File size: 5,510 Bytes
0cee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from typing import Union, Callable, Dict, Any
import importlib
import torch
from ..pydantic_v1 import validator
from .config_utils import DeepSpeedConfigModel

COMPILE_CONFIG = "compile"


def is_compile_supported():
    return hasattr(torch, "compiler")


def disable(func):
    if is_compile_supported():
        return torch.compiler.disable(func)
    return func


def get_compile_config(param_dict):
    if COMPILE_CONFIG in param_dict:
        compile_config_dict = param_dict[COMPILE_CONFIG]
    else:
        compile_config_dict = {}
    return CompileConfig(**compile_config_dict)


def get_backend_fn(backend: Union[str, Callable]) -> Union[str, Callable]:
    if isinstance(backend, Callable):
        return backend

    elif isinstance(backend, str):
        if backend in torch._dynamo.list_backends(exclude_tags=()):
            return backend

        # Get module name from backend name
        module_name = '.'.join(backend.split('.')[:-1])
        fn_name = backend.split('.')[-1]

        try:
            module = importlib.import_module(module_name)
            backend_fn = getattr(module, fn_name)
        except ImportError:
            raise ValueError(
                f"The backend {backend} is not in the list of available backends and could not be imported.")
        return backend_fn

    raise ValueError(f"backend for torch.compile must be a string or Callable: {backend}")


class CompileConfig(DeepSpeedConfigModel):
    """
    [EXPERIMENTAL] This configuration enables users to activate `torch.compile` within DeepSpeed and customize its settings.
    Please be aware that these features and API designs are experimental and subject to change.
    """

    enabled: bool = False
    """
    Enable torch.compile when True.
    """

    backend: str = "inductor"
    """
    Passed to `backend` argument of torch.compile.
    If the given value is not in torch._dynamo.list_backends(),
    DeepSpeed attempts to import and instantiate the module with the given name.
    """

    kwargs: Dict[str, Any] = {}
    """
    Passed to `kwargs` argument of torch.compile.
    """

    @validator("enabled")
    def validate_enabled(cls, field_value, values):
        if field_value and not is_compile_supported():
            raise ValueError("torch.compile is not supported on this version of PyTorch.")
        return field_value


class CompiledModuleWrapper(torch.nn.Module):

    def __init__(self, module, compile_config: Union[CompileConfig, None] = None):
        super().__init__()

        assert is_compile_supported(), "torch.compile is not supported on this version of PyTorch."

        modules = self.__dict__.get('_modules')
        modules['wrapped'] = module
        self.__dict__['wrapped'] = module
        self._is_compiled = False
        self._backend = get_backend_fn(compile_config.backend)
        self._compile_kwargs = compile_config.kwargs
        self._compiler_fn = None

    def __getattr__(self, name):
        return getattr(self.__dict__['wrapped'], name)

    def set_backend(self, backend: Union[str, Callable]):
        """Set the backend for torch.compile.

        Args:
            backend (Union[str, Callable]): backend name or a function that takes a torch.nn.Module and returns a compiled module.
            You can directly pass a function that works as a backend.
            See also `backend` field in `CompileConfig` for more details.
        """
        self._backend = get_backend_fn(backend)

    def set_torch_compile_kwargs(self, kwargs: Dict[str, Union[str, Any]]) -> None:
        """Set kwargs for torch.compile. Kwargs that are set in DeepSpeed config will be overwritten.
        You can also pass a backend name with "backend" key to change the backend.

        Args:
            kwargs (Dict[str, Union[str, Any]]): kwargs passed to torch.compile.
        """

        if "backend" in kwargs:
            raise ValueError("backend cannot be set as compile kwargs. Use set_backend instead.")
        self._compile_kwargs.update(kwargs)

    def set_compiler_fn(self, compiler_fn: Callable) -> None:
        """Set a function to be used for compiling the module.
        This function should take a torch.nn.Module as input and return a compiled module.
        Note that other compile options are ignored when a compiler_fn is set.

        Example:
        ```python
            def my_compiler_fn(module: torch.nn.Module):
                ...
                return torch.compile(module, ...)

            engine.set_compiler_fn(my_compiler_fn)
        ```
        """
        self._compiler_fn = compiler_fn

    def forward(self, *args, **kwargs) -> Any:
        if not self.is_compiled:
            if self._compiler_fn is None:
                self.__dict__['wrapped'] = torch.compile(self.wrapped, backend=self._backend, **self._compile_kwargs)
            else:
                self.__dict__['wrapped'] = self._compiler_fn(self.wrapped)
            self._is_compiled = True

        return self.__dict__['wrapped'](*args, **kwargs)

    @property
    def is_compiled(self) -> bool:
        return self._is_compiled

    @property
    def backend(self) -> Union[str, Callable]:
        return self._backend

    @property
    def torch_compile_kwargs(self) -> Dict[str, Any]:
        return self._compile_kwargs

    @property
    def compiler_fn(self) -> Union[Callable, None]:
        return self._compiler_fn