File size: 39,293 Bytes
2792309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 |
"""
This module defines export functions for decision trees.
"""
# Authors: Gilles Louppe <[email protected]>
# Peter Prettenhofer <[email protected]>
# Brian Holt <[email protected]>
# Noel Dawe <[email protected]>
# Satrajit Gosh <[email protected]>
# Trevor Stephens <[email protected]>
# Li Li <[email protected]>
# Giuseppe Vettigli <[email protected]>
# License: BSD 3 clause
from collections.abc import Iterable
from io import StringIO
from numbers import Integral
import numpy as np
from ..base import is_classifier
from ..utils._param_validation import HasMethods, Interval, StrOptions, validate_params
from ..utils.validation import check_array, check_is_fitted
from . import DecisionTreeClassifier, DecisionTreeRegressor, _criterion, _tree
from ._reingold_tilford import Tree, buchheim
def _color_brew(n):
"""Generate n colors with equally spaced hues.
Parameters
----------
n : int
The number of colors required.
Returns
-------
color_list : list, length n
List of n tuples of form (R, G, B) being the components of each color.
"""
color_list = []
# Initialize saturation & value; calculate chroma & value shift
s, v = 0.75, 0.9
c = s * v
m = v - c
for h in np.arange(25, 385, 360.0 / n).astype(int):
# Calculate some intermediate values
h_bar = h / 60.0
x = c * (1 - abs((h_bar % 2) - 1))
# Initialize RGB with same hue & chroma as our color
rgb = [
(c, x, 0),
(x, c, 0),
(0, c, x),
(0, x, c),
(x, 0, c),
(c, 0, x),
(c, x, 0),
]
r, g, b = rgb[int(h_bar)]
# Shift the initial RGB values to match value and store
rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))]
color_list.append(rgb)
return color_list
class Sentinel:
def __repr__(self):
return '"tree.dot"'
SENTINEL = Sentinel()
@validate_params(
{
"decision_tree": [DecisionTreeClassifier, DecisionTreeRegressor],
"max_depth": [Interval(Integral, 0, None, closed="left"), None],
"feature_names": ["array-like", None],
"class_names": ["array-like", "boolean", None],
"label": [StrOptions({"all", "root", "none"})],
"filled": ["boolean"],
"impurity": ["boolean"],
"node_ids": ["boolean"],
"proportion": ["boolean"],
"rounded": ["boolean"],
"precision": [Interval(Integral, 0, None, closed="left"), None],
"ax": "no_validation", # delegate validation to matplotlib
"fontsize": [Interval(Integral, 0, None, closed="left"), None],
},
prefer_skip_nested_validation=True,
)
def plot_tree(
decision_tree,
*,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
impurity=True,
node_ids=False,
proportion=False,
rounded=False,
precision=3,
ax=None,
fontsize=None,
):
"""Plot a decision tree.
The sample counts that are shown are weighted with any sample_weights that
might be present.
The visualization is fit automatically to the size of the axis.
Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control
the size of the rendering.
Read more in the :ref:`User Guide <tree>`.
.. versionadded:: 0.21
Parameters
----------
decision_tree : decision tree regressor or classifier
The decision tree to be plotted.
max_depth : int, default=None
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : array-like of str, default=None
Names of each of the features.
If None, generic names will be used ("x[0]", "x[1]", ...).
class_names : array-like of str or True, default=None
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, default='all'
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, default=False
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
impurity : bool, default=True
When set to ``True``, show the impurity at each node.
node_ids : bool, default=False
When set to ``True``, show the ID number on each node.
proportion : bool, default=False
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rounded : bool, default=False
When set to ``True``, draw node boxes with rounded corners and use
Helvetica fonts instead of Times-Roman.
precision : int, default=3
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
ax : matplotlib axis, default=None
Axes to plot to. If None, use current axis. Any previous content
is cleared.
fontsize : int, default=None
Size of text font. If None, determined automatically to fit figure.
Returns
-------
annotations : list of artists
List containing the artists for the annotation boxes making up the
tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.plot_tree(clf)
[...]
"""
check_is_fitted(decision_tree)
exporter = _MPLTreeExporter(
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rounded=rounded,
precision=precision,
fontsize=fontsize,
)
return exporter.export(decision_tree, ax=ax)
class _BaseTreeExporter:
def __init__(
self,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
impurity=True,
node_ids=False,
proportion=False,
rounded=False,
precision=3,
fontsize=None,
):
self.max_depth = max_depth
self.feature_names = feature_names
self.class_names = class_names
self.label = label
self.filled = filled
self.impurity = impurity
self.node_ids = node_ids
self.proportion = proportion
self.rounded = rounded
self.precision = precision
self.fontsize = fontsize
def get_color(self, value):
# Find the appropriate color & intensity for a node
if self.colors["bounds"] is None:
# Classification tree
color = list(self.colors["rgb"][np.argmax(value)])
sorted_values = sorted(value, reverse=True)
if len(sorted_values) == 1:
alpha = 0.0
else:
alpha = (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])
else:
# Regression tree or multi-output
color = list(self.colors["rgb"][0])
alpha = (value - self.colors["bounds"][0]) / (
self.colors["bounds"][1] - self.colors["bounds"][0]
)
# compute the color as alpha against white
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color]
# Return html color code in #RRGGBB format
return "#%2x%2x%2x" % tuple(color)
def get_fill_color(self, tree, node_id):
# Fetch appropriate color for node
if "rgb" not in self.colors:
# Initialize colors and bounds if required
self.colors["rgb"] = _color_brew(tree.n_classes[0])
if tree.n_outputs != 1:
# Find max and min impurities for multi-output
self.colors["bounds"] = (np.min(-tree.impurity), np.max(-tree.impurity))
elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1:
# Find max and min values in leaf nodes for regression
self.colors["bounds"] = (np.min(tree.value), np.max(tree.value))
if tree.n_outputs == 1:
node_val = tree.value[node_id][0, :]
if (
tree.n_classes[0] == 1
and isinstance(node_val, Iterable)
and self.colors["bounds"] is not None
):
# Unpack the float only for the regression tree case.
# Classification tree requires an Iterable in `get_color`.
node_val = node_val.item()
else:
# If multi-output color node by impurity
node_val = -tree.impurity[node_id]
return self.get_color(node_val)
def node_to_str(self, tree, node_id, criterion):
# Generate the node content string
if tree.n_outputs == 1:
value = tree.value[node_id][0, :]
else:
value = tree.value[node_id]
# Should labels be shown?
labels = (self.label == "root" and node_id == 0) or self.label == "all"
characters = self.characters
node_string = characters[-1]
# Write node ID
if self.node_ids:
if labels:
node_string += "node "
node_string += characters[0] + str(node_id) + characters[4]
# Write decision criteria
if tree.children_left[node_id] != _tree.TREE_LEAF:
# Always write node decision criteria, except for leaves
if self.feature_names is not None:
feature = self.feature_names[tree.feature[node_id]]
else:
feature = "x%s%s%s" % (
characters[1],
tree.feature[node_id],
characters[2],
)
node_string += "%s %s %s%s" % (
feature,
characters[3],
round(tree.threshold[node_id], self.precision),
characters[4],
)
# Write impurity
if self.impurity:
if isinstance(criterion, _criterion.FriedmanMSE):
criterion = "friedman_mse"
elif isinstance(criterion, _criterion.MSE) or criterion == "squared_error":
criterion = "squared_error"
elif not isinstance(criterion, str):
criterion = "impurity"
if labels:
node_string += "%s = " % criterion
node_string += (
str(round(tree.impurity[node_id], self.precision)) + characters[4]
)
# Write node sample count
if labels:
node_string += "samples = "
if self.proportion:
percent = (
100.0 * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])
)
node_string += str(round(percent, 1)) + "%" + characters[4]
else:
node_string += str(tree.n_node_samples[node_id]) + characters[4]
# Write node class distribution / regression value
if not self.proportion and tree.n_classes[0] != 1:
# For classification this will show the proportion of samples
value = value * tree.weighted_n_node_samples[node_id]
if labels:
node_string += "value = "
if tree.n_classes[0] == 1:
# Regression
value_text = np.around(value, self.precision)
elif self.proportion:
# Classification
value_text = np.around(value, self.precision)
elif np.all(np.equal(np.mod(value, 1), 0)):
# Classification without floating-point weights
value_text = value.astype(int)
else:
# Classification with floating-point weights
value_text = np.around(value, self.precision)
# Strip whitespace
value_text = str(value_text.astype("S32")).replace("b'", "'")
value_text = value_text.replace("' '", ", ").replace("'", "")
if tree.n_classes[0] == 1 and tree.n_outputs == 1:
value_text = value_text.replace("[", "").replace("]", "")
value_text = value_text.replace("\n ", characters[4])
node_string += value_text + characters[4]
# Write node majority class
if (
self.class_names is not None
and tree.n_classes[0] != 1
and tree.n_outputs == 1
):
# Only done for single-output classification trees
if labels:
node_string += "class = "
if self.class_names is not True:
class_name = self.class_names[np.argmax(value)]
else:
class_name = "y%s%s%s" % (
characters[1],
np.argmax(value),
characters[2],
)
node_string += class_name
# Clean up any trailing newlines
if node_string.endswith(characters[4]):
node_string = node_string[: -len(characters[4])]
return node_string + characters[5]
class _DOTTreeExporter(_BaseTreeExporter):
def __init__(
self,
out_file=SENTINEL,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
leaves_parallel=False,
impurity=True,
node_ids=False,
proportion=False,
rotate=False,
rounded=False,
special_characters=False,
precision=3,
fontname="helvetica",
):
super().__init__(
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rounded=rounded,
precision=precision,
)
self.leaves_parallel = leaves_parallel
self.out_file = out_file
self.special_characters = special_characters
self.fontname = fontname
self.rotate = rotate
# PostScript compatibility for special characters
if special_characters:
self.characters = ["#", "<SUB>", "</SUB>", "≤", "<br/>", ">", "<"]
else:
self.characters = ["#", "[", "]", "<=", "\\n", '"', '"']
# The depth of each node for plotting with 'leaf' option
self.ranks = {"leaves": []}
# The colors to render each node with
self.colors = {"bounds": None}
def export(self, decision_tree):
# Check length of feature_names before getting into the tree node
# Raise error if length of feature_names does not match
# n_features_in_ in the decision_tree
if self.feature_names is not None:
if len(self.feature_names) != decision_tree.n_features_in_:
raise ValueError(
"Length of feature_names, %d does not match number of features, %d"
% (len(self.feature_names), decision_tree.n_features_in_)
)
# each part writes to out_file
self.head()
# Now recurse the tree and add node & edge attributes
if isinstance(decision_tree, _tree.Tree):
self.recurse(decision_tree, 0, criterion="impurity")
else:
self.recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion)
self.tail()
def tail(self):
# If required, draw leaf nodes at same depth as each other
if self.leaves_parallel:
for rank in sorted(self.ranks):
self.out_file.write(
"{rank=same ; " + "; ".join(r for r in self.ranks[rank]) + "} ;\n"
)
self.out_file.write("}")
def head(self):
self.out_file.write("digraph Tree {\n")
# Specify node aesthetics
self.out_file.write("node [shape=box")
rounded_filled = []
if self.filled:
rounded_filled.append("filled")
if self.rounded:
rounded_filled.append("rounded")
if len(rounded_filled) > 0:
self.out_file.write(
', style="%s", color="black"' % ", ".join(rounded_filled)
)
self.out_file.write(', fontname="%s"' % self.fontname)
self.out_file.write("] ;\n")
# Specify graph & edge aesthetics
if self.leaves_parallel:
self.out_file.write("graph [ranksep=equally, splines=polyline] ;\n")
self.out_file.write('edge [fontname="%s"] ;\n' % self.fontname)
if self.rotate:
self.out_file.write("rankdir=LR ;\n")
def recurse(self, tree, node_id, criterion, parent=None, depth=0):
if node_id == _tree.TREE_LEAF:
raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)
left_child = tree.children_left[node_id]
right_child = tree.children_right[node_id]
# Add node with description
if self.max_depth is None or depth <= self.max_depth:
# Collect ranks for 'leaf' option in plot_options
if left_child == _tree.TREE_LEAF:
self.ranks["leaves"].append(str(node_id))
elif str(depth) not in self.ranks:
self.ranks[str(depth)] = [str(node_id)]
else:
self.ranks[str(depth)].append(str(node_id))
self.out_file.write(
"%d [label=%s" % (node_id, self.node_to_str(tree, node_id, criterion))
)
if self.filled:
self.out_file.write(
', fillcolor="%s"' % self.get_fill_color(tree, node_id)
)
self.out_file.write("] ;\n")
if parent is not None:
# Add edge to parent
self.out_file.write("%d -> %d" % (parent, node_id))
if parent == 0:
# Draw True/False labels if parent is root node
angles = np.array([45, -45]) * ((self.rotate - 0.5) * -2)
self.out_file.write(" [labeldistance=2.5, labelangle=")
if node_id == 1:
self.out_file.write('%d, headlabel="True"]' % angles[0])
else:
self.out_file.write('%d, headlabel="False"]' % angles[1])
self.out_file.write(" ;\n")
if left_child != _tree.TREE_LEAF:
self.recurse(
tree,
left_child,
criterion=criterion,
parent=node_id,
depth=depth + 1,
)
self.recurse(
tree,
right_child,
criterion=criterion,
parent=node_id,
depth=depth + 1,
)
else:
self.ranks["leaves"].append(str(node_id))
self.out_file.write('%d [label="(...)"' % node_id)
if self.filled:
# color cropped nodes grey
self.out_file.write(', fillcolor="#C0C0C0"')
self.out_file.write("] ;\n" % node_id)
if parent is not None:
# Add edge to parent
self.out_file.write("%d -> %d ;\n" % (parent, node_id))
class _MPLTreeExporter(_BaseTreeExporter):
def __init__(
self,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
impurity=True,
node_ids=False,
proportion=False,
rounded=False,
precision=3,
fontsize=None,
):
super().__init__(
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rounded=rounded,
precision=precision,
)
self.fontsize = fontsize
# The depth of each node for plotting with 'leaf' option
self.ranks = {"leaves": []}
# The colors to render each node with
self.colors = {"bounds": None}
self.characters = ["#", "[", "]", "<=", "\n", "", ""]
self.bbox_args = dict()
if self.rounded:
self.bbox_args["boxstyle"] = "round"
self.arrow_args = dict(arrowstyle="<-")
def _make_tree(self, node_id, et, criterion, depth=0):
# traverses _tree.Tree recursively, builds intermediate
# "_reingold_tilford.Tree" object
name = self.node_to_str(et, node_id, criterion=criterion)
if et.children_left[node_id] != _tree.TREE_LEAF and (
self.max_depth is None or depth <= self.max_depth
):
children = [
self._make_tree(
et.children_left[node_id], et, criterion, depth=depth + 1
),
self._make_tree(
et.children_right[node_id], et, criterion, depth=depth + 1
),
]
else:
return Tree(name, node_id)
return Tree(name, node_id, *children)
def export(self, decision_tree, ax=None):
import matplotlib.pyplot as plt
from matplotlib.text import Annotation
if ax is None:
ax = plt.gca()
ax.clear()
ax.set_axis_off()
my_tree = self._make_tree(0, decision_tree.tree_, decision_tree.criterion)
draw_tree = buchheim(my_tree)
# important to make sure we're still
# inside the axis after drawing the box
# this makes sense because the width of a box
# is about the same as the distance between boxes
max_x, max_y = draw_tree.max_extents() + 1
ax_width = ax.get_window_extent().width
ax_height = ax.get_window_extent().height
scale_x = ax_width / max_x
scale_y = ax_height / max_y
self.recurse(draw_tree, decision_tree.tree_, ax, max_x, max_y)
anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)]
# update sizes of all bboxes
renderer = ax.figure.canvas.get_renderer()
for ann in anns:
ann.update_bbox_position_size(renderer)
if self.fontsize is None:
# get figure to data transform
# adjust fontsize to avoid overlap
# get max box width and height
extents = [ann.get_bbox_patch().get_window_extent() for ann in anns]
max_width = max([extent.width for extent in extents])
max_height = max([extent.height for extent in extents])
# width should be around scale_x in axis coordinates
size = anns[0].get_fontsize() * min(
scale_x / max_width, scale_y / max_height
)
for ann in anns:
ann.set_fontsize(size)
return anns
def recurse(self, node, tree, ax, max_x, max_y, depth=0):
import matplotlib.pyplot as plt
kwargs = dict(
bbox=self.bbox_args.copy(),
ha="center",
va="center",
zorder=100 - 10 * depth,
xycoords="axes fraction",
arrowprops=self.arrow_args.copy(),
)
kwargs["arrowprops"]["edgecolor"] = plt.rcParams["text.color"]
if self.fontsize is not None:
kwargs["fontsize"] = self.fontsize
# offset things by .5 to center them in plot
xy = ((node.x + 0.5) / max_x, (max_y - node.y - 0.5) / max_y)
if self.max_depth is None or depth <= self.max_depth:
if self.filled:
kwargs["bbox"]["fc"] = self.get_fill_color(tree, node.tree.node_id)
else:
kwargs["bbox"]["fc"] = ax.get_facecolor()
if node.parent is None:
# root
ax.annotate(node.tree.label, xy, **kwargs)
else:
xy_parent = (
(node.parent.x + 0.5) / max_x,
(max_y - node.parent.y - 0.5) / max_y,
)
ax.annotate(node.tree.label, xy_parent, xy, **kwargs)
for child in node.children:
self.recurse(child, tree, ax, max_x, max_y, depth=depth + 1)
else:
xy_parent = (
(node.parent.x + 0.5) / max_x,
(max_y - node.parent.y - 0.5) / max_y,
)
kwargs["bbox"]["fc"] = "grey"
ax.annotate("\n (...) \n", xy_parent, xy, **kwargs)
@validate_params(
{
"decision_tree": "no_validation",
"out_file": [str, None, HasMethods("write")],
"max_depth": [Interval(Integral, 0, None, closed="left"), None],
"feature_names": ["array-like", None],
"class_names": ["array-like", "boolean", None],
"label": [StrOptions({"all", "root", "none"})],
"filled": ["boolean"],
"leaves_parallel": ["boolean"],
"impurity": ["boolean"],
"node_ids": ["boolean"],
"proportion": ["boolean"],
"rotate": ["boolean"],
"rounded": ["boolean"],
"special_characters": ["boolean"],
"precision": [Interval(Integral, 0, None, closed="left"), None],
"fontname": [str],
},
prefer_skip_nested_validation=True,
)
def export_graphviz(
decision_tree,
out_file=None,
*,
max_depth=None,
feature_names=None,
class_names=None,
label="all",
filled=False,
leaves_parallel=False,
impurity=True,
node_ids=False,
proportion=False,
rotate=False,
rounded=False,
special_characters=False,
precision=3,
fontname="helvetica",
):
"""Export a decision tree in DOT format.
This function generates a GraphViz representation of the decision tree,
which is then written into `out_file`. Once exported, graphical renderings
can be generated using, for example::
$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)
The sample counts that are shown are weighted with any sample_weights that
might be present.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
decision_tree : object
The decision tree estimator to be exported to GraphViz.
out_file : object or str, default=None
Handle or name of the output file. If ``None``, the result is
returned as a string.
.. versionchanged:: 0.20
Default of out_file changed from "tree.dot" to None.
max_depth : int, default=None
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : array-like of shape (n_features,), default=None
An array containing the feature names.
If None, generic names will be used ("x[0]", "x[1]", ...).
class_names : array-like of shape (n_classes,) or bool, default=None
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, default='all'
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, default=False
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
leaves_parallel : bool, default=False
When set to ``True``, draw all leaf nodes at the bottom of the tree.
impurity : bool, default=True
When set to ``True``, show the impurity at each node.
node_ids : bool, default=False
When set to ``True``, show the ID number on each node.
proportion : bool, default=False
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rotate : bool, default=False
When set to ``True``, orient tree left to right rather than top-down.
rounded : bool, default=False
When set to ``True``, draw node boxes with rounded corners.
special_characters : bool, default=False
When set to ``False``, ignore special characters for PostScript
compatibility.
precision : int, default=3
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
fontname : str, default='helvetica'
Name of font used to render text.
Returns
-------
dot_data : str
String representation of the input tree in GraphViz dot format.
Only returned if ``out_file`` is None.
.. versionadded:: 0.18
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.export_graphviz(clf)
'digraph Tree {...
"""
if feature_names is not None:
feature_names = check_array(
feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
if class_names is not None and not isinstance(class_names, bool):
class_names = check_array(
class_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
check_is_fitted(decision_tree)
own_file = False
return_string = False
try:
if isinstance(out_file, str):
out_file = open(out_file, "w", encoding="utf-8")
own_file = True
if out_file is None:
return_string = True
out_file = StringIO()
exporter = _DOTTreeExporter(
out_file=out_file,
max_depth=max_depth,
feature_names=feature_names,
class_names=class_names,
label=label,
filled=filled,
leaves_parallel=leaves_parallel,
impurity=impurity,
node_ids=node_ids,
proportion=proportion,
rotate=rotate,
rounded=rounded,
special_characters=special_characters,
precision=precision,
fontname=fontname,
)
exporter.export(decision_tree)
if return_string:
return exporter.out_file.getvalue()
finally:
if own_file:
out_file.close()
def _compute_depth(tree, node):
"""
Returns the depth of the subtree rooted in node.
"""
def compute_depth_(
current_node, current_depth, children_left, children_right, depths
):
depths += [current_depth]
left = children_left[current_node]
right = children_right[current_node]
if left != -1 and right != -1:
compute_depth_(
left, current_depth + 1, children_left, children_right, depths
)
compute_depth_(
right, current_depth + 1, children_left, children_right, depths
)
depths = []
compute_depth_(node, 1, tree.children_left, tree.children_right, depths)
return max(depths)
@validate_params(
{
"decision_tree": [DecisionTreeClassifier, DecisionTreeRegressor],
"feature_names": ["array-like", None],
"class_names": ["array-like", None],
"max_depth": [Interval(Integral, 0, None, closed="left"), None],
"spacing": [Interval(Integral, 1, None, closed="left"), None],
"decimals": [Interval(Integral, 0, None, closed="left"), None],
"show_weights": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def export_text(
decision_tree,
*,
feature_names=None,
class_names=None,
max_depth=10,
spacing=3,
decimals=2,
show_weights=False,
):
"""Build a text report showing the rules of a decision tree.
Note that backwards compatibility may not be supported.
Parameters
----------
decision_tree : object
The decision tree estimator to be exported.
It can be an instance of
DecisionTreeClassifier or DecisionTreeRegressor.
feature_names : array-like of shape (n_features,), default=None
An array containing the feature names.
If None generic names will be used ("feature_0", "feature_1", ...).
class_names : array-like of shape (n_classes,), default=None
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
- if `None`, the class names are delegated to `decision_tree.classes_`;
- otherwise, `class_names` will be used as class names instead of
`decision_tree.classes_`. The length of `class_names` must match
the length of `decision_tree.classes_`.
.. versionadded:: 1.3
max_depth : int, default=10
Only the first max_depth levels of the tree are exported.
Truncated branches will be marked with "...".
spacing : int, default=3
Number of spaces between edges. The higher it is, the wider the result.
decimals : int, default=2
Number of decimal digits to display.
show_weights : bool, default=False
If true the classification weights will be exported on each leaf.
The classification weights are the number of samples each class.
Returns
-------
report : str
Text summary of all the rules in the decision tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text
>>> iris = load_iris()
>>> X = iris['data']
>>> y = iris['target']
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(X, y)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
| |--- class: 0
|--- petal width (cm) > 0.80
| |--- petal width (cm) <= 1.75
| | |--- class: 1
| |--- petal width (cm) > 1.75
| | |--- class: 2
"""
if feature_names is not None:
feature_names = check_array(
feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
if class_names is not None:
class_names = check_array(
class_names, ensure_2d=False, dtype=None, ensure_min_samples=0
)
check_is_fitted(decision_tree)
tree_ = decision_tree.tree_
if is_classifier(decision_tree):
if class_names is None:
class_names = decision_tree.classes_
elif len(class_names) != len(decision_tree.classes_):
raise ValueError(
"When `class_names` is an array, it should contain as"
" many items as `decision_tree.classes_`. Got"
f" {len(class_names)} while the tree was fitted with"
f" {len(decision_tree.classes_)} classes."
)
right_child_fmt = "{} {} <= {}\n"
left_child_fmt = "{} {} > {}\n"
truncation_fmt = "{} {}\n"
if feature_names is not None and len(feature_names) != tree_.n_features:
raise ValueError(
"feature_names must contain %d elements, got %d"
% (tree_.n_features, len(feature_names))
)
if isinstance(decision_tree, DecisionTreeClassifier):
value_fmt = "{}{} weights: {}\n"
if not show_weights:
value_fmt = "{}{}{}\n"
else:
value_fmt = "{}{} value: {}\n"
if feature_names is not None:
feature_names_ = [
feature_names[i] if i != _tree.TREE_UNDEFINED else None
for i in tree_.feature
]
else:
feature_names_ = ["feature_{}".format(i) for i in tree_.feature]
export_text.report = ""
def _add_leaf(value, weighted_n_node_samples, class_name, indent):
val = ""
if isinstance(decision_tree, DecisionTreeClassifier):
if show_weights:
val = [
"{1:.{0}f}, ".format(decimals, v * weighted_n_node_samples)
for v in value
]
val = "[" + "".join(val)[:-2] + "]"
weighted_n_node_samples
val += " class: " + str(class_name)
else:
val = ["{1:.{0}f}, ".format(decimals, v) for v in value]
val = "[" + "".join(val)[:-2] + "]"
export_text.report += value_fmt.format(indent, "", val)
def print_tree_recurse(node, depth):
indent = ("|" + (" " * spacing)) * depth
indent = indent[:-spacing] + "-" * spacing
value = None
if tree_.n_outputs == 1:
value = tree_.value[node][0]
else:
value = tree_.value[node].T[0]
class_name = np.argmax(value)
if tree_.n_classes[0] != 1 and tree_.n_outputs == 1:
class_name = class_names[class_name]
weighted_n_node_samples = tree_.weighted_n_node_samples[node]
if depth <= max_depth + 1:
info_fmt = ""
info_fmt_left = info_fmt
info_fmt_right = info_fmt
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_names_[node]
threshold = tree_.threshold[node]
threshold = "{1:.{0}f}".format(decimals, threshold)
export_text.report += right_child_fmt.format(indent, name, threshold)
export_text.report += info_fmt_left
print_tree_recurse(tree_.children_left[node], depth + 1)
export_text.report += left_child_fmt.format(indent, name, threshold)
export_text.report += info_fmt_right
print_tree_recurse(tree_.children_right[node], depth + 1)
else: # leaf
_add_leaf(value, weighted_n_node_samples, class_name, indent)
else:
subtree_depth = _compute_depth(tree_, node)
if subtree_depth == 1:
_add_leaf(value, weighted_n_node_samples, class_name, indent)
else:
trunc_report = "truncated branch of depth %d" % subtree_depth
export_text.report += truncation_fmt.format(indent, trunc_report)
print_tree_recurse(0, 1)
return export_text.report
|