor, X, y, cv=10)
... # doctest: +SKIP
...
array([-0.39..., -0.46..., 0.02..., 0.06..., -0.50...,
0.16..., 0.11..., -0.73..., -0.30..., -0.00...])
"""
_parameter_constraints: dict = {
**BaseDecisionTree._parameter_constraints,
"criterion": [
StrOptions({"squared_error", "friedman_mse", "absolute_error", "poisson"}),
Hidden(Criterion),
],
}
def __init__(
self,
*,
criterion="squared_error",
splitter="best",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
ccp_alpha=0.0,
monotonic_cst=None,
):
super().__init__(
criterion=criterion,
splitter=splitter,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
random_state=random_state,
min_impurity_decrease=min_impurity_decrease,
ccp_alpha=ccp_alpha,
monotonic_cst=monotonic_cst,
)
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None, check_input=True):
"""Build a decision tree regressor from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csc_matrix``.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
The target values (real numbers). Use ``dtype=np.float64`` and
``order='C'`` for maximum efficiency.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node.
check_input : bool, default=True
Allow to bypass several input checking.
Don't use this parameter unless you know what you're doing.
Returns
-------
self : DecisionTreeRegressor
Fitted estimator.
"""
super()._fit(
X,
y,
sample_weight=sample_weight,
check_input=check_input,
)
return self
def _compute_partial_dependence_recursion(self, grid, target_features):
"""Fast partial dependence computation.
Parameters
----------
grid : ndarray of shape (n_samples, n_target_features)
The grid points on which the partial dependence should be
evaluated.
target_features : ndarray of shape (n_target_features)
The set of target features for which the partial dependence
should be evaluated.
Returns
-------
averaged_predictions : ndarray of shape (n_samples,)
The value of the partial dependence function on each grid point.
"""
grid = np.asarray(grid, dtype=DTYPE, order="C")
averaged_predictions = np.zeros(
shape=grid.shape[0], dtype=np.float64, order="C"
)
self.tree_.compute_partial_dependence(
grid, target_features, averaged_predictions
)
return averaged_predictions
def _more_tags(self):
# XXX: nan is only support for dense arrays, but we set this for common test to
# pass, specifically: check_estimators_nan_inf
allow_nan = self.splitter == "best" and self.criterion in {
"squared_error",
"friedman_mse",
"poisson",
}
return {"allow_nan": allow_nan}
class ExtraTreeClassifier(DecisionTreeClassifier):
"""An extremely randomized tree classifier.
Extra-trees differ from classic decision trees in the way they are built.
When looking for the best split to separate the samples of a node into two
groups, random splits are drawn for each of the `max_features` randomly
selected features and the best split among those is chosen. When
`max_features` is set 1, this amounts to building a totally random
decision tree.
Warning: Extra-trees should only be used within ensemble methods.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
criterion : {"gini", "entropy", "log_loss"}, default="gini"
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "log_loss" and "entropy" both for the
Shannon information gain, see :ref:`tree_mathematical_formulation`.
splitter : {"random", "best"}, default="random"
The strategy used to choose the split at each node. Supported
strategies are "best" to choose the best split and "random" to choose
the best random split.
max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a fraction and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
max_features : int, float, {"sqrt", "log2"} or None, default="sqrt"
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a fraction and
`max(1, int(max_features * n_features_in_))` features are considered at
each split.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
.. versionchanged:: 1.1
The default of `max_features` changed from `"auto"` to `"sqrt"`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
random_state : int, RandomState instance or None, default=None
Used to pick randomly the `max_features` used at each split.
See :term:`Glossary <random_state>` for details.
max_leaf_nodes : int, default=None
Grow a tree with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
class_weight : dict, list of dict or "balanced", default=None
Weights associated with classes in the form ``{class_label: weight}``.
If None, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
Note that for multioutput (including multilabel) weights should be
defined for each class of every column in its own dict. For example,
for four-class multilabel classification weights should be
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed
through the fit method) if sample_weight is specified.
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
:ref:`minimal_cost_complexity_pruning` for details.
.. versionadded:: 0.22
monotonic_cst : array-like of int of shape (n_features), default=None
Indicates the monotonicity constraint to enforce on each feature.
- 1: monotonic increase
- 0: no constraint
- -1: monotonic decrease
If monotonic_cst is None, no constraints are applied.
Monotonicity constraints are not supported for:
- multiclass classifications (i.e. when `n_classes > 2`),
- multioutput classifications (i.e. when `n_outputs_ > 1`),
- classifications trained on data with missing values.
The constraints hold over the probability of the positive class.
Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.
.. versionadded:: 1.4
Attributes
----------
classes_ : ndarray of shape (n_classes,) or list of ndarray
The classes labels (single output problem),
or a list of arrays of class labels (multi-output problem).
max_features_ : int
The inferred value of max_features.
n_classes_ : int or list of int
The number of classes (for single output problems),
or a list containing the number of classes for each
output (for multi-output problems).
feature_importances_ : ndarray of shape (n_features,)
The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_outputs_ : int
The number of outputs when ``fit`` is performed.
tree_ : Tree instance
The underlying Tree object. Please refer to
``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
:ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
for basic usage of these attributes.
See Also
--------
ExtraTreeRegressor : An extremely randomized tree regressor.
sklearn.ensemble.ExtraTreesClassifier : An extra-trees classifier.
sklearn.ensemble.ExtraTreesRegressor : An extra-trees regressor.
sklearn.ensemble.RandomForestClassifier : A random forest classifier.
sklearn.ensemble.RandomForestRegressor : A random forest regressor.
sklearn.ensemble.RandomTreesEmbedding : An ensemble of
totally random trees.
Notes
-----
The default values for the parameters controlling the size of the trees
(e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
unpruned trees which can potentially be very large on some data sets. To
reduce memory consumption, the complexity and size of the trees should be
controlled by setting those parameter values.
References
----------
.. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
Machine Learning, 63(1), 3-42, 2006.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.tree import ExtraTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> extra_tree = ExtraTreeClassifier(random_state=0)
>>> cls = BaggingClassifier(extra_tree, random_state=0).fit(
... X_train, y_train)
>>> cls.score(X_test, y_test)
0.8947...
"""
def __init__(
self,
*,
criterion="gini",
splitter="random",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features="sqrt",
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
class_weight=None,
ccp_alpha=0.0,
monotonic_cst=None,
):
super().__init__(
criterion=criterion,
splitter=splitter,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
class_weight=class_weight,
min_impurity_decrease=min_impurity_decrease,
random_state=random_state,
ccp_alpha=ccp_alpha,
monotonic_cst=monotonic_cst,
)
class ExtraTreeRegressor(DecisionTreeRegressor):
"""An extremely randomized tree regressor.
Extra-trees differ from classic decision trees in the way they are built.
When looking for the best split to separate the samples of a node into two
groups, random splits are drawn for each of the `max_features` randomly
selected features and the best split among those is chosen. When
`max_features` is set 1, this amounts to building a totally random
decision tree.
Warning: Extra-trees should only be used within ensemble methods.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
criterion : {"squared_error", "friedman_mse", "absolute_error", "poisson"}, \
default="squared_error"
The function to measure the quality of a split. Supported criteria
are "squared_error" for the mean squared error, which is equal to
variance reduction as feature selection criterion and minimizes the L2
loss using the mean of each terminal node, "friedman_mse", which uses
mean squared error with Friedman's improvement score for potential
splits, "absolute_error" for the mean absolute error, which minimizes
the L1 loss using the median of each terminal node, and "poisson" which
uses reduction in Poisson deviance to find splits.
.. versionadded:: 0.18
Mean Absolute Error (MAE) criterion.
.. versionadded:: 0.24
Poisson deviance criterion.
splitter : {"random", "best"}, default="random"
The strategy used to choose the split at each node. Supported
strategies are "best" to choose the best split and "random" to choose
the best random split.
max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a fraction and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
max_features : int, float, {"sqrt", "log2"} or None, default=1.0
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a fraction and
`max(1, int(max_features * n_features_in_))` features are considered at each
split.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
.. versionchanged:: 1.1
The default of `max_features` changed from `"auto"` to `1.0`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
random_state : int, RandomState instance or None, default=None
Used to pick randomly the `max_features` used at each split.
See :term:`Glossary <random_state>` for details.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
max_leaf_nodes : int, default=None
Grow a tree with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
:ref:`minimal_cost_complexity_pruning` for details.
.. versionadded:: 0.22
monotonic_cst : array-like of int of shape (n_features), default=None
Indicates the monotonicity constraint to enforce on each feature.
- 1: monotonic increase
- 0: no constraint
- -1: monotonic decrease
If monotonic_cst is None, no constraints are applied.
Monotonicity constraints are not supported for:
- multioutput regressions (i.e. when `n_outputs_ > 1`),
- regressions trained on data with missing values.
Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.
.. versionadded:: 1.4
Attributes
----------
max_features_ : int
The inferred value of max_features.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
feature_importances_ : ndarray of shape (n_features,)
Return impurity-based feature importances (the higher, the more
important the feature).
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
n_outputs_ : int
The number of outputs when ``fit`` is performed.
tree_ : Tree instance
The underlying Tree object. Please refer to
``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
:ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
for basic usage of these attributes.
See Also
--------
ExtraTreeClassifier : An extremely randomized tree classifier.
sklearn.ensemble.ExtraTreesClassifier : An extra-trees classifier.
sklearn.ensemble.ExtraTreesRegressor : An extra-trees regressor.
Notes
-----
The default values for the parameters controlling the size of the trees
(e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
unpruned trees which can potentially be very large on some data sets. To
reduce memory consumption, the complexity and size of the trees should be
controlled by setting those parameter values.
References
----------
.. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
Machine Learning, 63(1), 3-42, 2006.
Examples
--------
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.ensemble import BaggingRegressor
>>> from sklearn.tree import ExtraTreeRegressor
>>> X, y = load_diabetes(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> extra_tree = ExtraTreeRegressor(random_state=0)
>>> reg = BaggingRegressor(extra_tree, random_state=0).fit(
... X_train, y_train)
>>> reg.score(X_test, y_test)
0.33...
"""
def __init__(
self,
*,
criterion="squared_error",
splitter="random",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=1.0,
random_state=None,
min_impurity_decrease=0.0,
max_leaf_nodes=None,
ccp_alpha=0.0,
monotonic_cst=None,
):
super().__init__(
criterion=criterion,
splitter=splitter,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
min_impurity_decrease=min_impurity_decrease,
random_state=random_state,
ccp_alpha=ccp_alpha,
monotonic_cst=monotonic_cst,
)
|