File size: 75,272 Bytes
2792309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
"""
This module gathers tree-based methods, including decision, regression and
randomized trees. Single and multi-output problems are both handled.
"""

# Authors: Gilles Louppe <[email protected]>
#          Peter Prettenhofer <[email protected]>
#          Brian Holt <[email protected]>
#          Noel Dawe <[email protected]>
#          Satrajit Gosh <[email protected]>
#          Joly Arnaud <[email protected]>
#          Fares Hedayati <[email protected]>
#          Nelson Liu <[email protected]>
#
# License: BSD 3 clause

import copy
import numbers
from abc import ABCMeta, abstractmethod
from math import ceil
from numbers import Integral, Real

import numpy as np
from scipy.sparse import issparse

from ..base import (
    BaseEstimator,
    ClassifierMixin,
    MultiOutputMixin,
    RegressorMixin,
    _fit_context,
    clone,
    is_classifier,
)
from ..utils import Bunch, check_random_state, compute_sample_weight
from ..utils._param_validation import Hidden, Interval, RealNotInt, StrOptions
from ..utils.multiclass import check_classification_targets
from ..utils.validation import (
    _assert_all_finite_element_wise,
    _check_sample_weight,
    assert_all_finite,
    check_is_fitted,
)
from . import _criterion, _splitter, _tree
from ._criterion import Criterion
from ._splitter import Splitter
from ._tree import (
    BestFirstTreeBuilder,
    DepthFirstTreeBuilder,
    Tree,
    _build_pruned_tree_ccp,
    ccp_pruning_path,
)
from ._utils import _any_isnan_axis0

__all__ = [
    "DecisionTreeClassifier",
    "DecisionTreeRegressor",
    "ExtraTreeClassifier",
    "ExtraTreeRegressor",
]


# =============================================================================
# Types and constants
# =============================================================================

DTYPE = _tree.DTYPE
DOUBLE = _tree.DOUBLE

CRITERIA_CLF = {
    "gini": _criterion.Gini,
    "log_loss": _criterion.Entropy,
    "entropy": _criterion.Entropy,
}
CRITERIA_REG = {
    "squared_error": _criterion.MSE,
    "friedman_mse": _criterion.FriedmanMSE,
    "absolute_error": _criterion.MAE,
    "poisson": _criterion.Poisson,
}

DENSE_SPLITTERS = {"best": _splitter.BestSplitter, "random": _splitter.RandomSplitter}

SPARSE_SPLITTERS = {
    "best": _splitter.BestSparseSplitter,
    "random": _splitter.RandomSparseSplitter,
}

# =============================================================================
# Base decision tree
# =============================================================================


class BaseDecisionTree(MultiOutputMixin, BaseEstimator, metaclass=ABCMeta):
    """Base class for decision trees.

    Warning: This class should not be used directly.
    Use derived classes instead.
    """

    _parameter_constraints: dict = {
        "splitter": [StrOptions({"best", "random"})],
        "max_depth": [Interval(Integral, 1, None, closed="left"), None],
        "min_samples_split": [
            Interval(Integral, 2, None, closed="left"),
            Interval(RealNotInt, 0.0, 1.0, closed="right"),
        ],
        "min_samples_leaf": [
            Interval(Integral, 1, None, closed="left"),
            Interval(RealNotInt, 0.0, 1.0, closed="neither"),
        ],
        "min_weight_fraction_leaf": [Interval(Real, 0.0, 0.5, closed="both")],
        "max_features": [
            Interval(Integral, 1, None, closed="left"),
            Interval(RealNotInt, 0.0, 1.0, closed="right"),
            StrOptions({"sqrt", "log2"}),
            None,
        ],
        "random_state": ["random_state"],
        "max_leaf_nodes": [Interval(Integral, 2, None, closed="left"), None],
        "min_impurity_decrease": [Interval(Real, 0.0, None, closed="left")],
        "ccp_alpha": [Interval(Real, 0.0, None, closed="left")],
        "monotonic_cst": ["array-like", None],
    }

    @abstractmethod
    def __init__(
        self,
        *,
        criterion,
        splitter,
        max_depth,
        min_samples_split,
        min_samples_leaf,
        min_weight_fraction_leaf,
        max_features,
        max_leaf_nodes,
        random_state,
        min_impurity_decrease,
        class_weight=None,
        ccp_alpha=0.0,
        monotonic_cst=None,
    ):
        self.criterion = criterion
        self.splitter = splitter
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.random_state = random_state
        self.min_impurity_decrease = min_impurity_decrease
        self.class_weight = class_weight
        self.ccp_alpha = ccp_alpha
        self.monotonic_cst = monotonic_cst

    def get_depth(self):
        """Return the depth of the decision tree.

        The depth of a tree is the maximum distance between the root
        and any leaf.

        Returns
        -------
        self.tree_.max_depth : int
            The maximum depth of the tree.
        """
        check_is_fitted(self)
        return self.tree_.max_depth

    def get_n_leaves(self):
        """Return the number of leaves of the decision tree.

        Returns
        -------
        self.tree_.n_leaves : int
            Number of leaves.
        """
        check_is_fitted(self)
        return self.tree_.n_leaves

    def _support_missing_values(self, X):
        return (
            not issparse(X)
            and self._get_tags()["allow_nan"]
            and self.monotonic_cst is None
        )

    def _compute_missing_values_in_feature_mask(self, X, estimator_name=None):
        """Return boolean mask denoting if there are missing values for each feature.

        This method also ensures that X is finite.

        Parameter
        ---------
        X : array-like of shape (n_samples, n_features), dtype=DOUBLE
            Input data.

        estimator_name : str or None, default=None
            Name to use when raising an error. Defaults to the class name.

        Returns
        -------
        missing_values_in_feature_mask : ndarray of shape (n_features,), or None
            Missing value mask. If missing values are not supported or there
            are no missing values, return None.
        """
        estimator_name = estimator_name or self.__class__.__name__
        common_kwargs = dict(estimator_name=estimator_name, input_name="X")

        if not self._support_missing_values(X):
            assert_all_finite(X, **common_kwargs)
            return None

        with np.errstate(over="ignore"):
            overall_sum = np.sum(X)

        if not np.isfinite(overall_sum):
            # Raise a ValueError in case of the presence of an infinite element.
            _assert_all_finite_element_wise(X, xp=np, allow_nan=True, **common_kwargs)

        # If the sum is not nan, then there are no missing values
        if not np.isnan(overall_sum):
            return None

        missing_values_in_feature_mask = _any_isnan_axis0(X)
        return missing_values_in_feature_mask

    def _fit(
        self,
        X,
        y,
        sample_weight=None,
        check_input=True,
        missing_values_in_feature_mask=None,
    ):
        random_state = check_random_state(self.random_state)

        if check_input:
            # Need to validate separately here.
            # We can't pass multi_output=True because that would allow y to be
            # csr.

            # _compute_missing_values_in_feature_mask will check for finite values and
            # compute the missing mask if the tree supports missing values
            check_X_params = dict(
                dtype=DTYPE, accept_sparse="csc", force_all_finite=False
            )
            check_y_params = dict(ensure_2d=False, dtype=None)
            X, y = self._validate_data(
                X, y, validate_separately=(check_X_params, check_y_params)
            )

            missing_values_in_feature_mask = (
                self._compute_missing_values_in_feature_mask(X)
            )
            if issparse(X):
                X.sort_indices()

                if X.indices.dtype != np.intc or X.indptr.dtype != np.intc:
                    raise ValueError(
                        "No support for np.int64 index based sparse matrices"
                    )

            if self.criterion == "poisson":
                if np.any(y < 0):
                    raise ValueError(
                        "Some value(s) of y are negative which is"
                        " not allowed for Poisson regression."
                    )
                if np.sum(y) <= 0:
                    raise ValueError(
                        "Sum of y is not positive which is "
                        "necessary for Poisson regression."
                    )

        # Determine output settings
        n_samples, self.n_features_in_ = X.shape
        is_classification = is_classifier(self)

        y = np.atleast_1d(y)
        expanded_class_weight = None

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if is_classification:
            check_classification_targets(y)
            y = np.copy(y)

            self.classes_ = []
            self.n_classes_ = []

            if self.class_weight is not None:
                y_original = np.copy(y)

            y_encoded = np.zeros(y.shape, dtype=int)
            for k in range(self.n_outputs_):
                classes_k, y_encoded[:, k] = np.unique(y[:, k], return_inverse=True)
                self.classes_.append(classes_k)
                self.n_classes_.append(classes_k.shape[0])
            y = y_encoded

            if self.class_weight is not None:
                expanded_class_weight = compute_sample_weight(
                    self.class_weight, y_original
                )

            self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        max_depth = np.iinfo(np.int32).max if self.max_depth is None else self.max_depth

        if isinstance(self.min_samples_leaf, numbers.Integral):
            min_samples_leaf = self.min_samples_leaf
        else:  # float
            min_samples_leaf = int(ceil(self.min_samples_leaf * n_samples))

        if isinstance(self.min_samples_split, numbers.Integral):
            min_samples_split = self.min_samples_split
        else:  # float
            min_samples_split = int(ceil(self.min_samples_split * n_samples))
            min_samples_split = max(2, min_samples_split)

        min_samples_split = max(min_samples_split, 2 * min_samples_leaf)

        if isinstance(self.max_features, str):
            if self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_in_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_in_)))
        elif self.max_features is None:
            max_features = self.n_features_in_
        elif isinstance(self.max_features, numbers.Integral):
            max_features = self.max_features
        else:  # float
            if self.max_features > 0.0:
                max_features = max(1, int(self.max_features * self.n_features_in_))
            else:
                max_features = 0

        self.max_features_ = max_features

        max_leaf_nodes = -1 if self.max_leaf_nodes is None else self.max_leaf_nodes

        if len(y) != n_samples:
            raise ValueError(
                "Number of labels=%d does not match number of samples=%d"
                % (len(y), n_samples)
            )

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, DOUBLE)

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Set min_weight_leaf from min_weight_fraction_leaf
        if sample_weight is None:
            min_weight_leaf = self.min_weight_fraction_leaf * n_samples
        else:
            min_weight_leaf = self.min_weight_fraction_leaf * np.sum(sample_weight)

        # Build tree
        criterion = self.criterion
        if not isinstance(criterion, Criterion):
            if is_classification:
                criterion = CRITERIA_CLF[self.criterion](
                    self.n_outputs_, self.n_classes_
                )
            else:
                criterion = CRITERIA_REG[self.criterion](self.n_outputs_, n_samples)
        else:
            # Make a deepcopy in case the criterion has mutable attributes that
            # might be shared and modified concurrently during parallel fitting
            criterion = copy.deepcopy(criterion)

        SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS

        splitter = self.splitter
        if self.monotonic_cst is None:
            monotonic_cst = None
        else:
            if self.n_outputs_ > 1:
                raise ValueError(
                    "Monotonicity constraints are not supported with multiple outputs."
                )
            # Check to correct monotonicity constraint' specification,
            # by applying element-wise logical conjunction
            # Note: we do not cast `np.asarray(self.monotonic_cst, dtype=np.int8)`
            # straight away here so as to generate error messages for invalid
            # values using the original values prior to any dtype related conversion.
            monotonic_cst = np.asarray(self.monotonic_cst)
            if monotonic_cst.shape[0] != X.shape[1]:
                raise ValueError(
                    "monotonic_cst has shape {} but the input data "
                    "X has {} features.".format(monotonic_cst.shape[0], X.shape[1])
                )
            valid_constraints = np.isin(monotonic_cst, (-1, 0, 1))
            if not np.all(valid_constraints):
                unique_constaints_value = np.unique(monotonic_cst)
                raise ValueError(
                    "monotonic_cst must be None or an array-like of -1, 0 or 1, but"
                    f" got {unique_constaints_value}"
                )
            monotonic_cst = np.asarray(monotonic_cst, dtype=np.int8)
            if is_classifier(self):
                if self.n_classes_[0] > 2:
                    raise ValueError(
                        "Monotonicity constraints are not supported with multiclass "
                        "classification"
                    )
                # Binary classification trees are built by constraining probabilities
                # of the *negative class* in order to make the implementation similar
                # to regression trees.
                # Since self.monotonic_cst encodes constraints on probabilities of the
                # *positive class*, all signs must be flipped.
                monotonic_cst *= -1

        if not isinstance(self.splitter, Splitter):
            splitter = SPLITTERS[self.splitter](
                criterion,
                self.max_features_,
                min_samples_leaf,
                min_weight_leaf,
                random_state,
                monotonic_cst,
            )

        if is_classifier(self):
            self.tree_ = Tree(self.n_features_in_, self.n_classes_, self.n_outputs_)
        else:
            self.tree_ = Tree(
                self.n_features_in_,
                # TODO: tree shouldn't need this in this case
                np.array([1] * self.n_outputs_, dtype=np.intp),
                self.n_outputs_,
            )

        # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
        if max_leaf_nodes < 0:
            builder = DepthFirstTreeBuilder(
                splitter,
                min_samples_split,
                min_samples_leaf,
                min_weight_leaf,
                max_depth,
                self.min_impurity_decrease,
            )
        else:
            builder = BestFirstTreeBuilder(
                splitter,
                min_samples_split,
                min_samples_leaf,
                min_weight_leaf,
                max_depth,
                max_leaf_nodes,
                self.min_impurity_decrease,
            )

        builder.build(self.tree_, X, y, sample_weight, missing_values_in_feature_mask)

        if self.n_outputs_ == 1 and is_classifier(self):
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        self._prune_tree()

        return self

    def _validate_X_predict(self, X, check_input):
        """Validate the training data on predict (probabilities)."""
        if check_input:
            if self._support_missing_values(X):
                force_all_finite = "allow-nan"
            else:
                force_all_finite = True
            X = self._validate_data(
                X,
                dtype=DTYPE,
                accept_sparse="csr",
                reset=False,
                force_all_finite=force_all_finite,
            )
            if issparse(X) and (
                X.indices.dtype != np.intc or X.indptr.dtype != np.intc
            ):
                raise ValueError("No support for np.int64 index based sparse matrices")
        else:
            # The number of features is checked regardless of `check_input`
            self._check_n_features(X, reset=False)
        return X

    def predict(self, X, check_input=True):
        """Predict class or regression value for X.

        For a classification model, the predicted class for each sample in X is
        returned. For a regression model, the predicted value based on X is
        returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you're doing.

        Returns
        -------
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The predicted classes, or the predict values.
        """
        check_is_fitted(self)
        X = self._validate_X_predict(X, check_input)
        proba = self.tree_.predict(X)
        n_samples = X.shape[0]

        # Classification
        if is_classifier(self):
            if self.n_outputs_ == 1:
                return self.classes_.take(np.argmax(proba, axis=1), axis=0)

            else:
                class_type = self.classes_[0].dtype
                predictions = np.zeros((n_samples, self.n_outputs_), dtype=class_type)
                for k in range(self.n_outputs_):
                    predictions[:, k] = self.classes_[k].take(
                        np.argmax(proba[:, k], axis=1), axis=0
                    )

                return predictions

        # Regression
        else:
            if self.n_outputs_ == 1:
                return proba[:, 0]

            else:
                return proba[:, :, 0]

    def apply(self, X, check_input=True):
        """Return the index of the leaf that each sample is predicted as.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you're doing.

        Returns
        -------
        X_leaves : array-like of shape (n_samples,)
            For each datapoint x in X, return the index of the leaf x
            ends up in. Leaves are numbered within
            ``[0; self.tree_.node_count)``, possibly with gaps in the
            numbering.
        """
        check_is_fitted(self)
        X = self._validate_X_predict(X, check_input)
        return self.tree_.apply(X)

    def decision_path(self, X, check_input=True):
        """Return the decision path in the tree.

        .. versionadded:: 0.18

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you're doing.

        Returns
        -------
        indicator : sparse matrix of shape (n_samples, n_nodes)
            Return a node indicator CSR matrix where non zero elements
            indicates that the samples goes through the nodes.
        """
        X = self._validate_X_predict(X, check_input)
        return self.tree_.decision_path(X)

    def _prune_tree(self):
        """Prune tree using Minimal Cost-Complexity Pruning."""
        check_is_fitted(self)

        if self.ccp_alpha == 0.0:
            return

        # build pruned tree
        if is_classifier(self):
            n_classes = np.atleast_1d(self.n_classes_)
            pruned_tree = Tree(self.n_features_in_, n_classes, self.n_outputs_)
        else:
            pruned_tree = Tree(
                self.n_features_in_,
                # TODO: the tree shouldn't need this param
                np.array([1] * self.n_outputs_, dtype=np.intp),
                self.n_outputs_,
            )
        _build_pruned_tree_ccp(pruned_tree, self.tree_, self.ccp_alpha)

        self.tree_ = pruned_tree

    def cost_complexity_pruning_path(self, X, y, sample_weight=None):
        """Compute the pruning path during Minimal Cost-Complexity Pruning.

        See :ref:`minimal_cost_complexity_pruning` for details on the pruning
        process.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels) as integers or strings.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. Splits are also
            ignored if they would result in any single class carrying a
            negative weight in either child node.

        Returns
        -------
        ccp_path : :class:`~sklearn.utils.Bunch`
            Dictionary-like object, with the following attributes.

            ccp_alphas : ndarray
                Effective alphas of subtree during pruning.

            impurities : ndarray
                Sum of the impurities of the subtree leaves for the
                corresponding alpha value in ``ccp_alphas``.
        """
        est = clone(self).set_params(ccp_alpha=0.0)
        est.fit(X, y, sample_weight=sample_weight)
        return Bunch(**ccp_pruning_path(est.tree_))

    @property
    def feature_importances_(self):
        """Return the feature importances.

        The importance of a feature is computed as the (normalized) total
        reduction of the criterion brought by that feature.
        It is also known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : ndarray of shape (n_features,)
            Normalized total reduction of criteria by feature
            (Gini importance).
        """
        check_is_fitted(self)

        return self.tree_.compute_feature_importances()


# =============================================================================
# Public estimators
# =============================================================================


class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):
    """A decision tree classifier.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "log_loss" and "entropy" both for the
        Shannon information gain, see :ref:`tree_mathematical_formulation`.

    splitter : {"best", "random"}, default="best"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float or {"sqrt", "log2"}, default=None
        The number of features to consider when looking for the best split:

            - If int, then consider `max_features` features at each split.
            - If float, then `max_features` is a fraction and
              `max(1, int(max_features * n_features_in_))` features are considered at
              each split.
            - If "sqrt", then `max_features=sqrt(n_features)`.
            - If "log2", then `max_features=log2(n_features)`.
            - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance or None, default=None
        Controls the randomness of the estimator. The features are always
        randomly permuted at each split, even if ``splitter`` is set to
        ``"best"``. When ``max_features < n_features``, the algorithm will
        select ``max_features`` at random at each split before finding the best
        split among them. But the best found split may vary across different
        runs, even if ``max_features=n_features``. That is the case, if the
        improvement of the criterion is identical for several splits and one
        split has to be selected at random. To obtain a deterministic behaviour
        during fitting, ``random_state`` has to be fixed to an integer.
        See :term:`Glossary <random_state>` for details.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    class_weight : dict, list of dict or "balanced", default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If None, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonic increase
          - 0: no constraint
          - -1: monotonic decrease

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multiclass classifications (i.e. when `n_classes > 2`),
          - multioutput classifications (i.e. when `n_outputs_ > 1`),
          - classifications trained on data with missing values.

        The constraints hold over the probability of the positive class.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,) or list of ndarray
        The classes labels (single output problem),
        or a list of arrays of class labels (multi-output problem).

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance [4]_.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    max_features_ : int
        The inferred value of max_features.

    n_classes_ : int or list of int
        The number of classes (for single output problems),
        or a list containing the number of classes for each
        output (for multi-output problems).

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree instance
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    DecisionTreeRegressor : A decision tree regressor.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    The :meth:`predict` method operates using the :func:`numpy.argmax`
    function on the outputs of :meth:`predict_proba`. This means that in
    case the highest predicted probabilities are tied, the classifier will
    predict the tied class with the lowest index in :term:`classes_`.

    References
    ----------

    .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning

    .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification
           and Regression Trees", Wadsworth, Belmont, CA, 1984.

    .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical
           Learning", Springer, 2009.

    .. [4] L. Breiman, and A. Cutler, "Random Forests",
           https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.model_selection import cross_val_score
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> clf = DecisionTreeClassifier(random_state=0)
    >>> iris = load_iris()
    >>> cross_val_score(clf, iris.data, iris.target, cv=10)
    ...                             # doctest: +SKIP
    ...
    array([ 1.     ,  0.93...,  0.86...,  0.93...,  0.93...,
            0.93...,  0.93...,  1.     ,  0.93...,  1.      ])
    """

    _parameter_constraints: dict = {
        **BaseDecisionTree._parameter_constraints,
        "criterion": [StrOptions({"gini", "entropy", "log_loss"}), Hidden(Criterion)],
        "class_weight": [dict, list, StrOptions({"balanced"}), None],
    }

    def __init__(
        self,
        *,
        criterion="gini",
        splitter="best",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=None,
        random_state=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        class_weight=None,
        ccp_alpha=0.0,
        monotonic_cst=None,
    ):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            class_weight=class_weight,
            random_state=random_state,
            min_impurity_decrease=min_impurity_decrease,
            monotonic_cst=monotonic_cst,
            ccp_alpha=ccp_alpha,
        )

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Build a decision tree classifier from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels) as integers or strings.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. Splits are also
            ignored if they would result in any single class carrying a
            negative weight in either child node.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you're doing.

        Returns
        -------
        self : DecisionTreeClassifier
            Fitted estimator.
        """

        super()._fit(
            X,
            y,
            sample_weight=sample_weight,
            check_input=check_input,
        )
        return self

    def predict_proba(self, X, check_input=True):
        """Predict class probabilities of the input samples X.

        The predicted class probability is the fraction of samples of the same
        class in a leaf.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you're doing.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \
            such arrays if n_outputs > 1
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        X = self._validate_X_predict(X, check_input)
        proba = self.tree_.predict(X)

        if self.n_outputs_ == 1:
            return proba[:, : self.n_classes_]
        else:
            all_proba = []
            for k in range(self.n_outputs_):
                proba_k = proba[:, k, : self.n_classes_[k]]
                all_proba.append(proba_k)
            return all_proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities of the input samples X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \
            such arrays if n_outputs > 1
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return np.log(proba)

        else:
            for k in range(self.n_outputs_):
                proba[k] = np.log(proba[k])

            return proba

    def _more_tags(self):
        # XXX: nan is only support for dense arrays, but we set this for common test to
        # pass, specifically: check_estimators_nan_inf
        allow_nan = self.splitter == "best" and self.criterion in {
            "gini",
            "log_loss",
            "entropy",
        }
        return {"multilabel": True, "allow_nan": allow_nan}


class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):
    """A decision tree regressor.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"squared_error", "friedman_mse", "absolute_error", \
            "poisson"}, default="squared_error"
        The function to measure the quality of a split. Supported criteria
        are "squared_error" for the mean squared error, which is equal to
        variance reduction as feature selection criterion and minimizes the L2
        loss using the mean of each terminal node, "friedman_mse", which uses
        mean squared error with Friedman's improvement score for potential
        splits, "absolute_error" for the mean absolute error, which minimizes
        the L1 loss using the median of each terminal node, and "poisson" which
        uses reduction in Poisson deviance to find splits.

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

        .. versionadded:: 0.24
            Poisson deviance criterion.

    splitter : {"best", "random"}, default="best"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float or {"sqrt", "log2"}, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance or None, default=None
        Controls the randomness of the estimator. The features are always
        randomly permuted at each split, even if ``splitter`` is set to
        ``"best"``. When ``max_features < n_features``, the algorithm will
        select ``max_features`` at random at each split before finding the best
        split among them. But the best found split may vary across different
        runs, even if ``max_features=n_features``. That is the case, if the
        improvement of the criterion is identical for several splits and one
        split has to be selected at random. To obtain a deterministic behaviour
        during fitting, ``random_state`` has to be fixed to an integer.
        See :term:`Glossary <random_state>` for details.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonic increase
          - 0: no constraint
          - -1: monotonic decrease

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multioutput regressions (i.e. when `n_outputs_ > 1`),
          - regressions trained on data with missing values.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    feature_importances_ : ndarray of shape (n_features,)
        The feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the
        (normalized) total reduction of the criterion brought
        by that feature. It is also known as the Gini importance [4]_.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    max_features_ : int
        The inferred value of max_features.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree instance
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    DecisionTreeClassifier : A decision tree classifier.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning

    .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification
           and Regression Trees", Wadsworth, Belmont, CA, 1984.

    .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical
           Learning", Springer, 2009.

    .. [4] L. Breiman, and A. Cutler, "Random Forests",
           https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.model_selection import cross_val_score
    >>> from sklearn.tree import DecisionTreeRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> regressor = DecisionTreeRegressor(random_state=0)
    >>> cross_val_score(regressor, X, y, cv=10)
    ...                    # doctest: +SKIP
    ...
    array([-0.39..., -0.46...,  0.02...,  0.06..., -0.50...,
           0.16...,  0.11..., -0.73..., -0.30..., -0.00...])
    """

    _parameter_constraints: dict = {
        **BaseDecisionTree._parameter_constraints,
        "criterion": [
            StrOptions({"squared_error", "friedman_mse", "absolute_error", "poisson"}),
            Hidden(Criterion),
        ],
    }

    def __init__(
        self,
        *,
        criterion="squared_error",
        splitter="best",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=None,
        random_state=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        ccp_alpha=0.0,
        monotonic_cst=None,
    ):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            random_state=random_state,
            min_impurity_decrease=min_impurity_decrease,
            ccp_alpha=ccp_alpha,
            monotonic_cst=monotonic_cst,
        )

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Build a decision tree regressor from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (real numbers). Use ``dtype=np.float64`` and
            ``order='C'`` for maximum efficiency.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you're doing.

        Returns
        -------
        self : DecisionTreeRegressor
            Fitted estimator.
        """

        super()._fit(
            X,
            y,
            sample_weight=sample_weight,
            check_input=check_input,
        )
        return self

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape (n_samples,)
            The value of the partial dependence function on each grid point.
        """
        grid = np.asarray(grid, dtype=DTYPE, order="C")
        averaged_predictions = np.zeros(
            shape=grid.shape[0], dtype=np.float64, order="C"
        )

        self.tree_.compute_partial_dependence(
            grid, target_features, averaged_predictions
        )
        return averaged_predictions

    def _more_tags(self):
        # XXX: nan is only support for dense arrays, but we set this for common test to
        # pass, specifically: check_estimators_nan_inf
        allow_nan = self.splitter == "best" and self.criterion in {
            "squared_error",
            "friedman_mse",
            "poisson",
        }
        return {"allow_nan": allow_nan}


class ExtraTreeClassifier(DecisionTreeClassifier):
    """An extremely randomized tree classifier.

    Extra-trees differ from classic decision trees in the way they are built.
    When looking for the best split to separate the samples of a node into two
    groups, random splits are drawn for each of the `max_features` randomly
    selected features and the best split among those is chosen. When
    `max_features` is set 1, this amounts to building a totally random
    decision tree.

    Warning: Extra-trees should only be used within ensemble methods.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "log_loss" and "entropy" both for the
        Shannon information gain, see :ref:`tree_mathematical_formulation`.

    splitter : {"random", "best"}, default="random"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float, {"sqrt", "log2"} or None, default="sqrt"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at
          each split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        .. versionchanged:: 1.1
            The default of `max_features` changed from `"auto"` to `"sqrt"`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance or None, default=None
        Used to pick randomly the `max_features` used at each split.
        See :term:`Glossary <random_state>` for details.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    class_weight : dict, list of dict or "balanced", default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If None, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonic increase
          - 0: no constraint
          - -1: monotonic decrease

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multiclass classifications (i.e. when `n_classes > 2`),
          - multioutput classifications (i.e. when `n_outputs_ > 1`),
          - classifications trained on data with missing values.

        The constraints hold over the probability of the positive class.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,) or list of ndarray
        The classes labels (single output problem),
        or a list of arrays of class labels (multi-output problem).

    max_features_ : int
        The inferred value of max_features.

    n_classes_ : int or list of int
        The number of classes (for single output problems),
        or a list containing the number of classes for each
        output (for multi-output problems).

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree instance
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    ExtraTreeRegressor : An extremely randomized tree regressor.
    sklearn.ensemble.ExtraTreesClassifier : An extra-trees classifier.
    sklearn.ensemble.ExtraTreesRegressor : An extra-trees regressor.
    sklearn.ensemble.RandomForestClassifier : A random forest classifier.
    sklearn.ensemble.RandomForestRegressor : A random forest regressor.
    sklearn.ensemble.RandomTreesEmbedding : An ensemble of
        totally random trees.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.ensemble import BaggingClassifier
    >>> from sklearn.tree import ExtraTreeClassifier
    >>> X, y = load_iris(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...    X, y, random_state=0)
    >>> extra_tree = ExtraTreeClassifier(random_state=0)
    >>> cls = BaggingClassifier(extra_tree, random_state=0).fit(
    ...    X_train, y_train)
    >>> cls.score(X_test, y_test)
    0.8947...
    """

    def __init__(
        self,
        *,
        criterion="gini",
        splitter="random",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features="sqrt",
        random_state=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        class_weight=None,
        ccp_alpha=0.0,
        monotonic_cst=None,
    ):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            class_weight=class_weight,
            min_impurity_decrease=min_impurity_decrease,
            random_state=random_state,
            ccp_alpha=ccp_alpha,
            monotonic_cst=monotonic_cst,
        )


class ExtraTreeRegressor(DecisionTreeRegressor):
    """An extremely randomized tree regressor.

    Extra-trees differ from classic decision trees in the way they are built.
    When looking for the best split to separate the samples of a node into two
    groups, random splits are drawn for each of the `max_features` randomly
    selected features and the best split among those is chosen. When
    `max_features` is set 1, this amounts to building a totally random
    decision tree.

    Warning: Extra-trees should only be used within ensemble methods.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"squared_error", "friedman_mse", "absolute_error", "poisson"}, \
            default="squared_error"
        The function to measure the quality of a split. Supported criteria
        are "squared_error" for the mean squared error, which is equal to
        variance reduction as feature selection criterion and minimizes the L2
        loss using the mean of each terminal node, "friedman_mse", which uses
        mean squared error with Friedman's improvement score for potential
        splits, "absolute_error" for the mean absolute error, which minimizes
        the L1 loss using the median of each terminal node, and "poisson" which
        uses reduction in Poisson deviance to find splits.

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

        .. versionadded:: 0.24
            Poisson deviance criterion.

    splitter : {"random", "best"}, default="random"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float, {"sqrt", "log2"} or None, default=1.0
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        .. versionchanged:: 1.1
            The default of `max_features` changed from `"auto"` to `1.0`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance or None, default=None
        Used to pick randomly the `max_features` used at each split.
        See :term:`Glossary <random_state>` for details.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonic increase
          - 0: no constraint
          - -1: monotonic decrease

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multioutput regressions (i.e. when `n_outputs_ > 1`),
          - regressions trained on data with missing values.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    max_features_ : int
        The inferred value of max_features.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    feature_importances_ : ndarray of shape (n_features,)
        Return impurity-based feature importances (the higher, the more
        important the feature).

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree instance
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    ExtraTreeClassifier : An extremely randomized tree classifier.
    sklearn.ensemble.ExtraTreesClassifier : An extra-trees classifier.
    sklearn.ensemble.ExtraTreesRegressor : An extra-trees regressor.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.ensemble import BaggingRegressor
    >>> from sklearn.tree import ExtraTreeRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> extra_tree = ExtraTreeRegressor(random_state=0)
    >>> reg = BaggingRegressor(extra_tree, random_state=0).fit(
    ...     X_train, y_train)
    >>> reg.score(X_test, y_test)
    0.33...
    """

    def __init__(
        self,
        *,
        criterion="squared_error",
        splitter="random",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=1.0,
        random_state=None,
        min_impurity_decrease=0.0,
        max_leaf_nodes=None,
        ccp_alpha=0.0,
        monotonic_cst=None,
    ):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            random_state=random_state,
            ccp_alpha=ccp_alpha,
            monotonic_cst=monotonic_cst,
        )