File size: 169,755 Bytes
0cee4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import re
import stat
import torch
import hashlib
from collections import defaultdict, OrderedDict, deque
from shutil import copyfile
import gc
from torch.nn.modules import Module
from torch.nn.parameter import Parameter
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from typing import Callable, Dict, Union, Iterable
import deepspeed
from deepspeed import comm as dist
from deepspeed.runtime.utils import see_memory_usage, DummyOptim
from .zero.offload_config import OffloadDeviceEnum
from deepspeed.runtime.zero.stage_1_and_2 import DeepSpeedZeroOptimizer
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from deepspeed.runtime.zero.utils import is_zero_supported_optimizer, ZeRORuntimeException
from deepspeed.runtime.zero.parameter_offload import DeepSpeedZeRoOffload
from deepspeed.runtime.zero.config import ZERO_OPTIMIZATION
from deepspeed.runtime.fp16.fused_optimizer import FP16_Optimizer
from deepspeed.runtime.fp16.unfused_optimizer import FP16_UnfusedOptimizer
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer
from deepspeed.runtime.config import DEEPSPEED_OPTIMIZERS, \
ADAGRAD_OPTIMIZER, ADAM_OPTIMIZER, ADAMW_OPTIMIZER, LAMB_OPTIMIZER, ONEBIT_ADAM_OPTIMIZER, ONEBIT_LAMB_OPTIMIZER, \
TORCH_ADAM_PARAM, ADAM_W_MODE, ADAM_W_MODE_DEFAULT, ZERO_ONE_ADAM_OPTIMIZER, MUADAM_OPTIMIZER, MUADAMW_OPTIMIZER, \
MUSGD_OPTIMIZER, LION_OPTIMIZER
from deepspeed.runtime.dataloader import DeepSpeedDataLoader
from deepspeed.runtime.constants import \
ROUTE_TRAIN, ROUTE_PREDICT, ROUTE_EVAL, \
PLD_THETA, PLD_GAMMA, BFLOAT16, FP16, AMP, GRADIENT_ACCUMULATION_STEPS, \
DATA_PARALLEL_GROUP, GLOBAL_RANK
from deepspeed.runtime.zero.config import ZeroStageEnum
from deepspeed.compression import compression_scheduler
from deepspeed.compression.constants import \
WEIGHT_QUANTIZE_IN_FORWARD_ENABLED, \
WEIGHT_QUANTIZATION, SHARED_PARAMETERS, \
WEIGHT_QUANTIZE_ENABLED, \
WEIGHT_QUANTIZE_GROUPS, \
WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE, \
WEIGHT_QUANTIZE_CHANGE_RATIO, \
WEIGHT_QUANTIZE_TYPE, \
WEIGHT_QUANTIZE_ROUNDING, \
WEIGHT_QUANTIZE_VERBOSE, \
WEIGHT_QUANTIZE_KERNEL
from deepspeed.checkpoint.constants import OPTIMIZER_STATE_DICT, FROZEN_PARAM_FRAGMENTS
from deepspeed.runtime.sparse_tensor import SparseTensor
from deepspeed.runtime import lr_schedules
from deepspeed.utils import groups
from deepspeed.utils import logger, log_dist, instrument_w_nvtx
from deepspeed.utils.timer import NoopTimer, ThroughputTimer, SynchronizedWallClockTimer, \
FORWARD_MICRO_TIMER, BACKWARD_MICRO_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_REDUCE_MICRO_TIMER, \
STEP_MICRO_TIMER, \
FORWARD_GLOBAL_TIMER, BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_GLOBAL_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER, \
STEP_GLOBAL_TIMER
from deepspeed.utils.debug import debug_extract_module_and_param_names, debug_clear_module_and_param_names
from deepspeed.monitor.monitor import MonitorMaster
from deepspeed.runtime.progressive_layer_drop import ProgressiveLayerDrop
from deepspeed.runtime.utils import clip_grad_norm_
from deepspeed.runtime.eigenvalue import Eigenvalue
from deepspeed.runtime.data_pipeline.constants import DATA_SAMPLING, \
DATA_ROUTING, DATA_SAMPLING_ENABLED, CURRICULUM_LEARNING, \
CURRICULUM_LEARNING_ENABLED, DATA_SAMPLING_NUM_WORKERS, RANDOM_LTD, \
RANDOM_LTD_ENABLED, RANDOM_LTD_LAYER_ID, RANDOM_LTD_LAYER_NUM, \
RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE, RANDOM_LTD_LAYER_TOKEN_LR_ENABLED, \
RANDOM_LTD_GLOBAL_BATCH_SIZE, RANDOM_LTD_MICRO_BATCH_SIZE, DATA_EFFICIENCY
from deepspeed.runtime.data_pipeline.curriculum_scheduler import CurriculumScheduler
from deepspeed.runtime.data_pipeline.data_routing.scheduler import RandomLTDScheduler
from deepspeed.runtime.data_pipeline.data_routing.helper import remove_random_ltd_state_dict
from deepspeed.runtime.data_pipeline.data_routing.basic_layer import RandomLayerTokenDrop
from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
from .pipe.module import PipelineModule
from .utils import get_ma_status
from .compiler import CompiledModuleWrapper
from ..ops.adam import FusedAdam
from ..moe.sharded_moe import TopKGate, MOELayer
from ..moe.layer import MoE
from ..moe.utils import is_moe_param, configure_moe_param_groups
from ..git_version_info import version
from deepspeed.profiling.flops_profiler.profiler import FlopsProfiler
from deepspeed.utils.logging import print_json_dist, print_configuration
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime.config import DtypeEnum
MEMORY_OPT_ALLREDUCE_SIZE = 500000000
DeepSpeedOptimizerCallable = \
Callable[[Union[Iterable[Parameter], Dict[str, Iterable]]], Optimizer]
DeepSpeedSchedulerCallable = Callable[[Optimizer], _LRScheduler]
try:
import apex
from apex import amp
APEX_INSTALLED = True
except ImportError:
# Fail silently so we don't spam logs unnecessarily if user isn't using amp
APEX_INSTALLED = False
def split_half_float_double_sparse(tensors):
device_type = get_accelerator().device_name()
supported_types = get_accelerator().supported_dtypes()
for t in tensors:
assert t.dtype in supported_types, f"attempting to reduce an unsupported grad type: {t.dtype}"
sparse_tensor_buckets, dense_tensor_buckets = [], []
for i, dtype in enumerate(supported_types):
sparse_bucket, dense_bucket = [], []
for t in tensors:
if t.dtype == dtype:
if isinstance(t, SparseTensor):
sparse_bucket.append(t)
else:
dense_bucket.append(t)
if sparse_bucket:
sparse_tensor_buckets.append((dtype, sparse_bucket))
if dense_bucket:
dense_tensor_buckets.append((dtype, dense_bucket))
return sparse_tensor_buckets, dense_tensor_buckets
class EngineTimers(object):
r"""Wallclock timers for DeepSpeedEngine"""
def __init__(self, enable_micro_timers, enable_global_timers):
self.forward_timers = []
self.backward_timers = []
self.backward_inner_timers = []
self.backward_reduce_timers = []
self.step_timers = []
self.global_timers = []
self.micro_timers = []
if enable_micro_timers:
self.forward_timers += [FORWARD_MICRO_TIMER]
self.backward_timers += [BACKWARD_MICRO_TIMER]
self.backward_inner_timers += [BACKWARD_INNER_MICRO_TIMER]
self.backward_reduce_timers += [BACKWARD_REDUCE_MICRO_TIMER]
self.step_timers += [STEP_MICRO_TIMER]
self.micro_timers += [
FORWARD_MICRO_TIMER, BACKWARD_MICRO_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_REDUCE_MICRO_TIMER,
STEP_MICRO_TIMER
]
if enable_global_timers:
self.forward_timers += [FORWARD_GLOBAL_TIMER]
self.backward_timers += [BACKWARD_GLOBAL_TIMER]
self.backward_inner_timers += [BACKWARD_INNER_GLOBAL_TIMER]
self.backward_reduce_timers += [BACKWARD_REDUCE_GLOBAL_TIMER]
self.step_timers += [STEP_GLOBAL_TIMER]
self.global_timers += [
FORWARD_GLOBAL_TIMER, BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_GLOBAL_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER,
STEP_GLOBAL_TIMER
]
class DeepSpeedEngine(Module):
r"""DeepSpeed engine for training."""
def __init__(self,
args,
model,
optimizer=None,
model_parameters=None,
training_data=None,
lr_scheduler=None,
mpu=None,
dist_init_required=None,
collate_fn=None,
config=None,
config_class=None,
dont_change_device=False):
super(DeepSpeedEngine, self).__init__()
self.dont_change_device = dont_change_device
self.client_optimizer = optimizer
self.client_lr_scheduler = lr_scheduler
self.training_data = training_data
self.collate_fn = collate_fn
self.mpu = mpu
self.all_to_all_group = None
self.data_parallel_group = None
self.global_steps = 0
self.global_samples = 0
self.micro_steps = 0
self.skipped_steps = 0
self.gradient_average = True
self.warn_unscaled_loss = True
self.config = config
self._config = config_class
self.loaded_checkpoint_mp_world_size = None
self.loaded_checkpoint_dp_world_size = None
self.enable_backward_allreduce = True
self.progressive_layer_drop = None
self.eigenvalue = None
self.block_eigenvalue = None
self.gas_boundary_ctr = 0
self.dist_backend = get_accelerator().communication_backend_name()
self.has_moe_layers = False
self.num_experts = []
self.gate_modules = []
self.moe_layers = []
self._step_applied = False
self._global_grad_norm = None
self.use_ds_comm = False # False --> Use torch.dist, True --> Use ds.comm backend.
self.checkpoint_engine = None
self._is_gradient_accumulation_boundary = None
self.scale_wrt_gas = None
self.losses = None
# for debug purposes - can then debug print: debug_get_module_name(module)
debug_extract_module_and_param_names(model)
self._do_args_sanity_check(args)
self._configure_with_arguments(args, mpu)
self._do_sanity_check()
see_memory_usage(f"DeepSpeed Engine: After args sanity test", force=self.memory_breakdown())
if mpu is not None:
if self.elasticity_enabled():
if not self.is_elastic_model_parallel_supported():
assert not self.elasticity_enabled(), ("Elasticity is not currently supported"
" with model parallelism.")
self._set_distributed_vars(args)
dist.configure(self._config)
self.monitor = MonitorMaster(self._config.monitor_config)
see_memory_usage(
f"DeepSpeed Engine: Before configure distributed model",
force=self.memory_breakdown(),
)
self.pipeline_parallelism = isinstance(model, PipelineModule)
# Configure distributed model
self._configure_distributed_model(model)
# needed for zero_to_fp32 weights reconstruction to remap nameless data to state_dict
self.param_names = {param: name for name, param in model.named_parameters()}
self._get_model_parameters()
see_memory_usage(f"DeepSpeed Engine: After configure distributed model")
# Configure wall clock timers
self.timers = SynchronizedWallClockTimer()
# Throughput timer
self.tput_timer = ThroughputTimer(
batch_size=self.train_batch_size(),
steps_per_output=self.steps_per_print(),
monitor_memory=False,
)
log_dist(f"DeepSpeed Flops Profiler Enabled: {self.flops_profiler_enabled()}", ranks=[0])
if self.flops_profiler_enabled():
self.flops_profiler = FlopsProfiler(self.module, self, self.flops_profiler_recompute_fwd_factor())
if training_data:
self.training_dataloader = self.deepspeed_io(training_data)
else:
self.training_dataloader = None
# Configure optimizer and scheduler
self.optimizer = None
self.basic_optimizer = None
self.lr_scheduler = None
has_optimizer = False
if optimizer or self.optimizer_name():
has_optimizer = True
# If no parameters given by init default to module parameters
if model_parameters is None:
model_parameters = self.module.parameters()
# Convert model parameters from generator to list
if not isinstance(model_parameters, list):
model_parameters = list(model_parameters)
if has_optimizer:
self._configure_optimizer(optimizer, model_parameters)
self._configure_lr_scheduler(lr_scheduler)
self._report_progress(0)
elif self.zero_optimization():
# no optim selected but zero is enabled
self.optimizer = self._configure_zero_optimizer(optimizer=None)
elif self.bfloat16_enabled():
self.optimizer = self._configure_bf16_optimizer(optimizer=None)
# Hook optimizer for snip_momentum pruning
if hasattr(model, 'pruners'):
from ..compression.helper import rewrite_optimizer_step
self.optimizer.pruners = model.pruners
rewrite_optimizer_step(self.optimizer)
# Bookkeeping for sparse support
self.sparse_tensor_module_names = set()
# if self.sparse_gradients_enabled():
for name, module in self.module.named_modules():
if isinstance(module, (torch.nn.Embedding, torch.nn.EmbeddingBag)) and self.sparse_gradients_enabled():
self.sparse_tensor_module_names.add(name + ".weight")
logger.info("Will convert {} to sparse tensor during training".format(name))
self.save_non_zero_checkpoint = False
self.save_zero_checkpoint = False
if not isinstance(self.optimizer, DeepSpeedZeRoOffload):
self._configure_checkpointing(dist_init_required)
if self.eigenvalue_enabled():
self.eigenvalue = self._configure_eigenvalue()
if self.pld_enabled():
self.progressive_layer_drop = self._configure_progressive_layer_drop()
if self.curriculum_enabled_legacy():
self.curriculum_scheduler_legacy = self._configure_curriculum_scheduler_legacy()
if self.random_ltd_enabled():
random_ltd_config = self.random_ltd_config()
random_ltd_config[RANDOM_LTD_GLOBAL_BATCH_SIZE] = self.train_batch_size()
random_ltd_config[RANDOM_LTD_MICRO_BATCH_SIZE] = self.train_micro_batch_size_per_gpu()
self.random_ltd_scheduler = self._configure_random_ltd_scheduler(random_ltd_config)
# Engine timers
self.engine_timers = EngineTimers(enable_micro_timers=self.wall_clock_breakdown(),
enable_global_timers=self.wall_clock_breakdown()
or self.flops_profiler_enabled())
if self.global_rank == 0:
self._config.print("DeepSpeedEngine configuration")
if self.dump_state():
print_configuration(self, "DeepSpeedEngine")
# Use torch (un)flatten ops
self.flatten = _flatten_dense_tensors
self.unflatten = _unflatten_dense_tensors
if self._config.compile_config.enabled:
self._set_client_model(CompiledModuleWrapper(self.module, self._config.compile_config))
def destroy(self):
if self.optimizer is not None and hasattr(self.optimizer, 'destroy'):
self.optimizer.destroy()
debug_clear_module_and_param_names()
def _get_model_parameters(self):
if self.autotuning_profile_model_info():
self.autotuning_model_info = {}
num_params = 0
trainable_num_params = 0
for p in self.module.parameters():
# since user code might call deepspeed.zero.Init() before deepspeed.initialize(), need to check the attribute to check if the parameter is partitioned in zero 3 already or not
n = 0
if hasattr(p, "ds_tensor"): # if the parameter is partitioned in zero 3
n += p.ds_numel
else: # if the parameter is not partitioned in zero 3 yet
n += p.numel()
num_params += n
if p.requires_grad:
trainable_num_params += n
if self.global_rank == 0:
self.autotuning_model_info["num_params"] = num_params * self.mp_world_size
self.autotuning_model_info["trainable_num_params"] = trainable_num_params * self.mp_world_size
logger.info(f"model parameter = {num_params}")
def get_batch_info(self):
"""Get all training batch related settings.
Returns:
train_batch_size (int): The effective training batch size. This is the amount of data
samples that leads to one step of model update.
train_micro_batch_size_per_gpu (int): Batch size to be processed by one GPU in one
step (without gradient accumulation).
gradient_accumulation_steps (int): Number of training steps to accumulate gradients
before averaging and applying them.
"""
return (
self.train_batch_size,
self.train_micro_batch_size_per_gpu,
self.gradient_accumulation_steps,
)
def set_train_batch_size(self, train_batch_size):
"""Adjust the global batch size by increasing or decreasing the number of
micro-batches (i.e., gradient accumulation steps). The size of each micro-batch
(i.e., ``train_micro_batch_size_per_gpu``) is not changed.
Args:
train_batch_size (int): The new global batch size for training.
Raises:
ValueError: if ``train_batch_size`` is not divisible by the
configured micro-batch size and data parallelism.
"""
if train_batch_size % (self.train_micro_batch_size_per_gpu() * self.dp_world_size) != 0:
#print(f'{train_batch_size=} {self.train_micro_batch_size_per_gpu()=} {self.dp_world_size=}')
raise ValueError(f'Train batch size must be divisible by micro-batch data parallelism')
new_gas = train_batch_size // (self.train_micro_batch_size_per_gpu() * self.dp_world_size)
# overwrite config
self._config.train_batch_size = train_batch_size
self._config.gradient_accumulation_steps = new_gas
def set_train_micro_batch_size(self, micro_batch_size):
"""Adjust the micro batch size(i.e., the micro batch size in every data parallel group),
while keep the gradient accumulation steps the same.
Args:
micro_batch_size (int): The new micro batch size for training.
"""
# overwrite config
new_global_batch_size = micro_batch_size * self._config.gradient_accumulation_steps * self.dp_world_size
self._config.train_batch_size = new_global_batch_size
self._config.train_micro_batch_size_per_gpu = micro_batch_size
def set_data_post_process_func(self, post_process_func):
if self.training_dataloader is not None:
self.training_dataloader.post_process_func = post_process_func
def set_custom_curriculum_learning_schedule(self, schedule_func_dict):
if self.training_dataloader is not None and self.curriculum_learning_enabled():
self.training_dataloader.data_sampler.set_custom_curriculum_learning_schedule(schedule_func_dict)
def get_global_grad_norm(self) -> float:
"""Return the 2-norm of all gradients. If there is model parallelism,
the norm will be global.
The computed norm will be cached and reused until the next step() pass.
.. note::
In the presence of model parallelism, this is a collective call
and acts as a barrier among ``mpu.get_model_parallel_group()``.
Returns:
float: norm
"""
return self._global_grad_norm
def __getattr__(self, name):
"""
Pass through attributes defined in the model if they are not overridden by ds-engine.
"""
_module = {}
if "module" in self.__dict__:
_module = self.__dict__['module']
if name in dir(self):
return getattr(self, name)
elif name in dir(_module):
return getattr(_module, name)
elif isinstance(_module, CompiledModuleWrapper):
try:
return getattr(_module, name)
except AttributeError:
raise AttributeError(
f"None of {type(self).__name__}, CompiledModuleWrapper, or the wrapped model has the attribute '{name}'"
)
else:
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
def checkpoint_tag_validation_enabled(self):
return self._config.checkpoint_tag_validation_enabled
def checkpoint_tag_validation_fail(self):
return self._config.checkpoint_tag_validation_fail
def elasticity_enabled(self):
return self._config.elasticity_enabled
def is_elastic_model_parallel_supported(self):
if self.elasticity_enabled():
# Add code for finding number of GPUs per node automatically
if self._config.num_gpus_per_node % self._config.elastic_model_parallel_size == 0:
return True
else:
return False
def pld_enabled(self):
return self._config.pld_enabled
def pld_params(self):
return self._config.pld_params
def pld_theta(self):
return self.pld_params()[PLD_THETA]
def pld_gamma(self):
return self.pld_params()[PLD_GAMMA]
def eigenvalue_enabled(self):
return self._config.eigenvalue_enabled
def eigenvalue_verbose(self):
return self._config.eigenvalue_verbose
def eigenvalue_max_iter(self):
return self._config.eigenvalue_max_iter
def eigenvalue_tol(self):
return self._config.eigenvalue_tol
def eigenvalue_stability(self):
return self._config.eigenvalue_stability
def eigenvalue_gas_boundary_resolution(self):
return self._config.eigenvalue_gas_boundary_resolution
def eigenvalue_layer_name(self):
return self._config.eigenvalue_layer_name
def eigenvalue_layer_num(self):
return self._config.eigenvalue_layer_num
def curriculum_enabled_legacy(self):
return self._config.curriculum_enabled_legacy
def curriculum_params_legacy(self):
return self._config.curriculum_params_legacy
def data_efficiency_enabled(self):
return self._config.data_efficiency_enabled
def data_efficiency_config(self):
return self._config.data_efficiency_config
def data_sampling_enabled(self):
return self._config.data_efficiency_config[DATA_SAMPLING][DATA_SAMPLING_ENABLED]
def data_sampling_config(self):
return self._config.data_efficiency_config[DATA_SAMPLING]
def curriculum_learning_enabled(self):
return self._config.data_efficiency_config[DATA_SAMPLING][CURRICULUM_LEARNING][CURRICULUM_LEARNING_ENABLED]
def curriculum_learning_config(self):
return self._config.data_efficiency_config[DATA_SAMPLING][CURRICULUM_LEARNING]
def random_ltd_enabled(self):
return self._config.data_efficiency_config[DATA_ROUTING][RANDOM_LTD][RANDOM_LTD_ENABLED]
def random_ltd_config(self):
return self._config.data_efficiency_config[DATA_ROUTING][RANDOM_LTD]
def random_ltd_initialize(self):
assert self.random_ltd_enabled()
random_ltd_config = self.random_ltd_config()
random_ltd_queue = deque([x for x in sorted(random_ltd_config[RANDOM_LTD_LAYER_ID])])
count = 0
for name, layer in self.module.named_modules():
if isinstance(layer, RandomLayerTokenDrop):
if len(random_ltd_queue) != 0 and str(random_ltd_queue[0]) in name: ###[1,2,3]
layer.init_config(random_ltd_config, self.random_ltd_scheduler, count)
random_ltd_queue.popleft()
count += 1
if random_ltd_config[RANDOM_LTD_LAYER_NUM] != count:
raise ValueError(f'random_ltd_layer_num {random_ltd_config[RANDOM_LTD_LAYER_NUM]} must be \
equivalent to the len of random_ltd_layer_id {count}')
if random_ltd_config[RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE][RANDOM_LTD_LAYER_TOKEN_LR_ENABLED]:
assert self.client_lr_scheduler is None
raise ValueError(f'not yet support')
#self.lr_scheduler = lr_schedules.WarmupLayerTokenDecayLR(self.optimizer, self.random_ltd_scheduler)
def wall_clock_breakdown(self):
return self._config.wall_clock_breakdown
def flops_profiler_enabled(self):
return self._config.flops_profiler_config.enabled or self.autotuning_enabled()
def flops_profiler_recompute_fwd_factor(self):
return self._config.flops_profiler_config.recompute_fwd_factor
def flops_profiler_profile_step(self):
step = self._config.flops_profiler_config.profile_step
if self._config.autotuning_config.enabled:
step = self.autotuning_start_profile_step()
return step
def flops_profiler_module_depth(self):
return self._config.flops_profiler_config.module_depth
def flops_profiler_top_modules(self):
return self._config.flops_profiler_config.top_modules
def flops_profiler_detailed(self):
if self._config.autotuning_config.enabled:
return False
return self._config.flops_profiler_config.detailed
def flops_profiler_output_file(self):
return self._config.flops_profiler_config.output_file
def memory_breakdown(self):
return self._config.memory_breakdown
def autotuning_enabled(self):
return self._config.autotuning_config.enabled
def autotuning_start_profile_step(self):
return self._config.autotuning_config.start_profile_step
def autotuning_end_profile_step(self):
return self._config.autotuning_config.end_profile_step
def autotuning_metric_path(self):
path = self._config.autotuning_config.metric_path
if not path:
path = os.path.join(os.getcwd(), "autotuning_metric.json")
return path
def autotuning_model_info_path(self):
path = self._config.autotuning_config.model_info_path
if not path:
path = os.path.join(os.getcwd(), "autotuning_model_info.json")
return path
def autotuning_metric(self):
return self._config.autotuning_config.metric
def autotuning_profile_model_info(self):
return self.autotuning_enabled(
) and self._config.autotuning_config.model_info and self._config.autotuning_config.model_info.get(
"profile", False)
def sparse_gradients_enabled(self):
return self._config.sparse_gradients_enabled
def train_batch_size(self):
return self._config.train_batch_size
def train_micro_batch_size_per_gpu(self):
return self._config.train_micro_batch_size_per_gpu
def optimizer_name(self):
return (self.client_optimizer.__class__.__name__ if self.client_optimizer else self._config.optimizer_name)
def optimizer_params(self):
return self._config.optimizer_params
def optimizer_legacy_fusion(self):
return self._config.optimizer_legacy_fusion
def scheduler_name(self):
return self._config.scheduler_name
def scheduler_params(self):
return self._config.scheduler_params
def quantize_training(self):
return (
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS]
[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_ENABLED],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_GROUPS],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS]
[WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_CHANGE_RATIO],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_TYPE],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_ROUNDING],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_VERBOSE],
self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_KERNEL],
)
def zero_optimization(self):
return self._config.zero_enabled
def zero_allow_untested_optimizer(self):
return self._config.zero_allow_untested_optimizer
def zero_force_ds_cpu_optimizer(self):
return self._config.zero_force_ds_cpu_optimizer
def zero_reduce_scatter(self):
return self._config.zero_config.reduce_scatter
def zero_overlap_comm(self):
return self._config.zero_config.overlap_comm
def zero_offload_optimizer(self):
return self._config.zero_config.offload_optimizer
def zero_offload_param(self):
return self._config.zero_config.offload_param
def zero_use_cpu_optimizer(self):
if self._config.zero_config.offload_optimizer is not None:
return self._config.zero_config.offload_optimizer.device in [OffloadDeviceEnum.cpu, OffloadDeviceEnum.nvme]
return False
def zero_cpu_offload(self):
if self._config.zero_config.offload_optimizer is not None:
return self._config.zero_config.offload_optimizer.device == OffloadDeviceEnum.cpu
return False
def zero_partial_offload(self):
return getattr(self._config.zero_config.offload_optimizer, "ratio", 1.0)
def zero_sub_group_size(self):
return self._config.zero_config.sub_group_size
def zero_optimization_stage(self):
return self._config.zero_optimization_stage
def mics_shard_size(self):
return self._config.mics_shard_size
def zero_reduce_bucket_size(self):
return self._config.zero_config.reduce_bucket_size
def zero_multi_rank_bucket_allreduce(self):
return self._config.zero_config.use_multi_rank_bucket_allreduce
def zero_allgather_bucket_size(self):
return self._config.zero_config.allgather_bucket_size
def zero_optimization_partition_gradients(self):
return self.zero_optimization_stage() >= ZeroStageEnum.gradients
def zero_optimization_partition_weights(self):
return self.zero_optimization_stage() >= ZeroStageEnum.weights
def is_first_weights_partition_group(self):
ret = True if self.mics_shard_size() < 0 \
and self.zero_optimization_partition_weights() else False
if self.mics_shard_size() > 0 and self.global_rank < self.mics_shard_size():
ret = True
return ret
def zero_contiguous_gradients(self):
return self._config.zero_config.contiguous_gradients
def zero_load_from_fp32_weights(self):
return self._config.zero_config.load_from_fp32_weights
def zero_elastic_checkpoint(self):
return self._config.zero_config.elastic_checkpoint
def zero_has_nvme_offload(self):
if not hasattr(self.optimizer, "swap_optimizer"):
return False
return self.optimizer.swap_optimizer or self.optimizer.params_in_nvme_and_cpu
def zero_max_live_parameters(self):
return self._config.zero_config.max_live_parameters
def zero_max_reuse_distance(self):
return self._config.zero_config.max_reuse_distance
def zero_prefetch_bucket_size(self):
return self._config.zero_config.prefetch_bucket_size
def zero_param_persistence_threshold(self):
return self._config.zero_config.param_persistence_threshold
def zero_model_persistence_threshold(self):
return self._config.zero_config.model_persistence_threshold
def zero_gather_16bit_weights_on_model_save(self):
return self._config.zero_config.gather_16bit_weights_on_model_save
def zero_grad_hooks(self):
return self._config.zero_config.grad_hooks
def zero_legacy_stage1(self):
return self._config.zero_config.legacy_stage1
def zero_ignore_unused_parameters(self):
return self._config.zero_config.ignore_unused_parameters
def graph_harvesting(self):
return self._config.graph_harvesting
def fp16_enabled(self):
return self._config.fp16_enabled
def bfloat16_enabled(self):
return self._config.bfloat16_enabled
def fp16_master_weights_and_gradients(self):
return self._config.fp16_master_weights_and_gradients
def amp_enabled(self):
return self._config.amp_enabled
def amp_params(self):
return self._config.amp_params
def fp16_auto_cast(self):
return self._config.fp16_auto_cast
def loss_scale(self):
return self._config.loss_scale
def gradient_accumulation_steps(self):
return self._config.gradient_accumulation_steps
def use_node_local_storage(self):
return self._config.use_node_local_storage
def load_universal_checkpoint(self):
return self._config.load_universal_checkpoint
@property
def communication_data_type(self):
res = self._config.communication_data_type
if res is not None:
return res
if self.fp16_enabled():
return torch.float16
if self.bfloat16_enabled():
return torch.bfloat16
return torch.float32
@communication_data_type.setter
def communication_data_type(self, value):
self._config.communication_data_type = value
def postscale_gradients(self):
return not self._config.prescale_gradients
def gradient_predivide_factor(self):
return self._config.gradient_predivide_factor
def steps_per_print(self):
return self._config.steps_per_print
def zero_allgather_partitions(self):
return self._config.zero_config.allgather_partitions
def zero_round_robin_gradients(self):
return self._config.zero_config.round_robin_gradients
def zero_hpz_partition_size(self):
return self._config.zero_config.zero_hpz_partition_size
def zero_quantized_weights(self):
return self._config.zero_config.zero_quantized_weights
def zero_quantized_nontrainable_weights(self):
return self._config.zero_config.zero_quantized_nontrainable_weights
def zero_quantized_gradients(self):
return self._config.zero_config.zero_quantized_gradients
def dump_state(self):
return self._config.dump_state
def gradient_clipping(self):
return self._config.gradient_clipping
def dynamic_loss_scale(self):
return self._config.loss_scale == 0
def initial_dynamic_scale(self):
return self._config.initial_dynamic_scale
def dynamic_loss_scale_args(self):
return self._config.dynamic_loss_scale_args
def swap_tensor_config(self):
return self._config.swap_tensor_config
def aio_config(self):
return self._config.aio_config
def get_data_types(self):
model_dtype = torch.float32
if self.fp16_enabled():
model_dtype = torch.float16
elif self.bfloat16_enabled():
model_dtype = torch.bfloat16
if self._config.grad_accum_dtype is None:
if model_dtype == torch.bfloat16 and not self.zero_optimization():
grad_accum_dtype = torch.float32
else:
grad_accum_dtype = model_dtype
else:
grad_accum_dtype = DtypeEnum(self._config.grad_accum_dtype).value
return (model_dtype, grad_accum_dtype)
def _optimizer_has_ckpt_event_prologue(self):
return self.optimizer is not None and hasattr(self.optimizer, 'checkpoint_event_prologue')
def _optimizer_has_ckpt_event_epilogue(self):
return self.optimizer is not None and hasattr(self.optimizer, 'checkpoint_event_epilogue')
def _configure_lr_scheduler(self, client_lr_scheduler):
# First check for scheduler in json configuration
lr_scheduler = self._scheduler_from_config(self.optimizer)
if lr_scheduler:
log_dist(f"DeepSpeed using configured LR scheduler = {self.scheduler_name()}", ranks=[0])
self.lr_scheduler = lr_scheduler
else:
if isinstance(client_lr_scheduler, Callable):
log_dist('DeepSpeed using client callable to create LR scheduler', ranks=[0])
self.lr_scheduler = client_lr_scheduler(self.basic_optimizer)
else:
log_dist('DeepSpeed using client LR scheduler', ranks=[0])
self.lr_scheduler = client_lr_scheduler
log_dist(f'DeepSpeed LR Scheduler = {self.lr_scheduler}', ranks=[0])
def _configure_checkpointing(self, dist_init_required):
self.checkpoint_engine = TorchCheckpointEngine()
if self._config is not None and self._config.nebula_config.enabled:
try:
from deepspeed.runtime.checkpoint_engine.nebula_checkpoint_engine import \
NebulaCheckpointEngine
self.checkpoint_engine = NebulaCheckpointEngine(config_params=self._config.nebula_config)
except ImportError as err:
logger.error(f"No torch_nebula was found! Will fall back to torch.save. Details: {err}")
self.checkpoint_engine = TorchCheckpointEngine()
dp_rank = groups._get_sequence_data_parallel_rank()
rank = self.local_rank if self.use_node_local_storage() else dp_rank
# only the first data parallel process needs to store the model checkpoint
# if you want to use node local storage this must be done by rank 0 on each
# node
self.save_non_zero_checkpoint = (rank == 0) or (self.zero_optimization_partition_weights()
and self.is_first_weights_partition_group())
if self.zero_optimization() or self.bfloat16_enabled():
param_rank = dist.get_rank(group=self.optimizer.dp_process_group)
# Only the first parameter parallel process needs to store the
# optimizer state checkpoints for zero
self.save_zero_checkpoint = param_rank == dp_rank
def _scheduler_from_config(self, optimizer):
scheduler_name = self.scheduler_name()
if scheduler_name is not None:
if hasattr(lr_schedules, scheduler_name):
scheduler = getattr(lr_schedules, scheduler_name)
else:
assert hasattr(torch.optim.lr_scheduler,
scheduler_name), f"DeepSpeed does not recognize LR scheduler {scheduler_name}"
scheduler = getattr(torch.optim.lr_scheduler, scheduler_name)
scheduler_params = self.scheduler_params()
instantiated_scheduler = scheduler(optimizer, **scheduler_params)
return instantiated_scheduler
else:
return None
def _set_distributed_vars(self, args):
device_rank = args.device_rank if args is not None and hasattr(args, 'device_rank') else self.local_rank
if device_rank >= 0:
get_accelerator().set_device(device_rank)
self.device = torch.device(get_accelerator().device_name(), device_rank)
self.world_size = dist.get_world_size()
self.global_rank = dist.get_rank()
else:
self.world_size = 1
self.global_rank = 0
self.device = torch.device(get_accelerator().device_name())
# Configure based on command line arguments
def _configure_with_arguments(self, args, mpu):
# After the distributed backend is initialized we are guaranteed the LOCAL_RANK
# environment variable is set. We must align args.local_rank to this value for
# backwards compatibility with scripts relying on [args|self].local_rank containing
# the correct local rank info. _do_args_sanity_check will ensure this is the case.
if "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ:
ompi_local_rank = os.environ.get("OMPI_COMM_WORLD_LOCAL_RANK")
local_rank = os.environ.get('LOCAL_RANK', ompi_local_rank)
assert ompi_local_rank == local_rank, f"LOCAL_RANK ({local_rank}) != OMPI_COMM_WORLD_LOCAL_RANK ({ompi_local_rank}), " \
"not sure how to proceed as we're seeing conflicting local rank info."
os.environ['LOCAL_RANK'] = local_rank
self.local_rank = int(os.environ['LOCAL_RANK'])
if hasattr(args, 'local_rank'):
args.local_rank = self.local_rank
# Validate command line arguments
def _do_args_sanity_check(self, args):
assert "LOCAL_RANK" in os.environ or "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ, "DeepSpeed requires the LOCAL_RANK environment " \
"variable, it is set by the deepspeed launcher, deepspeed.init_distributed, or the torch's launcher. If using a " \
"different launcher please ensure LOCAL_RANK is set prior to initializing deepspeed."
if hasattr(args, 'local_rank') and args.local_rank is not None:
assert isinstance(args.local_rank,
int), f"args.local_rank of {args.local_rank} is an unknown type {type(args.local_rank)}"
if args.local_rank >= 0:
env_local_rank = int(os.environ.get("LOCAL_RANK"))
assert (
env_local_rank == args.local_rank
), f"Mismatch in local rank setting, args.local_rank={args.local_rank} but env['LOCAL_RANK']={env_local_rank}."
def _is_supported_optimizer(self, optimizer_name):
return (optimizer_name in DEEPSPEED_OPTIMIZERS or getattr(torch.optim, optimizer_name, None) is not None)
def _supported_optims(self):
FairseqOptimizer = None
try:
from fairseq.optim.fairseq_optimizer import FairseqOptimizer
except ImportError:
pass
expected_optim_types = [Optimizer]
if FairseqOptimizer:
# fairseq optims are not torch.optim objects
expected_optim_types.append(FairseqOptimizer)
return expected_optim_types
# Validate configuration based on command line arguments
def _do_sanity_check(self):
if self.fp16_enabled() and not get_accelerator().is_fp16_supported():
raise ValueError("Type fp16 is not supported.")
expected_optim_types = self._supported_optims()
expected_optim_types += [type(None), Callable]
assert isinstance(self.client_optimizer, tuple(expected_optim_types)), \
f'Client Optimizer is of unexpected type {type(self.client_optimizer)}'
if not self.client_optimizer:
if self.optimizer_name() is not None:
assert self._is_supported_optimizer(
self.optimizer_name()), "{} is not a supported DeepSpeed Optimizer".format(self.optimizer_name())
if (self.optimizer_name() == LAMB_OPTIMIZER or self.optimizer_name() == ONEBIT_LAMB_OPTIMIZER):
assert (self.dynamic_loss_scale()), "DeepSpeed {} optimizer requires dynamic loss scaling".format(
self.optimizer_name())
# Detect invalid combinations of client optimizer and client scheduler
if isinstance(self.client_lr_scheduler, _LRScheduler):
assert isinstance(self.client_optimizer, Optimizer), \
f'Client Optimizer (type = {type(self.client_optimizer)} is not instantiated but Client LR Scheduler is instantiated'
def _broadcast_model(self):
def is_replicated(p):
if hasattr(p, "ds_status") and p.ds_status is not ZeroParamStatus.AVAILABLE:
return False
return True
for p in self.module.parameters():
# Broadcast the model for different parameters
if is_moe_param(p):
if torch.is_tensor(p) and is_replicated(p):
dist.broadcast(p.data,
groups._get_expert_broadcast_src_rank(p.group_name),
group=self.expert_data_parallel_group[p.group_name])
else:
if torch.is_tensor(p) and is_replicated(p):
dist.broadcast(p.data, groups._get_broadcast_src_rank(), group=self.seq_data_parallel_group)
@staticmethod
def __check_params(model: Module, dtype: torch.dtype) -> None:
return
if not all(param.dtype == dtype for param in model.parameters()) and dist.get_rank() == 0:
raise ValueError(f"{dtype} is enabled but the following parameters have dtype that is "
f"not {dtype}: "
f"{[(n, p.dtype) for n, p in model.named_parameters() if p.dtype != dtype]}")
def _set_client_model(self, model):
# register client model in _modules so that nn.module methods work correctly
modules = self.__dict__.get('_modules')
modules['module'] = model
# register module attribute in engine but avoid getattr
self.__dict__['module'] = model
def _configure_distributed_model(self, model):
self._set_client_model(model)
is_zero_init_model = self.zero_optimization_partition_weights() and any(
[hasattr(param, "ds_id") for param in self.module.parameters()])
if self.fp16_enabled():
if is_zero_init_model:
self.__check_params(self.module, torch.half)
self.module.half()
elif self.bfloat16_enabled():
if is_zero_init_model:
self.__check_params(self.module, torch.bfloat16)
self.module.bfloat16()
else:
self.__check_params(self.module, torch.float)
# zero.Init() handles device placement of model
if not (self.dont_change_device or is_zero_init_model):
self.module.to(self.device)
# MoE related initialization
for _, module in self.module.named_modules():
if isinstance(module, MoE):
self.has_moe_layers = True
self.num_experts.append(module.num_experts)
if self.has_moe_layers:
for _, module in self.module.named_modules():
if isinstance(module, TopKGate):
self.gate_modules.append(module)
if self.wall_clock_breakdown():
module.wall_clock_breakdown = True
if isinstance(module, MOELayer):
self.moe_layers.append(module)
if self.wall_clock_breakdown():
module.wall_clock_breakdown = True
# Pass the mpu from here to groups. For subsequent use, just query groups
if self.mpu is not None:
groups.mpu = self.mpu
# Set deepspeed parallelism spec. for the model including expert parallelism
for _, module in self.module.named_modules():
if hasattr(module, 'set_deepspeed_parallelism'):
module.set_deepspeed_parallelism(self._config.use_data_before_expert_parallel_)
# Query the groups module to get information about various parallel groups
self.local_all_to_all_group = None
if self.zero_quantized_gradients():
log_dist("Using quantized gradients", ranks=[0])
self.local_all_to_all_group = groups._get_local_all_to_all_group()
self.data_parallel_group = groups._get_data_parallel_group()
self.dp_world_size = groups._get_data_parallel_world_size()
self.seq_data_parallel_group = groups._get_sequence_data_parallel_group()
self.seq_dp_world_size = groups._get_sequence_data_parallel_world_size()
self.mp_world_size = groups._get_model_parallel_world_size()
self.expert_parallel_group = groups._get_expert_parallel_group_dict()
self.expert_data_parallel_group = groups._get_expert_data_parallel_group_dict()
self.sequence_parallel_size = groups._get_sequence_parallel_world_size()
if self.sequence_parallel_size > 1:
self.communication_data_type = self._config.seq_parallel_communication_data_type
if not (self.amp_enabled() or is_zero_init_model):
self._broadcast_model()
# check if parameters are duplicated in optimizer param_groups
def _check_for_duplicates(self, optimizer):
for name, param in self.module.named_parameters():
param_id = id(param)
def ids_list(group):
return [id(param) for param in group]
occurrence = sum([
ids_list(group['params']).count(param_id) if param_id in ids_list(group['params']) else 0
for group in optimizer.param_groups
])
assert occurrence <= 1, f"Parameter with name: {name} occurs multiple times in optimizer.param_groups. Make sure it only appears once to prevent undefined behavior."
def _do_optimizer_sanity_check(self, basic_optimizer):
model_dtype, grad_accum_dtype = self.get_data_types()
zero_enabled = self.zero_optimization()
amp_enabled = self.amp_enabled()
# config based assertions
assert (
not (amp_enabled and zero_enabled)
), "Amp and ZeRO are not currently compatible, please use (legacy) fp16 mode which performs similar to amp opt_mode=O2"
if zero_enabled:
if not is_zero_supported_optimizer(basic_optimizer):
assert (
self.zero_allow_untested_optimizer()
), 'You are using an untested ZeRO Optimizer. Please add <"zero_allow_untested_optimizer": true> in the configuration file to use it.'
if self.global_rank == 0:
logger.warning("**** You are using ZeRO with an untested optimizer, proceed with caution *****")
if model_dtype == torch.bfloat16 and grad_accum_dtype == torch.float32 and self.zero_optimization_stage(
) == 1 and not self.zero_cpu_offload():
return BFLOAT16
return ZERO_OPTIMIZATION
elif amp_enabled:
if model_dtype != grad_accum_dtype:
raise NotImplementedError(
"Model data type and gradient accumulation data type must be equal to use Amp")
if model_dtype == torch.bfloat16 or model_dtype == torch.float16:
raise NotImplementedError("Cannot enable both amp with (legacy) fp16 or bfloat16 mode")
try:
logger.info("Initializing Apex amp from: {}".format(amp.__path__))
except NameError:
# If apex/amp is available it will be imported above
raise RuntimeError("Unable to import apex/amp, please make sure it is installed")
return AMP
# data type checks
elif model_dtype == grad_accum_dtype:
if model_dtype == torch.bfloat16:
if self.pipeline_parallelism:
logger.warning(
"**** BF16 gradient accumulation is not safe numerically with large number of accumulation steps, proceed with caution *****"
)
return BFLOAT16
else:
raise NotImplementedError(
"Bfloat16 wrapper must use a gradient accumulation type of fp32, enable ZeRO to use Bfloat16 gradient accumulation"
)
if model_dtype == torch.float16:
return FP16
# else optimizer_wrapper = None
elif model_dtype == torch.bfloat16 and grad_accum_dtype == torch.float32:
return BFLOAT16
else:
raise NotImplementedError("unsupported mix of model dtype and gradient accumulation type")
return None
# Configure optimizer
def _configure_optimizer(self, client_optimizer, model_parameters):
if client_optimizer is None:
if self.has_moe_layers:
model_parameters = configure_moe_param_groups(model_parameters)
basic_optimizer = self._configure_basic_optimizer(model_parameters)
log_dist(f"Using DeepSpeed Optimizer param name {self.optimizer_name()} as basic optimizer", ranks=[0])
else:
if isinstance(client_optimizer, tuple(self._supported_optims())):
basic_optimizer = client_optimizer
log_dist('Using client Optimizer as basic optimizer', ranks=[0])
else:
basic_optimizer = client_optimizer(model_parameters)
log_dist('Using client callable to create basic optimizer', ranks=[0])
if self.zero_use_cpu_optimizer() and not isinstance(basic_optimizer, deepspeed.ops.adam.DeepSpeedCPUAdam):
if self.zero_force_ds_cpu_optimizer():
msg = f'You are using ZeRO-Offload with a client provided optimizer ({type(basic_optimizer)}) which in most cases will yield poor performance. Please either use deepspeed.ops.adam.DeepSpeedCPUAdam or set an optimizer in your ds-config (https://www.deepspeed.ai/docs/config-json/#optimizer-parameters). If you really want to use a custom optimizer w. ZeRO-Offload and understand the performance impacts you can also set <"zero_force_ds_cpu_optimizer": false> in your configuration file.'
raise ZeRORuntimeException(msg)
basic_optimizer.param_groups[:] = [pg for pg in basic_optimizer.param_groups if len(pg["params"]) != 0]
log_dist("Removing param_group that has no 'params' in the basic Optimizer", ranks=[0])
self._check_for_duplicates(basic_optimizer)
self.basic_optimizer = basic_optimizer
log_dist("DeepSpeed Basic Optimizer = {}".format(basic_optimizer.__class__.__name__), ranks=[0])
optimizer_wrapper = self._do_optimizer_sanity_check(basic_optimizer)
if optimizer_wrapper == ZERO_OPTIMIZATION:
self.optimizer = self._configure_zero_optimizer(basic_optimizer)
elif optimizer_wrapper == AMP:
amp_params = self.amp_params()
log_dist(f"Initializing AMP with these params: {amp_params}", ranks=[0])
model, self.optimizer = amp.initialize(self.module, basic_optimizer, **amp_params)
self._set_client_model(model)
self._broadcast_model()
# TODO: maybe need to broadcast experts differently?
elif optimizer_wrapper == FP16:
self.optimizer = self._configure_fp16_optimizer(basic_optimizer)
elif optimizer_wrapper == BFLOAT16:
self.optimizer = self._configure_bf16_optimizer(basic_optimizer)
else:
self.optimizer = basic_optimizer
log_dist("DeepSpeed Final Optimizer = {}".format(self.optimizer_name()), ranks=[0])
self.compression_scheduler = self._configure_compression_scheduler()
self.quantizer = self._configure_quantization()
def _configure_basic_optimizer(self, model_parameters):
optimizer_parameters = self.optimizer_params()
if optimizer_parameters is None:
optimizer_parameters = {}
# print(optimizer_parameters.keys())
if "max_grad_norm" in optimizer_parameters.keys():
raise ValueError(
"'max_grad_norm' is not supported as an optimizer parameter, please switch to using the deepspeed parameter 'gradient_clipping' see: https://www.deepspeed.ai/docs/config-json/#gradient-clipping for more details"
)
if self.optimizer_name() in [ADAM_OPTIMIZER, ADAMW_OPTIMIZER]:
torch_adam = optimizer_parameters.pop(TORCH_ADAM_PARAM, False)
adam_w_mode = optimizer_parameters.pop(ADAM_W_MODE, ADAM_W_MODE_DEFAULT)
# Optimizer name of Adam forces AdamW logic unless adam_w_mode is explicitly set
effective_adam_w_mode = self.optimizer_name() == ADAMW_OPTIMIZER or adam_w_mode
if torch_adam:
if not effective_adam_w_mode:
optimizer = torch.optim.Adam(model_parameters, **optimizer_parameters)
else:
optimizer = torch.optim.AdamW(model_parameters, **optimizer_parameters)
else:
if self.zero_use_cpu_optimizer():
from deepspeed.ops.adam import DeepSpeedCPUAdam
optimizer = DeepSpeedCPUAdam(model_parameters,
**optimizer_parameters,
adamw_mode=effective_adam_w_mode)
else:
from deepspeed.ops.adam import FusedAdam
optimizer = FusedAdam(
model_parameters,
**optimizer_parameters,
adam_w_mode=effective_adam_w_mode,
)
elif self.optimizer_name() == ADAGRAD_OPTIMIZER:
if self.zero_use_cpu_optimizer():
from deepspeed.ops.adagrad import DeepSpeedCPUAdagrad
optimizer = DeepSpeedCPUAdagrad(model_parameters, **optimizer_parameters)
else:
optimizer = torch.optim.Adagrad(model_parameters, **optimizer_parameters)
elif self.optimizer_name() == LAMB_OPTIMIZER:
from deepspeed.ops.lamb import FusedLamb
optimizer = FusedLamb(model_parameters, **optimizer_parameters)
elif self.optimizer_name() == ONEBIT_ADAM_OPTIMIZER:
assert not self.zero_optimization(), "1bit-Adam is not compatible with ZeRO"
from deepspeed.runtime.fp16.onebit.adam import OnebitAdam
optimizer = OnebitAdam(model_parameters, self, **optimizer_parameters)
if not self.fp16_enabled():
logger.warning(f"Currently the convergence of 1-bit Adam is only verified under FP16")
elif self.optimizer_name() == ZERO_ONE_ADAM_OPTIMIZER:
assert not self.zero_optimization(), "0/1 Adam is not compatible with ZeRO"
from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
optimizer = ZeroOneAdam(model_parameters, self, **optimizer_parameters)
if not self.fp16_enabled():
logger.warning(f'Currently the convergence of 0/1 Adam is only verified under FP16')
elif self.optimizer_name() == ONEBIT_LAMB_OPTIMIZER:
assert not self.zero_optimization(), "1bit-Lamb is not compatible with ZeRO"
from deepspeed.runtime.fp16.onebit.lamb import OnebitLamb
optimizer = OnebitLamb(model_parameters, self, **optimizer_parameters)
if not self.fp16_enabled():
logger.warning(f"Currently the convergence of 1-bit Lamb is only verified under FP16")
elif self.optimizer_name() == LION_OPTIMIZER:
if self.zero_use_cpu_optimizer():
from deepspeed.ops.lion import DeepSpeedCPULion
optimizer = DeepSpeedCPULion(model_parameters, **optimizer_parameters)
else:
from deepspeed.ops.lion import FusedLion
optimizer = FusedLion(model_parameters, **optimizer_parameters)
elif self.optimizer_name() == MUADAM_OPTIMIZER:
try:
from mup import MuAdam
except ImportError:
logger.error(f"Install mup to use MuAdam optimizer")
optimizer = MuAdam(model_parameters, **optimizer_parameters)
elif self.optimizer_name() == MUADAMW_OPTIMIZER:
try:
from mup import MuAdamW
except ImportError:
logger.error(f"Install mup to use MuAdamW optimizer")
optimizer = MuAdamW(model_parameters, **optimizer_parameters)
elif self.optimizer_name() == MUSGD_OPTIMIZER:
try:
from mup import MuSGD
except ImportError:
logger.error(f"Install mup to use MuSGD optimizer")
optimizer = MuSGD(model_parameters, **optimizer_parameters)
else:
torch_optimizer = getattr(torch.optim, self.optimizer_name())
optimizer = torch_optimizer(model_parameters, **optimizer_parameters)
return optimizer
def _configure_compression_scheduler(self):
return compression_scheduler(self.module, self._config.compression_config)
def _configure_random_ltd_scheduler(self, configs):
return RandomLTDScheduler(configs)
def _configure_quantization(self):
(
quantize_weight_in_forward,
quantize_enabled,
q_groups,
q_mixed_fp16,
q_change_ratio,
q_type,
q_rounding,
q_verbose,
use_quantizer_kernel,
) = self.quantize_training()
if quantize_enabled and not quantize_weight_in_forward:
assert self.fp16_enabled(
), "MoQ (quantize in optimization step) weight quantization is only supported for FP16"
quantizer = None
if quantize_enabled and not quantize_weight_in_forward:
from deepspeed.runtime.quantize import Quantizer
quantizer = Quantizer(
q_groups,
q_mixed_fp16,
q_change_ratio,
q_type,
q_rounding,
q_verbose,
self.eigenvalue_enabled(),
use_quantizer_kernel,
self.eigenvalue_layer_num() if self.eigenvalue_enabled() else 0,
)
return quantizer
def _configure_fp16_optimizer(self, optimizer):
initial_dynamic_scale = self.initial_dynamic_scale()
dynamic_loss_args = self.dynamic_loss_scale_args()
clip_grad = self.gradient_clipping()
if APEX_INSTALLED:
fused_opts = (apex.optimizers.FusedAdam, FusedAdam)
else:
fused_opts = FusedAdam
if isinstance(optimizer, fused_opts) \
or self.optimizer_name() in [ONEBIT_ADAM_OPTIMIZER, ZERO_ONE_ADAM_OPTIMIZER]:
if self.dynamic_loss_scale():
log_dist(f'Creating fp16 optimizer with dynamic loss scale', ranks=[0])
timers = self.timers if self.wall_clock_breakdown() else NoopTimer()
optimizer = FP16_Optimizer(
optimizer,
deepspeed=self,
dynamic_loss_scale=True,
initial_dynamic_scale=initial_dynamic_scale,
dynamic_loss_args=dynamic_loss_args,
mpu=self.mpu,
clip_grad=clip_grad,
fused_adam_legacy=self.optimizer_legacy_fusion(),
timers=timers,
has_moe_layers=self.has_moe_layers,
)
else:
log_dist(f'Creating fp16 optimizer with static loss scale: {self.loss_scale()}', ranks=[0])
optimizer = FP16_Optimizer(
optimizer,
deepspeed=self,
static_loss_scale=self.loss_scale(),
mpu=self.mpu,
clip_grad=clip_grad,
fused_adam_legacy=self.optimizer_legacy_fusion(),
has_moe_layers=self.has_moe_layers,
)
else:
log_dist(f'Creating fp16 unfused optimizer with dynamic loss scale', ranks=[0])
optimizer = FP16_UnfusedOptimizer(
optimizer,
deepspeed=self,
static_loss_scale=self.loss_scale(),
dynamic_loss_scale=self.dynamic_loss_scale(),
dynamic_loss_args=dynamic_loss_args,
mpu=self.mpu,
clip_grad=clip_grad,
fused_lamb_legacy=self.optimizer_name() == LAMB_OPTIMIZER,
)
return optimizer
def _configure_bf16_optimizer(self, optimizer):
clip_grad = self.gradient_clipping()
if optimizer is None:
optimizer = DummyOptim(list(self.module.parameters()))
log_dist('Creating BF16 optimizer', ranks=[0])
timers = self.timers if self.wall_clock_breakdown() else NoopTimer()
optimizer = BF16_Optimizer(optimizer,
self.param_names,
mpu=self.mpu,
clip_grad=clip_grad,
allgather_bucket_size=self.zero_allgather_bucket_size(),
dp_process_group=self.seq_data_parallel_group,
timers=timers,
grad_acc_dtype=self.get_data_types()[1],
graph_harvesting=self.graph_harvesting(),
immediate_grad_update=self._config.bfloat16_immediate_grad_update,
has_moe_layers=self.has_moe_layers)
return optimizer
def _configure_zero_optimizer(self, optimizer):
zero_stage = self.zero_optimization_stage()
mics_shard_size = self.mics_shard_size()
model_dtype, gradient_accumulation_dtype = self.get_data_types()
timers = self.timers if self.wall_clock_breakdown() else NoopTimer()
if optimizer is None:
optimizer = DummyOptim(list(self.module.parameters()))
if self.zero_legacy_stage1():
raise Exception(
"The deprecated version of ZeRO Stage 1 is not supported in deepspeed >= 0.5.9. Please downgrade to a version less than 0.5.9 if you need to use this deprecated version of ZeRO."
)
if zero_stage <= ZeroStageEnum.gradients:
overlap_comm = self.zero_overlap_comm()
contiguous_gradients = self.zero_contiguous_gradients()
round_robin_gradients = self.zero_round_robin_gradients()
assert not isinstance(optimizer, DummyOptim), "zero stage {} requires an optimizer".format(zero_stage)
log_dist(f'Creating {model_dtype} ZeRO stage {zero_stage} optimizer', ranks=[0])
if isinstance(self.module, PipelineModule):
if overlap_comm:
logger.warning("Pipeline parallelism does not support overlapped communication, will be disabled.")
overlap_comm = False
optimizer = DeepSpeedZeroOptimizer(
optimizer,
self.param_names,
timers=timers,
static_loss_scale=self.loss_scale(),
dynamic_loss_scale=self.dynamic_loss_scale(),
dynamic_loss_args=self.dynamic_loss_scale_args(),
clip_grad=self.gradient_clipping(),
contiguous_gradients=contiguous_gradients,
reduce_bucket_size=self.zero_reduce_bucket_size(),
use_multi_rank_bucket_allreduce=self.zero_multi_rank_bucket_allreduce(),
allgather_bucket_size=self.zero_allgather_bucket_size(),
dp_process_group=self.seq_data_parallel_group,
expert_parallel_group=self.expert_parallel_group if self.has_moe_layers else None,
expert_data_parallel_group=self.expert_data_parallel_group if self.has_moe_layers else None,
reduce_scatter=self.zero_reduce_scatter(),
overlap_comm=overlap_comm,
offload_optimizer_config=self.zero_offload_optimizer(),
mpu=self.mpu,
postscale_gradients=self.postscale_gradients(),
gradient_predivide_factor=self.gradient_predivide_factor(),
gradient_accumulation_steps=self.gradient_accumulation_steps(),
ignore_unused_parameters=self.zero_ignore_unused_parameters(),
partition_grads=zero_stage == ZeroStageEnum.gradients,
round_robin_gradients=round_robin_gradients,
has_moe_layers=self.has_moe_layers,
fp16_master_weights_and_gradients=self.fp16_master_weights_and_gradients(),
gradient_accumulation_dtype=gradient_accumulation_dtype,
communication_data_type=self.communication_data_type,
elastic_checkpoint=self.zero_elastic_checkpoint())
elif zero_stage == ZeroStageEnum.weights:
assert not self.has_moe_layers, "MoE not supported with Stage 3"
if isinstance(optimizer, DummyOptim):
log_dist("Creating ZeRO Offload", ranks=[0])
zero_param_parallel_group = groups._get_zero_param_intra_parallel_group()
if self.zero_hpz_partition_size() > 1 and zero_param_parallel_group is None:
self._set_zero_group_parallelism()
zero_param_parallel_group = groups._get_zero_param_intra_parallel_group()
optimizer = DeepSpeedZeRoOffload(
self.module,
timers=timers,
ds_config=self.config,
overlap_comm=self.zero_overlap_comm(),
prefetch_bucket_size=self.zero_prefetch_bucket_size(),
max_reuse_distance=self.zero_max_reuse_distance(),
max_live_parameters=self.zero_max_live_parameters(),
param_persistence_threshold=self.zero_param_persistence_threshold(),
model_persistence_threshold=self.zero_model_persistence_threshold(),
offload_param_config=self.zero_offload_param(),
mpu=self.mpu,
zero_param_parallel_group=zero_param_parallel_group,
zero_quantized_weights=self.zero_quantized_weights(),
zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights(),
)
else:
log_dist(
f'Creating fp16 ZeRO stage {zero_stage} optimizer,'
f' MiCS is enabled {mics_shard_size>0},'
f' Hierarchical params gather {self._config.mics_hierarchial_params_gather}',
ranks=[0])
if mics_shard_size > 0:
return self._return_mics_optimizer(optimizer, timers)
log_dist(f'Creating {model_dtype} ZeRO stage {zero_stage} optimizer', ranks=[0])
from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
optimizer = DeepSpeedZeroOptimizer_Stage3(
self.module,
optimizer,
timers=timers,
ds_config=self.config,
static_loss_scale=self.loss_scale(),
dynamic_loss_scale=self.dynamic_loss_scale(),
dynamic_loss_args=self.dynamic_loss_scale_args(),
clip_grad=self.gradient_clipping(),
contiguous_gradients=self.zero_contiguous_gradients(),
reduce_bucket_size=self.zero_reduce_bucket_size(),
prefetch_bucket_size=self.zero_prefetch_bucket_size(),
max_reuse_distance=self.zero_max_reuse_distance(),
max_live_parameters=self.zero_max_live_parameters(),
param_persistence_threshold=self.zero_param_persistence_threshold(),
model_persistence_threshold=self.zero_model_persistence_threshold(),
dp_process_group=self.seq_data_parallel_group,
all2all_process_group=self.local_all_to_all_group,
reduce_scatter=self.zero_reduce_scatter(),
overlap_comm=self.zero_overlap_comm(),
offload_optimizer_config=self.zero_offload_optimizer(),
offload_param_config=self.zero_offload_param(),
sub_group_size=self.zero_sub_group_size(),
offload_ratio=self.zero_partial_offload(),
mpu=self.mpu,
postscale_gradients=self.postscale_gradients(),
gradient_predivide_factor=self.gradient_predivide_factor(),
gradient_accumulation_steps=self.gradient_accumulation_steps(),
aio_config=self.aio_config(),
gradient_accumulation_dtype=gradient_accumulation_dtype,
communication_data_type=self.communication_data_type,
zero_hpz_partition_size=self.zero_hpz_partition_size(),
zero_quantized_weights=self.zero_quantized_weights(),
zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights(),
)
else:
raise NotImplementedError("ZeRO stage {} not implemented".format(zero_stage))
return optimizer
def _return_mics_optimizer(self, basic_optimizer, timers):
from deepspeed.runtime.zero.mics import MiCS_Optimizer
model_dtype, gradient_accumulation_dtype = self.get_data_types()
optimizer = MiCS_Optimizer(self.module,
basic_optimizer,
timers=timers,
ds_config=self.config,
static_loss_scale=self.loss_scale(),
dynamic_loss_scale=self.dynamic_loss_scale(),
dynamic_loss_args=self.dynamic_loss_scale_args(),
clip_grad=self.gradient_clipping(),
contiguous_gradients=self.zero_contiguous_gradients(),
reduce_bucket_size=self.zero_reduce_bucket_size(),
prefetch_bucket_size=self.zero_prefetch_bucket_size(),
max_reuse_distance=self.zero_max_reuse_distance(),
max_live_parameters=self.zero_max_live_parameters(),
param_persistence_threshold=self.zero_param_persistence_threshold(),
model_persistence_threshold=self.zero_model_persistence_threshold(),
dp_process_group=self.seq_data_parallel_group,
reduce_scatter=self.zero_reduce_scatter(),
overlap_comm=self.zero_overlap_comm(),
offload_optimizer_config=self.zero_offload_optimizer(),
offload_param_config=self.zero_offload_param(),
sub_group_size=self.zero_sub_group_size(),
mpu=self.mpu,
postscale_gradients=self.postscale_gradients(),
gradient_predivide_factor=self.gradient_predivide_factor(),
gradient_accumulation_steps=self.gradient_accumulation_steps(),
aio_config=self.aio_config(),
gradient_accumulation_dtype=gradient_accumulation_dtype,
communication_data_type=self.communication_data_type)
return optimizer
def _configure_eigenvalue(self):
eigenvalue = Eigenvalue(
verbose=self.eigenvalue_verbose(),
max_iter=self.eigenvalue_max_iter(),
tol=self.eigenvalue_tol(),
stability=self.eigenvalue_stability(),
gas_boundary_resolution=self.eigenvalue_gas_boundary_resolution(),
layer_name=self.eigenvalue_layer_name(),
layer_num=self.eigenvalue_layer_num(),
)
return eigenvalue
def _configure_progressive_layer_drop(self):
pld = ProgressiveLayerDrop(theta=self.pld_theta(), gamma=self.pld_gamma())
return pld
def _configure_curriculum_scheduler_legacy(self):
scheduler = CurriculumScheduler(self.curriculum_params_legacy())
return scheduler
@staticmethod
def is_map_style_dataset(obj):
return hasattr(obj, "__getitem__") and hasattr(obj, "__len__")
@staticmethod
def is_iterable_style_dataset(obj):
return isinstance(obj, torch.utils.data.IterableDataset) # hasattr(obj, "__iter__") should work as well
def dataloader_drop_last(self):
return self._config.dataloader_drop_last
def was_step_applied(self) -> bool:
"""Returns True if the latest ``step()`` produced in parameter updates.
Note that a ``False`` return is not an error condition. Steps are frequently
no-ops, such as between gradient accumulation boundaries or when overflows
occur.
Returns:
bool: Whether the latest ``step()`` modified model parameters.
"""
return self._step_applied
def deepspeed_io(self,
dataset,
batch_size=None,
route=ROUTE_TRAIN,
pin_memory=True,
data_sampler=None,
collate_fn=None,
num_local_io_workers=None):
if not (self.is_map_style_dataset(dataset) or self.is_iterable_style_dataset(dataset)):
raise ValueError("Training data must be a torch Dataset")
if batch_size is None:
batch_size = self.train_micro_batch_size_per_gpu()
if collate_fn is None:
collate_fn = self.collate_fn
# Currently we only use timer in train route
deepspeed_io_timer = None
if route == ROUTE_TRAIN:
deepspeed_io_timer = self.tput_timer
# If mpu is provided, forward world size and parallel rank to sampler.
data_parallel_world_size = self.dp_world_size
data_parallel_rank = self.global_rank
if self.mpu is not None:
data_parallel_world_size = self.mpu.get_data_parallel_world_size()
data_parallel_rank = self.mpu.get_data_parallel_rank()
if data_sampler is None and (route == ROUTE_PREDICT or route == ROUTE_EVAL):
data_sampler = torch.utils.data.DistributedSampler(
dataset,
num_replicas=data_parallel_world_size,
rank=data_parallel_rank,
shuffle=False,
)
deepspeed_dataloader_config = {}
if self.curriculum_learning_enabled():
deepspeed_dataloader_config = {
CURRICULUM_LEARNING: self.curriculum_learning_enabled(),
DATA_EFFICIENCY: self.data_efficiency_config(),
DATA_PARALLEL_GROUP: self.data_parallel_group,
GRADIENT_ACCUMULATION_STEPS: self.gradient_accumulation_steps(),
GLOBAL_RANK: self.global_rank,
DATA_SAMPLING_NUM_WORKERS: self.data_sampling_config()[DATA_SAMPLING_NUM_WORKERS]
}
return DeepSpeedDataLoader(dataset=dataset,
batch_size=batch_size,
pin_memory=pin_memory,
collate_fn=collate_fn,
local_rank=self.local_rank,
tput_timer=deepspeed_io_timer,
num_local_io_workers=num_local_io_workers,
data_sampler=data_sampler,
data_parallel_world_size=data_parallel_world_size,
data_parallel_rank=data_parallel_rank,
dataloader_drop_last=self.dataloader_drop_last(),
deepspeed_dataloader_config=deepspeed_dataloader_config)
def train(self, mode=True):
r""""""
self.warn_unscaled_loss = True
self.module.train(mode)
def eval(self):
r""""""
self.warn_unscaled_loss = True
self.module.train(False)
def _scale_loss_by_gas(self, prescaled_loss, eval_micro_batches=None):
# In pipeline evaluation, there is an option to use different micro-bs, which creates different number of
# micro batches, thus the training gas, is not valid in this case. need to use the number of eval_micro_batches
scaling_factor = self.gradient_accumulation_steps() if eval_micro_batches is None else eval_micro_batches
if isinstance(prescaled_loss, torch.Tensor):
scaled_loss = prescaled_loss / scaling_factor
elif isinstance(prescaled_loss, tuple) or isinstance(prescaled_loss, list):
scaled_loss = []
for l in prescaled_loss:
if isinstance(l, torch.Tensor):
scaled_loss.append(l / scaling_factor)
else:
scaled_loss.append(l)
else:
scaled_loss = prescaled_loss
if self.warn_unscaled_loss:
logger.warning(f"DeepSpeed unable to scale loss because of type: {type(prescaled_loss)}")
self.warn_unscaled_loss = False
return scaled_loss
@instrument_w_nvtx
def forward(self, *inputs, **kwargs):
r"""Execute forward propagation
Arguments:
*inputs: Variable length input list
**kwargs: variable length keyword arguments
"""
if self.autotuning_profile_model_info():
ma = get_ma_status()
else:
see_memory_usage("Engine before forward", force=self.memory_breakdown())
flops_profiler_active = (self.flops_profiler_enabled()
and self.global_steps == self.flops_profiler_profile_step() and self.global_rank == 0)
# used to check quantization happens at step 0!
if self.global_steps == 0 and hasattr(self, "compression_scheduler"):
self.compression_scheduler.step(step_zero_check=True)
if self.quantizer:
tensor_to_quantize = self.optimizer.bit16_groups if self.zero_optimization_stage(
) == 2 else self.optimizer.fp16_groups
if self.compression_scheduler.weight_quantization_enabled:
self.quantizer.quantize(
tensor_to_quantize,
(self.optimizer.overflow if self.fp16_enabled() else False),
self.eigenvalue_enabled(),
None,
)
if flops_profiler_active:
self.flops_profiler.start_profile(ignore_list=None)
if self.module.training:
if self.progressive_layer_drop:
kwargs.update(self.progressive_layer_drop.get_state())
if self.__class__.__name__ != "PipelineEngine":
# TODO: The above if condition is a HACK since for PipelineEngine
# it's difficult to inject argument in forward pass.
if self.module.training and self.curriculum_enabled_legacy():
self.curriculum_scheduler_legacy.update_difficulty(self.global_steps + 1)
if self.curriculum_params_legacy()["curriculum_type"] == "seqlen":
kwargs.update({"curriculum_seqlen": self.curriculum_scheduler_legacy.get_current_difficulty()})
if self.module.training and self.random_ltd_enabled():
self.random_ltd_scheduler.update_seq(self.global_steps)
if self.zero_optimization_partition_weights():
# Enable automated discovery of external parameters by indicating that
# we are in a forward pass.
for module in self.module.modules():
module._parameters._in_forward = True
self._start_timers(self.engine_timers.forward_timers)
if self.training_dataloader is None:
self.tput_timer.start()
if self.fp16_auto_cast():
inputs = self._cast_inputs_half(inputs)
loss = self.module(*inputs, **kwargs)
if self.zero_optimization_partition_weights():
# Disable automated discovery of external parameters
for module in self.module.modules():
module._parameters._in_forward = False
self._stop_timers(self.engine_timers.forward_timers)
if flops_profiler_active:
self.flops_profiler.stop_profile()
if self.autotuning_profile_model_info():
activation_mem = get_ma_status() - ma
self.autotuning_model_info["activation_mem_per_gpu"] = activation_mem
print_json_dist(self.autotuning_model_info, [0], path=self.autotuning_model_info_path())
exit()
else:
see_memory_usage("Engine after forward", force=self.memory_breakdown())
return loss
def _cast_inputs_half(self, inputs):
if isinstance(inputs, (list, tuple)):
new_inputs = []
for v in inputs:
new_inputs.append(self._cast_inputs_half(v))
return inputs.__class__(new_inputs)
elif isinstance(inputs, dict):
new_inputs = {}
for k, v in inputs.items():
new_inputs[k] = self._cast_inputs_half(v)
return new_inputs
elif hasattr(inputs, 'half'):
return inputs.half()
else:
return inputs
def print_forward_breakdown(self, fwd_time):
gate_time = 0.0
moe_time = 0.0
falltoall = 0.0
salltoall = 0.0
for gate in self.gate_modules:
#logger.info(f"Individual TopK gate time: {gate.gate_time:.2f} ms")
gate_time += gate.gate_time
for l in self.moe_layers:
#logger.info(f"MoE layer; total: {l.time_moe:.2f} ms, first alltoall: {l.time_falltoall:.2f}, second alltoall: {l.time_salltoall:.2f}")
moe_time += l.time_moe
falltoall += l.time_falltoall
salltoall += l.time_salltoall
# TODO: Allreduce/average them across ranks for more accurate timing.
# if deepspeed.comm.get_rank() == 0:
log_dist(
f"time (ms) | fwd: {fwd_time:.2f} (fwd_moe: {moe_time:.2f}, 1st_a2a: {falltoall:.2f}, 2nd_a2a: {salltoall:.2f}, top_k: {gate_time:.2f})",
ranks=[0])
@instrument_w_nvtx
def allreduce_gradients(self, bucket_size=MEMORY_OPT_ALLREDUCE_SIZE):
# Pass (PP) gas boundary flag to optimizer (required for zero)
self.optimizer.is_gradient_accumulation_boundary = self.is_gradient_accumulation_boundary()
# ZeRO stage >= 2 communicates during non gradient accumulation boundaries as well
if self.zero_optimization_partition_gradients():
self.optimizer.overlapping_partition_gradients_reduce_epilogue()
# Communicate only at gradient accumulation boundaries
elif self.is_gradient_accumulation_boundary():
if self.zero_optimization_stage() == ZeroStageEnum.optimizer_states and hasattr(
self.optimizer, 'reduce_gradients'):
self.optimizer.reduce_gradients(pipeline_parallel=self.pipeline_parallelism)
else:
grads = None
self.buffered_allreduce_fallback(grads=grads, elements_per_buffer=bucket_size)
@instrument_w_nvtx
def backward(self, loss, allreduce_gradients=True, release_loss=False, retain_graph=False, scale_wrt_gas=True):
r"""Execute backward pass on the loss
Arguments:
loss: Torch tensor on which to execute backward propagation
allreduce_gradients: is deprecated, ignored, and will soon be removed'
retain_graph: bool, default: false
forward on user defined choice of retain_graph
"""
see_memory_usage("Engine before backward", force=self.memory_breakdown())
if self.scale_wrt_gas is not None:
scale_wrt_gas = self.scale_wrt_gas
if not allreduce_gradients:
logger.warning(f"Argument `allreduce_gradients` is deprecated, ignored, and will soon be removed")
# scale loss w.r.t. gradient accumulation if needed
if self.gradient_accumulation_steps() > 1 and scale_wrt_gas:
loss = self._scale_loss_by_gas(loss.float())
# Log training loss
mean_loss = loss.mean().detach()
self.losses = mean_loss if self.losses is None else self.losses + mean_loss
if self.monitor.enabled:
if self.is_gradient_accumulation_boundary():
if self.global_rank == 0:
self.summary_events = [(
f"Train/Samples/train_loss",
self.losses.item(),
self.global_samples,
)]
self.monitor.write_events(self.summary_events)
self._start_timers(self.engine_timers.backward_timers)
assert self.optimizer is not None and not isinstance(self.optimizer, DummyOptim), \
"must provide optimizer during init in order to use backward"
self._start_timers(self.engine_timers.backward_inner_timers)
if self.zero_optimization():
self.optimizer.is_gradient_accumulation_boundary = self.is_gradient_accumulation_boundary()
self.optimizer.backward(loss, retain_graph=retain_graph)
elif self.amp_enabled():
# AMP requires delaying unscale when inside gradient accumulation boundaries
# https://nvidia.github.io/apex/advanced.html#gradient-accumulation-across-iterations
delay_unscale = not self.is_gradient_accumulation_boundary()
with amp.scale_loss(loss, self.optimizer, delay_unscale=delay_unscale) as scaled_loss:
scaled_loss.backward(retain_graph=retain_graph)
elif self.fp16_enabled():
if self.eigenvalue_enabled():
self.optimizer.backward(loss, create_graph=True, retain_graph=True)
else:
self.optimizer.backward(loss, retain_graph=retain_graph)
elif self.bfloat16_enabled():
self.optimizer.backward(loss)
else:
if self.eigenvalue_enabled():
loss.backward(create_graph=True, retain_graph=True)
else:
loss.backward(retain_graph=retain_graph)
self._stop_timers(self.engine_timers.backward_inner_timers)
self._start_timers(self.engine_timers.backward_reduce_timers)
if allreduce_gradients and self.enable_backward_allreduce:
# Traditional code path that allreduces the module parameter grads
self.allreduce_gradients()
self._stop_timers(self.engine_timers.backward_reduce_timers)
self._stop_timers(self.engine_timers.backward_timers)
if release_loss:
# loss.data = None
pass
see_memory_usage("Engine after backward", force=self.memory_breakdown())
return loss
def is_gradient_accumulation_boundary(self):
"""
Query whether the current micro-batch is at the boundary of
gradient accumulation, and thus will trigger gradient reductions and
an optimizer step.
Returns:
bool: if the current step is a gradient accumulation boundary.
"""
if self._is_gradient_accumulation_boundary is None:
return (self.micro_steps + 1) % \
self.gradient_accumulation_steps() == 0
else:
return self._is_gradient_accumulation_boundary
def set_gradient_accumulation_boundary(self, is_boundary):
"""
Manually overrides the DeepSpeed engine's gradient accumulation boundary state, this is an optional
feature and should be used with care. The state should be set before to the intended
value before each forward/backward. The final forward/backward should have the
boundary state set to True. This style allows client code to only call engine.step() once after all
the gradient accumulation passes are complete. See example below:
.. code-block:: python
engine.set_gradient_accumulation_boundary(False)
for _ in range(gradient_accumulation_steps - 1):
micro_batch = next(data_loader)
loss = engine(micro_batch)
engine.backward(loss)
engine.set_gradient_accumulation_boundary(True)
micro_batch = next(data_loader)
loss = engine(micro_batch)
engine.backward(loss)
engine.step()
Arguments:
is_boundary (bool): are we at a gradient accumulation boundary or not?
"""
self._is_gradient_accumulation_boundary = is_boundary
self.optimizer.is_gradient_accumulation_boundary = is_boundary
def zero_grad(self):
"""
Zero parameter grads.
"""
for param_name, param in self.module.named_parameters():
param.grad = None
def clip_fp32_gradients(self):
clip_grad_norm_(parameters=self.module.parameters(), max_norm=self.gradient_clipping(), mpu=self.mpu)
def _take_model_step(self, lr_kwargs, block_eigenvalue={}):
if self.gradient_clipping() > 0.0:
if not (self.fp16_enabled() or self.bfloat16_enabled() or self.amp_enabled() or self.zero_optimization()):
self.clip_fp32_gradients()
elif self.amp_enabled():
# AMP's recommended way of doing clipping
# https://nvidia.github.io/apex/advanced.html#gradient-clipping
master_params = amp.master_params(self.optimizer)
clip_grad_norm_(parameters=master_params, max_norm=self.gradient_clipping(), mpu=self.mpu)
self.optimizer.step()
if hasattr(self.optimizer, '_global_grad_norm'):
self._global_grad_norm = self.optimizer._global_grad_norm
# Quantize the updated parameter if there is no overflow
if self.quantizer:
tensor_to_quantize = self.optimizer.bit16_groups if self.zero_optimization_stage(
) == 2 else self.optimizer.fp16_groups
if self.compression_scheduler.weight_quantization_enabled:
self.quantizer.quantize(
tensor_to_quantize,
(self.optimizer.overflow if self.fp16_enabled() else False),
self.eigenvalue_enabled(),
block_eigenvalue,
)
# zero grad in basic optimizer could be unreliable and may not exhibit
# the behavior that we want
if self.bfloat16_enabled():
# TODO: Temporary until bf16_optimizer and zero_optimizer are integrated
if self.zero_optimization() and hasattr(self.optimizer, "zero_grad"):
self.optimizer.zero_grad()
else:
pass
elif self.zero_optimization() or self.fp16_enabled() or self.amp_enabled():
self.optimizer.zero_grad()
else:
self.zero_grad()
report_progress = self.global_rank == 0 if self.global_rank else True
# Check overflow here since in DS fp16 optimizer, the overflow is updated in above step() function.
overflow = False
if hasattr(self.optimizer, "overflow"):
overflow = self.optimizer.overflow
self._step_applied = not overflow
if overflow:
self.skipped_steps += 1
else:
self.compression_scheduler.step()
if self.lr_scheduler is not None:
try:
self.lr_scheduler.step(**(lr_kwargs or {}))
except TypeError:
# XXX Hack to work with Megatron 2.0 and DeepSpeed pipelines.
# We don't currently have a way to specify lr_kwargs from
# pipe_engine.train_batch()
self.lr_scheduler.step(self.train_batch_size())
if report_progress and (self.global_steps + 1) % self.steps_per_print() == 0:
self._report_progress(self.global_steps + 1)
self.losses = None
self.global_steps += 1
self.global_samples += self.train_batch_size()
def step(self, lr_kwargs=None):
r"""Execute the weight update step after forward and backward propagation
on effective_train_batch.
"""
see_memory_usage("Engine before step", force=self.memory_breakdown())
# Check early because self.global_steps is incremented at some point here.
# TODO: Delay self.global_steps increment until very end of this function.
flops_profiler_active = self.flops_profiler_enabled(
) and self.global_steps == self.flops_profiler_profile_step() and self.global_rank == 0
self._start_timers(self.engine_timers.step_timers)
assert self.optimizer is not None and not isinstance(self.optimizer, DummyOptim), \
"must provide optimizer during init in order to use step"
report_progress = False
self._step_applied = False # assume False, will flip to True
# Update the model when we reach gradient accumulation boundaries
if self.is_gradient_accumulation_boundary():
self.gas_boundary_ctr += 1
if (self.eigenvalue_enabled() and (self.gas_boundary_ctr % self.eigenvalue_gas_boundary_resolution() == 0)
and self.quantizer.any_precision_switch()):
log_dist(f"computing eigenvalue...", ranks=[0])
self.block_eigenvalue = self.eigenvalue.compute_eigenvalue(self.module, self.device,
self.optimizer.cur_scale)
if self.progressive_layer_drop:
self.progressive_layer_drop.update_state(self.global_steps)
if (self.eigenvalue_enabled() and not self.gas_boundary_ctr % self.eigenvalue_gas_boundary_resolution()
and self.quantizer.any_precision_switch()):
self._take_model_step(lr_kwargs, self.block_eigenvalue)
else:
self._take_model_step(lr_kwargs)
report_progress = self.global_rank == 0 if self.global_rank else True
self.tput_timer.stop(global_step=self.is_gradient_accumulation_boundary(), report_speed=report_progress)
self._stop_timers(self.engine_timers.step_timers)
# Log learning rate
if self.monitor.enabled:
if self.is_gradient_accumulation_boundary():
if self.global_rank == 0:
self.summary_events = [(f"Train/Samples/lr", self.get_lr()[0], self.global_samples)]
if self.fp16_enabled() and hasattr(self.optimizer, "cur_scale"):
self.summary_events.append((
f"Train/Samples/loss_scale",
self.optimizer.cur_scale,
self.global_samples,
))
if (self.eigenvalue_enabled()
and not self.gas_boundary_ctr % self.eigenvalue_gas_boundary_resolution()):
ev_values = self.block_eigenvalue.values()
for i in range(len(ev_values)):
self.summary_events.append((
f"Train/Eigenvalues/ModelBlockParam_{i}",
self.ev_values[i][0],
self.global_samples,
))
self.monitor.write_events(self.summary_events)
# Check flops profiling
if flops_profiler_active:
if self.autotuning_enabled():
self.flops = self.flops_profiler.get_total_flops() * 3
self.fwd_duration = self.flops_profiler.get_total_duration()
else:
self.flops_profiler.print_model_profile(
profile_step=self.global_steps,
module_depth=self.flops_profiler_module_depth(),
top_modules=self.flops_profiler_top_modules(),
detailed=self.flops_profiler_detailed(),
output_file=self.flops_profiler_output_file(),
)
self.flops_profiler.end_profile()
if self.autotuning_enabled() and self.global_steps == (self.autotuning_end_profile_step() + 1):
self._autotuning_exit()
if self.wall_clock_breakdown():
# Log micro timing and reset
self.timers.log(names=self.engine_timers.micro_timers, memory_breakdown=self.memory_breakdown())
if self.wall_clock_breakdown() or self.flops_profiler_enabled():
# Log global timing and reset
if self.is_gradient_accumulation_boundary():
if self.monitor.enabled:
self._write_monitor()
if self.has_moe_layers:
fwd_time = self.timers(FORWARD_GLOBAL_TIMER).elapsed(reset=False)
self.print_forward_breakdown(fwd_time=fwd_time)
self.timers.log(self.engine_timers.global_timers)
self.micro_steps += 1
see_memory_usage("Engine after step", force=self.memory_breakdown())
def _start_timers(self, timer_names):
for name in timer_names:
self.timers(name).start()
def _stop_timers(self, timer_names):
record = self.is_gradient_accumulation_boundary() and \
self.flops_profiler_enabled() and \
(self.global_steps >= self.flops_profiler_profile_step())
for name in timer_names:
self.timers(name).stop(record=record)
def _autotuning_exit(self):
if self.global_rank == 0:
msg = self.timers.get_mean([
FORWARD_GLOBAL_TIMER,
BACKWARD_GLOBAL_TIMER,
STEP_GLOBAL_TIMER,
], reset=False)
titer = 0.0
titer += msg[FORWARD_GLOBAL_TIMER] if FORWARD_GLOBAL_TIMER in msg else 0
titer += msg[BACKWARD_GLOBAL_TIMER] if BACKWARD_GLOBAL_TIMER in msg else 0
titer += msg[STEP_GLOBAL_TIMER] if STEP_GLOBAL_TIMER in msg else 0
titer *= self.gradient_accumulation_steps()
msg["latency"] = titer
msg["FLOPS_per_gpu"] = self.flops * 1_000_000 * self.gradient_accumulation_steps() / titer
msg["throughput"] = self.train_batch_size() * 1_000_000 / \
msg["latency"]
print_json_dist(msg, [0], path=self.autotuning_metric_path())
log_dist(
f"Wrote metrics to {self.autotuning_metric_path()}, {os.path.abspath(self.autotuning_metric_path())}",
ranks=[0])
import atexit
atexit.register(print, "Autotuning: done with running current ds config.")
exit()
def _write_monitor(self):
if self.global_rank == 0:
self.summary_events = [
(
f"Train/Samples/elapsed_time_ms_forward",
self.timers(FORWARD_GLOBAL_TIMER).elapsed(reset=False),
self.global_samples,
),
(
f"Train/Samples/elapsed_time_ms_backward",
self.timers(BACKWARD_GLOBAL_TIMER).elapsed(reset=False),
self.global_samples,
),
(
f"Train/Samples/elapsed_time_ms_backward_inner",
self.timers(BACKWARD_INNER_GLOBAL_TIMER).elapsed(reset=False),
self.global_samples,
),
(
f"Train/Samples/elapsed_time_ms_backward_allreduce",
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).elapsed(reset=False),
self.global_samples,
),
(
f"Train/Samples/elapsed_time_ms_step",
self.timers(STEP_GLOBAL_TIMER).elapsed(reset=False),
self.global_samples,
),
]
self.monitor.write_events(self.summary_events)
def _get_optimizer_param(self, param_name):
result = []
if not self.optimizer:
return result
for group in self.optimizer.param_groups:
if param_name in group:
result.append(group[param_name])
else:
result.append(0.0)
return result
def get_lr(self):
return self._get_optimizer_param("lr")
def get_type(self):
return self._get_optimizer_param("type")
def get_mom(self):
if self.optimizer_name() in ["SGD", "RMSprop"]:
return self._get_optimizer_param("momentum")
else:
return self._get_optimizer_param("betas")
def get_pld_theta(self):
if self.progressive_layer_drop:
return self.progressive_layer_drop.get_theta()
else:
return None
def _report_progress(self, step):
lr = self.get_lr()
mom = self.get_mom()
log_dist(f"step={step}, skipped={self.skipped_steps}, lr={lr}, mom={mom}", ranks=[0])
def allreduce_bucket(self, bucket, dp_group, dp_world_size=None):
tensor = self.flatten(bucket)
tensor_to_allreduce = tensor
if self.communication_data_type != tensor.dtype:
tensor_to_allreduce = tensor.to(self.communication_data_type)
if dp_world_size is None:
dp_world_size = dist.get_world_size(group=dp_group)
if self.postscale_gradients():
if self.gradient_predivide_factor() != 1.0:
tensor_to_allreduce.mul_(1.0 / self.gradient_predivide_factor())
dist.all_reduce(tensor_to_allreduce, group=dp_group)
if self.gradient_average:
if self.gradient_predivide_factor() != dp_world_size:
tensor_to_allreduce.mul_(self.gradient_predivide_factor() / dp_world_size)
else:
tensor_to_allreduce.mul_(1. / dp_world_size)
dist.all_reduce(tensor_to_allreduce, group=dp_group)
if self.communication_data_type != tensor.dtype and tensor is not tensor_to_allreduce:
tensor.copy_(tensor_to_allreduce)
return tensor
def allreduce_and_copy(self, small_bucket, dp_group, dp_world_size=None):
allreduced = self.allreduce_bucket(small_bucket, dp_group, dp_world_size)
for buf, synced in zip(small_bucket, self.unflatten(allreduced, small_bucket)):
buf.copy_(synced)
def allreduce_no_retain(self, bucket, dp_group, numel_per_bucket=500000000, dp_world_size=None):
small_bucket = []
numel = 0
for tensor in bucket:
small_bucket.append(tensor)
numel = numel + tensor.numel()
if numel > numel_per_bucket:
self.allreduce_and_copy(small_bucket, dp_group, dp_world_size)
small_bucket = []
numel = 0
if len(small_bucket) > 0:
self.allreduce_and_copy(small_bucket, dp_group, dp_world_size)
def _get_gradients_for_reduction(self):
non_expert_grads = []
expert_grads = {}
if self.has_moe_layers:
for key in self.expert_data_parallel_group.keys():
expert_grads[key] = []
for param_name, param in self.module.named_parameters():
if not param.requires_grad:
continue
if param.grad is None:
# In cases where there is an imbalance of empty grads across
# ranks we must create empty grads, this will ensure that every
# rank is reducing the same size. In some cases it may make
# sense in the future to support the ability to average not
# w.r.t. world size but with a different value.
param.grad = torch.zeros(param.size(), dtype=param.dtype, device=param.device)
grad_data = param.grad.data
if param_name in self.sparse_tensor_module_names or grad_data.is_sparse:
# Call param.grad without data to avoid problem with setting of updated grads
grad_data = SparseTensor(param.grad)
if is_moe_param(param):
expert_grads[param.group_name].append(grad_data)
else:
non_expert_grads.append(grad_data)
return non_expert_grads, expert_grads
def _reduce_non_expert_gradients(self, grads, elements_per_buffer):
split_sparse_tensor_buckets, split_dense_tensor_buckets = split_half_float_double_sparse(grads)
if self.pipeline_parallelism:
dp_group = self.mpu.get_data_parallel_group()
else:
dp_group = groups._get_sequence_data_parallel_group()
for _, sparse_bucket_tuple in enumerate(split_sparse_tensor_buckets):
if sparse_bucket_tuple:
bucket_type, sparse_bucket = sparse_bucket_tuple
self.sparse_allreduce_no_retain(sparse_bucket, dp_group=dp_group)
for _, dense_bucket_tuple in enumerate(split_dense_tensor_buckets):
if dense_bucket_tuple:
bucket_type, dense_bucket = dense_bucket_tuple
self.allreduce_no_retain(dense_bucket, dp_group=dp_group, numel_per_bucket=elements_per_buffer)
def _reduce_expert_gradients(self, expert_grads, elements_per_buffer):
# to maintain the gradients value unaffected by ep_size setting,
# utilize dp_world_size for allreduce average
dp_world_size = dist.get_world_size(groups._get_data_parallel_group())
for ep_name, expert_grads_group in expert_grads.items():
ep_dp_group = groups._get_expert_data_parallel_group(ep_name)
split_sparse_tensor_buckets, split_dense_tensor_buckets = split_half_float_double_sparse(
expert_grads_group)
for _, sparse_bucket_tuple in enumerate(split_sparse_tensor_buckets):
if sparse_bucket_tuple:
bucket_type, sparse_bucket = sparse_bucket_tuple
self.sparse_allreduce_no_retain(sparse_bucket, dp_group=ep_dp_group, dp_world_size=dp_world_size)
for _, dense_bucket_tuple in enumerate(split_dense_tensor_buckets):
if dense_bucket_tuple:
bucket_type, dense_bucket = dense_bucket_tuple
# Separate between diff groups
self.allreduce_no_retain(dense_bucket,
dp_group=ep_dp_group,
numel_per_bucket=elements_per_buffer,
dp_world_size=dp_world_size)
def buffered_allreduce_fallback(self, grads=None, elements_per_buffer=500000000):
if grads is None:
if hasattr(self.optimizer, "get_grads_for_reduction"):
# This is currently for BF16 optimizer
non_expert_grads, expert_grads = self.optimizer.get_grads_for_reduction()
else:
non_expert_grads, expert_grads = self._get_gradients_for_reduction()
else:
assert not self.has_moe_layers, "attempting to reduce grads in unsupported way w.r.t. MoE"
non_expert_grads = grads
self._reduce_non_expert_gradients(non_expert_grads, elements_per_buffer)
if self.has_moe_layers:
self._reduce_expert_gradients(expert_grads, elements_per_buffer)
def sparse_allreduce_no_retain(self, bucket, dp_group, dp_world_size=None):
allreduced_sparses = self.sparse_allreduce_bucket(bucket, dp_group, dp_world_size)
# Densify sparse tensor and copy back to original location
for tensor in allreduced_sparses:
if tensor.is_sparse:
tensor.orig_dense_tensor.data = tensor.to_coo_tensor()
else:
tensor.orig_dense_tensor.copy_(tensor.to_dense())
def sparse_allreduce_bucket(self, bucket, dp_group, dp_world_size=None):
sparse_list = []
for sparse in bucket:
sparse_list.append(self.sparse_allreduce(sparse, dp_group, dp_world_size))
return sparse_list
def sparse_allreduce(self, sparse, dp_group, dp_world_size=None):
original_data_type = sparse.values.dtype
if self.communication_data_type != sparse.values.dtype:
if self.communication_data_type in (torch.float16, torch.bfloat16):
indices = sparse.indices.to(torch.int32)
else:
indices = sparse.indices
values = sparse.values.to(self.communication_data_type)
else:
indices = sparse.indices
values = sparse.values
if dp_world_size is None:
dp_world_size = dist.get_world_size(group=dp_group)
if self.postscale_gradients():
if self.gradient_average:
values.mul_(self.gradient_predivide_factor() / (dp_world_size / float(self.sequence_parallel_size)))
else:
values.mul_(1. / (dp_world_size / float(self.sequence_parallel_size)))
indices_device_list = self.sparse_all_gather(indices, dp_group)
values_device_list = self.sparse_all_gather(values, dp_group)
sparse.indices = torch.cat(indices_device_list).to(torch.long)
sparse.values = torch.cat(values_device_list).to(original_data_type)
return sparse
def sparse_all_gather(self, value, dp_group):
my_size = torch.LongTensor([value.size()[0]]).to(self.device)
all_sizes = self.all_gather_scalar(my_size, dp_group)
max_size = torch.cat(all_sizes).max()
fill_size = max_size - my_size
assert value.dim() in [1, 2]
if value.dim() == 1:
if fill_size > 0:
value = torch.cat([value, value.new_empty(fill_size)])
tensor_list = [value.new_empty(max_size) for _ in range(dist.get_world_size(group=dp_group))]
else:
if fill_size > 0:
value = torch.cat([value, value.new_empty(fill_size, value.size()[1])])
tensor_list = [
value.new_empty(max_size,
value.size()[1]) for _ in range(dist.get_world_size(group=dp_group))
]
dist.all_gather(tensor_list, value, group=dp_group)
tensors = []
for dev_idx, t in enumerate(tensor_list):
size = all_sizes[dev_idx][0]
tensors.append(t.index_select(0, torch.arange(size, dtype=torch.long, device=self.device)))
return tensors
def all_gather_scalar(self, value, dp_group):
tensor_list = [value.new_zeros(value.size()) for _ in range(dist.get_world_size(group=dp_group))]
dist.all_gather(tensor_list, value, group=dp_group)
return tensor_list
def module_state_dict(self, destination=None, prefix="", keep_vars=False, exclude_frozen_parameters=False):
sd = self.module.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
# Remove frozen parameter weights from state_dict if specified
if exclude_frozen_parameters:
for n, p in self.module.named_parameters():
if not p.requires_grad and n in sd:
del sd[n]
if self.random_ltd_enabled():
sd = remove_random_ltd_state_dict(sd)
return sd
@staticmethod
def load_moe_state_dict(checkpoint_path,
tag,
state_dict,
old_moe_load,
model=None,
mpu=None,
num_experts=1,
checkpoint_engine=TorchCheckpointEngine()):
if old_moe_load:
expp_rank = groups._get_expert_data_parallel_rank(groups._get_max_expert_size_name())
num_local_experts = max(num_experts) // groups._get_expert_parallel_world_size(
groups._get_max_expert_size_name())
for local_expert_id in range(num_local_experts):
global_expert_id = expp_rank * num_local_experts + local_expert_id
expert_state_dict = checkpoint_engine.load(
DeepSpeedEngine._get_expert_ckpt_name(
checkpoint_path,
-1, # -1 means ignore layer_id
global_expert_id,
tag,
mpu),
map_location=torch.device('cpu'))
# Updating global -> local expert ids
moe_str_prefix = '.deepspeed_moe.experts.deepspeed_experts.'
for key in list(expert_state_dict.keys()):
local_key = key.replace(f'{moe_str_prefix}{global_expert_id}',
f'{moe_str_prefix}{local_expert_id}')
expert_state_dict[local_key] = expert_state_dict.pop(key)
state_dict.update(expert_state_dict)
else:
moe_layer_id = 0
for n_module, module in model.named_modules():
if isinstance(module, MoE): # and deepspeed.comm.get_rank() == 0:
group_name = module.expert_group_name
num_local_experts = module.num_local_experts
expp_rank = groups._get_expert_parallel_rank(group_name)
# loop all local_experts
for local_expert_id in range(num_local_experts):
global_expert_id = expp_rank * num_local_experts + local_expert_id
expert_state_dict = checkpoint_engine.load(DeepSpeedEngine._get_expert_ckpt_name(
checkpoint_path, moe_layer_id, global_expert_id, tag, mpu),
map_location=torch.device('cpu'))
# print(expert_state_dict.keys())
# Updating global -> local expert ids
moe_str_prefix = '.deepspeed_moe.experts.deepspeed_experts.'
for key in list(expert_state_dict.keys()):
local_key = key.replace(f'{moe_str_prefix}{global_expert_id}',
f'{moe_str_prefix}{local_expert_id}')
expert_state_dict[local_key] = expert_state_dict.pop(key)
state_dict.update(expert_state_dict)
moe_layer_id += 1
def load_module_state_dict(self, checkpoint, strict=True, custom_load_fn=None, fetch_z3_params=False):
if fetch_z3_params:
params_to_fetch = [
p for p in self.module.parameters()
if hasattr(p, 'ds_id') and p.ds_status == ZeroParamStatus.NOT_AVAILABLE
]
else:
params_to_fetch = []
with deepspeed.zero.GatheredParameters(params_to_fetch, modifier_rank=0):
module_state_dict = checkpoint['module']
if custom_load_fn:
custom_load_fn(src=module_state_dict, dst=self.module)
else:
self.module.load_state_dict(
module_state_dict, # TODO
strict=strict)
if checkpoint.get(FROZEN_PARAM_FRAGMENTS, None) is not None:
saved_frozen_params = checkpoint[FROZEN_PARAM_FRAGMENTS]
for param in self.module.parameters():
if param.requires_grad:
continue
if param not in self.param_names:
raise ValueError(f"failed to find frozen {param} in named params")
name = self.param_names[param]
if hasattr(param, 'ds_id'):
param.ds_tensor.data.copy_(saved_frozen_params[name].data)
else:
param.data.copy_(saved_frozen_params[name].data)
def _get_zero_ckpt_prefix(self, dp_rank, bf16_mode):
return f'{"bf16_" if bf16_mode else ""}zero_pp_rank_{dp_rank}'
def _get_rank_zero_ckpt_name(self, checkpoints_path, tag, mp_rank, dp_rank, bf16_mode):
file_prefix = self._get_zero_ckpt_prefix(dp_rank, bf16_mode=bf16_mode)
zero_ckpt_name = os.path.join(
checkpoints_path,
str(tag),
f"{file_prefix}_mp_rank_{mp_rank:02d}_optim_states.pt",
)
return zero_ckpt_name
def _get_zero_ckpt_name(self, checkpoints_path, tag):
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
pp_rank = dist.get_rank(group=self.optimizer.dp_process_group)
bf16_mode = self.bfloat16_enabled()
return self._get_rank_zero_ckpt_name(checkpoints_path, tag, mp_rank, pp_rank, bf16_mode)
def _get_ckpt_name(self, checkpoints_path, tag, mp_placeholder=None):
if mp_placeholder is not None:
mp_rank_str = mp_placeholder
else:
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
mp_rank_str = f"{mp_rank:02d}"
if self.zero_optimization_partition_weights():
filename = "zero_pp_rank_{}".format(dist.get_rank(group=self.optimizer.dp_process_group))
ckpt_name = os.path.join(
checkpoints_path,
str(tag),
f"{filename}_mp_rank_{mp_rank_str}_model_states.pt",
)
else:
ckpt_name = os.path.join(
checkpoints_path,
str(tag),
"mp_rank_" + mp_rank_str + "_model_states.pt",
)
return ckpt_name
def _get_optimizer_ckpt_name(self, checkpoints_path, tag, expp_rank):
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
ckpt_name = os.path.join(checkpoints_path, str(tag),
f'expp_rank_{expp_rank}_mp_rank_{mp_rank:02d}_optim_states.pt')
return ckpt_name
@staticmethod
def _get_expert_ckpt_name(checkpoints_path, layer_id, expert_id, tag, mpu=None):
mp_rank = 0 if mpu is None else mpu.get_model_parallel_rank()
if layer_id <= -1:
# Used to support old checkpoint loading
ckpt_name = os.path.join(checkpoints_path, '' if tag is None else str(tag),
f'expert_{expert_id}_mp_rank_{mp_rank:02d}_model_states.pt')
else:
# Used to support new checkpoint loading
ckpt_name = os.path.join(checkpoints_path, '' if tag is None else str(tag),
f'layer_{layer_id}_expert_{expert_id}_mp_rank_{mp_rank:02d}_model_states.pt')
return ckpt_name
def _get_all_ckpt_names(self, checkpoints_path, tag):
# It is required that (checkpoints_path, tag) are consistent among all ranks.
ckpt_file_pattern = self._get_ckpt_name(checkpoints_path, tag, mp_placeholder="*")
import glob
ckpt_files = glob.glob(ckpt_file_pattern)
ckpt_files.sort()
return ckpt_files
def load_checkpoint(self,
load_dir,
tag=None,
load_module_strict=True,
load_optimizer_states=True,
load_lr_scheduler_states=True,
load_module_only=False,
custom_load_fn=None):
"""
Load training checkpoint
Arguments:
load_dir: Required. Directory to load the checkpoint from
tag: Checkpoint tag used as a unique identifier for checkpoint, if not provided will attempt to load tag in 'latest' file
load_module_strict: Optional. Boolean to strictly enforce that the keys in state_dict of module and checkpoint match.
load_optimizer_states: Optional. Boolean to load the training optimizer states from Checkpoint. Ex. ADAM's momentum and variance
load_lr_scheduler_states: Optional. Boolean to add the learning rate scheduler states from Checkpoint.
load_module_only: Optional. Boolean to load only the model weights from the checkpoint. Ex. warmstarting.
custom_load_fn: Optional. Custom model load function.
Returns:
A tuple of ``load_path`` and ``client_state``.
*``load_path``: Path of the loaded checkpoint. ``None`` if loading the checkpoint failed.
*``client_state``: State dictionary used for loading required training states in the client code.
Important: under ZeRO3, one cannot load checkpoint with ``engine.load_checkpoint()`` right
after ``engine.save_checkpoint()``. It is because ``engine.module`` is partitioned, and
``load_checkpoint()`` wants a pristine model. If insisting to do so, please reinitialize engine
before ``load_checkpoint()``.
"""
if tag is None:
latest_tag = "latest_universal" if self.load_universal_checkpoint() else "latest"
latest_path = os.path.join(load_dir, latest_tag)
if os.path.isfile(latest_path):
with open(latest_path, "r") as fd:
tag = fd.read().strip()
else:
if self.load_universal_checkpoint():
raise ValueError(f'Invalid for universal checkpoint: {latest_path} does not exist')
else:
logger.warning(
f"Unable to find latest file at {latest_path}, if trying to load latest "
"checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint."
)
return None, None
if self._optimizer_has_ckpt_event_prologue():
# Prepare for checkpoint load by ensuring all parameters are partitioned
self.optimizer.checkpoint_event_prologue()
load_path, client_states = self._load_checkpoint(load_dir,
tag,
load_module_strict=load_module_strict,
load_optimizer_states=load_optimizer_states,
load_lr_scheduler_states=load_lr_scheduler_states,
load_module_only=load_module_only,
custom_load_fn=custom_load_fn)
load_zero_checkpoint = load_path is not None and (self.zero_optimization() or self.bfloat16_enabled())
if load_zero_checkpoint:
if (load_optimizer_states and not load_module_only) or self.load_universal_checkpoint():
success = self._load_zero_checkpoint(load_dir, tag, load_optimizer_states=load_optimizer_states)
else:
success = False
if not success:
self.optimizer._restore_from_bit16_weights()
if self.zero_has_nvme_offload():
from shutil import copytree, disk_usage
offload_dir = self.optimizer.optimizer_swapper.swap_folder
offload_ckpt_dir = os.path.join(load_dir, tag, "offloaded_tensors")
_, _, free = disk_usage(offload_dir)
logger.info(
f"Copying NVMe offload checkpoint from {offload_ckpt_dir} to {offload_dir}, {free / 1e9:,.2f} GB free on target filesystem..."
)
copytree(offload_ckpt_dir, offload_dir, dirs_exist_ok=True)
_, _, free = disk_usage(offload_dir)
logger.info(f"Copying complete! {free / 1e9:,.2f} GB free on target filesystem")
self.optimizer.reset_swap_buffers()
if self._optimizer_has_ckpt_event_epilogue():
self.optimizer.checkpoint_event_epilogue()
if self.load_universal_checkpoint():
self.optimizer.update_lp_params()
return load_path, client_states
def _load_checkpoint(self,
load_dir,
tag,
load_module_strict=True,
load_optimizer_states=True,
load_lr_scheduler_states=True,
load_module_only=False,
custom_load_fn=None):
from deepspeed.runtime.state_dict_factory import SDLoaderFactory
ckpt_list = self._get_all_ckpt_names(load_dir, tag)
sd_loader = SDLoaderFactory.get_sd_loader(ckpt_list, checkpoint_engine=self.checkpoint_engine)
is_pipe_parallel = isinstance(self.module, PipelineModule)
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
load_path, checkpoint, _ = sd_loader.load(self.mp_world_size, mp_rank, is_pipe_parallel=is_pipe_parallel)
if checkpoint is None:
return None, None
fetch_z3_params = False
if self.zero_optimization_partition_weights() and not load_optimizer_states:
checkpoint['module'] = get_fp32_state_dict_from_zero_checkpoint(load_dir)
fetch_z3_params = True
if is_pipe_parallel:
# Pipeline parallelism uses this to load its own checkpoint files.
self._curr_ckpt_path = os.path.join(load_dir, tag)
if self.has_moe_layers:
# print(checkpoint.keys())
old_moe_load = False
if not isinstance(checkpoint['num_experts'], list):
old_moe_load = True
DeepSpeedEngine.load_moe_state_dict(load_dir,
tag,
state_dict=checkpoint['module'],
old_moe_load=old_moe_load,
model=self.module,
mpu=self.mpu,
num_experts=self.num_experts,
checkpoint_engine=self.checkpoint_engine)
if not self.load_universal_checkpoint():
self.load_module_state_dict(checkpoint=checkpoint,
strict=load_module_strict,
custom_load_fn=custom_load_fn,
fetch_z3_params=fetch_z3_params)
self.loaded_checkpoint_dp_world_size = checkpoint['dp_world_size']
optim_checkpoint = None
if load_module_only:
deepspeed_states = ['module']
if self.optimizer is not None:
self.optimizer.refresh_fp32_params()
else:
has_zero_optimizer_state = self.zero_optimization() or self.bfloat16_enabled()
if load_optimizer_states and self.optimizer is not None and not has_zero_optimizer_state:
if self.has_moe_layers:
largest_group_name = groups._get_max_expert_size_name()
expp_rank = groups._get_expert_parallel_rank(largest_group_name)
optim_load_path = self._get_optimizer_ckpt_name(load_dir, tag, expp_rank)
optim_checkpoint = self.checkpoint_engine.load(optim_load_path, map_location=torch.device('cpu'))
else:
optim_checkpoint = checkpoint
if self.fp16_enabled() or self.bfloat16_enabled():
self.optimizer.load_state_dict(optim_checkpoint['optimizer'],
load_optimizer_states=load_optimizer_states)
else:
optim_checkpoint = checkpoint
self.optimizer.load_state_dict(optim_checkpoint['optimizer'])
if load_lr_scheduler_states and self.lr_scheduler is not None:
self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if self.random_ltd_enabled() and self.random_ltd_scheduler is not None and 'random_ltd' in checkpoint:
self.random_ltd_scheduler.load_state_dict(checkpoint['random_ltd'])
if self.training_dataloader is not None and self.curriculum_learning_enabled(
) and 'data_sampler' in checkpoint:
self.training_dataloader.data_sampler.load_state_dict(checkpoint['data_sampler'])
def get_sparse_tensor_module_names(original_set, loaded_set, original_parameters, loaded_parameters):
result = set()
for name in original_set:
if name in loaded_parameters and name not in loaded_set:
continue # parameter existed in previous model and was not sparse
result.add(name)
for name in loaded_set:
if name in original_parameters:
result.add(name) # parameter exists in both configs and it was sparse
return result
if 'sparse_tensor_module_names' in checkpoint:
sparse_tensor_module_names = checkpoint['sparse_tensor_module_names']
elif 'csr_tensor_module_names' in checkpoint:
sparse_tensor_module_names = checkpoint['csr_tensor_module_names']
else:
sparse_tensor_module_names = None
if sparse_tensor_module_names is not None:
if load_module_strict:
self.sparse_tensor_module_names = sparse_tensor_module_names
else:
self.sparse_tensor_module_names = get_sparse_tensor_module_names(
self.sparse_tensor_module_names, sparse_tensor_module_names,
dict(self.module.named_parameters()), checkpoint["module"])
self.global_steps = checkpoint['global_steps']
self.global_samples = checkpoint.get('global_samples', self.global_steps * self.train_batch_size())
self.skipped_steps = checkpoint['skipped_steps']
self.loaded_checkpoint_mp_world_size = checkpoint['mp_world_size']
deepspeed_states = [
'module', 'sparse_tensor_module_names', 'skipped_steps', 'global_steps', 'dp_world_size',
'mp_world_size', 'data_sampler', 'random_ltd'
]
client_state = {}
if load_lr_scheduler_states:
deepspeed_states.append('lr_scheduler')
if load_optimizer_states:
deepspeed_states.append('optimizer')
client_state = {key: value for key, value in checkpoint.items() if not key in deepspeed_states}
if optim_checkpoint is not None:
client_state['optimizer'] = optim_checkpoint['optimizer']
return load_path, client_state
def _load_zero_checkpoint(self, load_dir, tag, load_optimizer_states=True):
load_serial = None
# When use loading checkpoint serial, checkpoint loading start from local rank 0,
# all other local rank would be paused, waiting for its rank-1 peer ready and its notification.
if self._config.zero_config.pipeline_loading_checkpoint:
assert self.zero_optimization_stage(
) == ZeroStageEnum.weights, "Only stage3 support for pipeline checkpoint loading"
load_serial = torch.zeros(1).to(self.device)
if dist.get_local_rank() != 0:
dist.recv(tensor=load_serial, src=dist.get_rank() - 1)
if self.load_universal_checkpoint():
zero_sd_list = None
checkpoint_folder = f'{os.path.join(load_dir, tag)}'
else:
if load_optimizer_states and self.seq_dp_world_size != self.loaded_checkpoint_dp_world_size:
raise ZeRORuntimeException("The checkpoint being loaded used a DP " \
f"world size of {self.loaded_checkpoint_dp_world_size} but the " \
f"current world size is {self.seq_dp_world_size}. Automatic adjustment " \
"of ZeRO's optimizer state partitioning with a new world size is not " \
"currently supported.")
checkpoint_folder = None
zero_sd_list = self._get_all_zero_checkpoints(load_dir, tag)
if zero_sd_list is None:
return False
self.optimizer.load_state_dict(state_dict_list=zero_sd_list,
load_optimizer_states=load_optimizer_states,
load_from_fp32_weights=self.zero_load_from_fp32_weights(),
checkpoint_folder=checkpoint_folder,
load_serial=load_serial)
if self.load_universal_checkpoint():
logger.info(f'loaded universal zero checkpoints from {checkpoint_folder} for rank {self.global_rank}')
else:
logger.info(f"loading {len(zero_sd_list)} zero partition checkpoints for rank {self.global_rank}")
return True
def _get_mp_rank_zero_checkpoint_names(self, load_dir, tag, mp_rank, dp_world_size, bf16_mode):
zero_ckpt_names = []
for dp_rank in range(dp_world_size):
ckpt_name = self._get_rank_zero_ckpt_name(checkpoints_path=load_dir,
tag=tag,
mp_rank=mp_rank,
dp_rank=dp_rank,
bf16_mode=bf16_mode)
zero_ckpt_names.append(ckpt_name)
return zero_ckpt_names
def _get_all_zero_checkpoint_names(self, load_dir, tag, bf16_mode):
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
zero_ckpt_names = self._get_mp_rank_zero_checkpoint_names(load_dir=load_dir,
tag=tag,
mp_rank=mp_rank,
dp_world_size=self.loaded_checkpoint_dp_world_size,
bf16_mode=bf16_mode)
for i, ckpt_name in enumerate(zero_ckpt_names):
if not os.path.exists(ckpt_name):
# transparently handle the old file pattern for optim_states
if "optim_states.pt" in ckpt_name:
ckpt_name_try = ckpt_name.replace("_optim_states.pt", "optim_states.pt")
if os.path.exists(ckpt_name_try):
zero_ckpt_names[i] = ckpt_name_try
continue
return zero_ckpt_names
def _get_all_zero_checkpoint_state_dicts(self, zero_ckpt_names):
zero_sd_list = []
for i, ckpt_name in enumerate(zero_ckpt_names):
_state = None
if ckpt_name is None:
_state = {OPTIMIZER_STATE_DICT: None}
# Fully load state for current rank
elif self.zero_elastic_checkpoint() or dist.get_rank(group=self.optimizer.dp_process_group) == i:
_state = self.checkpoint_engine.load(
ckpt_name,
map_location='cpu',
)
else:
_state = {OPTIMIZER_STATE_DICT: None}
zero_sd_list.append(_state)
zero_optimizer_sd = [sd[OPTIMIZER_STATE_DICT] for sd in zero_sd_list]
logger.info(f"successfully read {len(zero_optimizer_sd)} ZeRO state_dicts for rank {self.global_rank}")
return zero_optimizer_sd
def _get_all_zero_checkpoints(self, load_dir, tag):
for bf16_mode in [self.bfloat16_enabled(), not self.bfloat16_enabled()]:
zero_ckpt_names = self._get_all_zero_checkpoint_names(load_dir, tag, bf16_mode)
if zero_ckpt_names is not None:
# Warn if loading checkpoint of different bit16 type
if bf16_mode is not self.bfloat16_enabled():
checkpoint_bit16 = BFLOAT16 if bf16_mode else FP16
engine_bit16 = BFLOAT16 if self.bfloat16_enabled() else FP16
logger.warn(f'Loading {checkpoint_bit16} zero checkpoints into {engine_bit16} training engine')
return self._get_all_zero_checkpoint_state_dicts(zero_ckpt_names)
return None
def _checkpoint_tag_validation(self, tag):
if self.checkpoint_tag_validation_enabled():
s_hash = hashlib.sha1(tag.encode())
bhash = torch.ByteTensor([s_hash.digest()]).flatten().to(self.device)
max_bhash = bhash.clone()
min_bhash = bhash.clone()
dist.all_reduce(max_bhash, op=dist.ReduceOp.MAX)
dist.all_reduce(min_bhash, op=dist.ReduceOp.MIN)
valid = all(min_bhash == bhash) and all(max_bhash == bhash)
msg = (f"[rank={dist.get_rank()}] The checkpoint tag name '{tag}' is not consistent across "
"all ranks. Including rank unique information in checkpoint tag could cause issues when "
"restoring with different world sizes.")
if self.checkpoint_tag_validation_fail():
assert valid, msg
elif not valid:
logger.warning(msg)
def save_checkpoint(self, save_dir, tag=None, client_state={}, save_latest=True, exclude_frozen_parameters=False):
"""Save training checkpoint
Arguments:
save_dir: Required. Directory for saving the checkpoint
tag: Optional. Checkpoint tag used as a unique identifier for the checkpoint, global step is
used if not provided. Tag name must be the same across all ranks.
client_state: Optional. State dictionary used for saving required training states in the client code.
save_latest: Optional. Save a file 'latest' pointing to the latest saved checkpoint.
exclude_frozen_parameters: Optional. Exclude frozen parameters from checkpointed state.
Important: all processes must call this method and not just the process with rank 0. It is
because each process needs to save its master weights and scheduler+optimizer states. This
method will hang waiting to synchronize with other processes if it's called just for the
process with rank 0.
"""
if self._optimizer_has_ckpt_event_prologue():
# Custom preparation for checkpoint save, if applicable
self.optimizer.checkpoint_event_prologue()
rank = self.local_rank if self.use_node_local_storage() else self.global_rank
# This is to make sure the checkpoint names are created without collision
# There seems to be issue creating them in parallel
# Ensure save_dir directory exists
if rank == 0:
self.checkpoint_engine.makedirs(save_dir, exist_ok=True)
dist.barrier()
if tag is None:
tag = f"global_step{self.global_steps}"
# Ensure tag is a string
tag = str(tag)
self.checkpoint_engine.create(tag)
# Ensure checkpoint tag is consistent across ranks
self._checkpoint_tag_validation(tag)
if self.has_moe_layers:
self.save_non_zero_checkpoint = False
self._create_checkpoint_file(save_dir, tag, False)
self._save_moe_checkpoint(save_dir,
tag,
client_state=client_state,
exclude_frozen_parameters=exclude_frozen_parameters)
# We distribute the task of saving layer checkpoint files among
# data parallel instances, so all procs should call _save_checkpoint.
# All procs then call module_state_dict(), but only procs of data
# parallel rank 0 save the general model params.
if not self.has_moe_layers:
self._create_checkpoint_file(save_dir, tag, False)
self._save_checkpoint(save_dir,
tag,
client_state=client_state,
exclude_frozen_parameters=exclude_frozen_parameters)
if self.save_zero_checkpoint:
self._create_zero_checkpoint_files(save_dir, tag)
self._save_zero_checkpoint(save_dir, tag)
if self.zero_has_nvme_offload():
from shutil import copytree, disk_usage
offload_dir = self.optimizer.optimizer_swapper.swap_folder
offload_ckpt_dir = os.path.join(save_dir, tag, "offloaded_tensors")
_, _, free = disk_usage(save_dir)
logger.info(
f"Copying NVMe offload files from {offload_dir} to {offload_ckpt_dir}, {free / 1e9:,.2f} GB free on target filesystem..."
)
copytree(offload_dir,
offload_ckpt_dir,
ignore=lambda _, dir_list: list(filter(lambda x: 'gradient' in x, dir_list)),
dirs_exist_ok=False)
_, _, free = disk_usage(save_dir)
logger.info(f"Copying complete! {free / 1e9:,.2f} GB free on target filesystem")
if self._optimizer_has_ckpt_event_epilogue():
self.optimizer.checkpoint_event_epilogue()
# Save latest checkpoint tag
self.checkpoint_engine.commit(tag)
if save_latest and rank == 0:
with open(os.path.join(save_dir, 'latest'), 'w') as fd:
fd.write(tag)
dist.barrier()
return True
def _get_non_moe_state_dict(self, full_state_dict):
"""
Get the state dict of the non-moe layers
"""
for key in list(full_state_dict.keys()):
if 'expert' in key and 'moe.gate.wg.weight' not in key:
full_state_dict.pop(key)
return full_state_dict
def _save_moe_checkpoint(self, save_dir, tag, client_state={}, exclude_frozen_parameters=False):
save_path = self._get_ckpt_name(save_dir, tag)
# A hack to save the checkpointing directory. Pipeline parallelism overrides
# module_state_dict() and uses this path to save the model. module_state_dict()
# then instead just returns None.
# Using layer_#_export_# to save the model's expert state_dict
moe_layer_id = 0
for n_module, module in self.module.named_modules():
if isinstance(module, MoE): # and deepspeed.comm.get_rank() == 0:
group_name = module.expert_group_name
num_local_experts = module.num_local_experts
expp_rank = groups._get_expert_parallel_rank(group_name)
exp_dp_rank = groups._get_expert_data_parallel_rank(group_name)
# print(expp_rank, exp_dp_rank)
if exp_dp_rank != 0:
moe_layer_id += 1
continue
# get all moe parameters
moe_state_dict = {}
for n, p in module.state_dict().items():
if 'expert' in n and 'moe.gate.wg.weight' not in n:
moe_state_dict[n_module + '.' + n] = p
moe_str_prefix = '.deepspeed_moe.experts.deepspeed_experts.'
# print(moe_state_dict.keys()) # until now, everything is fine. So the bug happens at next few lines
# Reorder the moe name rank, so that each checkpoint only has one expert
experts_state_dict = defaultdict(dict)
for key in list(moe_state_dict.keys()):
m = re.match(f".*{moe_str_prefix}([0-9]+).*", key)
local_expert_id = None
if not m:
logger.warn(f'No expert found in key {key}.')
else:
local_expert_id = m.group(1)
global_expert_id = expp_rank * \
num_local_experts + int(local_expert_id)
expert_key = key.replace(f'{moe_str_prefix}{local_expert_id}',
f'{moe_str_prefix}{global_expert_id}')
# truncating extra tensor (shared) storage
truncated = moe_state_dict.pop(key).clone().detach()
experts_state_dict[str(global_expert_id)][expert_key] = truncated
# let save the moe parameters
for global_expert_id, expert_state_dict in experts_state_dict.items():
# save the moe parameters
moe_save_path = self._get_expert_ckpt_name(save_dir, moe_layer_id, global_expert_id, tag, self.mpu)
if self.random_ltd_enabled():
expert_state_dict = remove_random_ltd_state_dict(expert_state_dict)
self.checkpoint_engine.save(expert_state_dict, moe_save_path)
moe_layer_id += 1
self._curr_ckpt_path = os.path.join(save_dir, tag)
largest_group_name = groups._get_max_expert_size_name()
expp_rank = groups._get_expert_parallel_rank(largest_group_name)
exp_dp_rank = groups._get_expert_data_parallel_rank(largest_group_name)
# In the case of E + D parallelism, only the
# first expert parallel group should save the expert weights
# since each expert parallel group is a copy of the model's experts
if exp_dp_rank == 0:
# Save optimizer states. They are different across each exp parallel rank.
optimizer_state = {
'optimizer': self.optimizer.state_dict() if self.optimizer and not self.zero_optimization() else None
}
# TODO: why use BufferedWriter not the path
file_path = self._get_optimizer_ckpt_name(save_dir, tag, expp_rank)
self.checkpoint_engine.save(optimizer_state, file_path)
# Load flow uses below saved file for model parameters, RNG and more
if groups._get_data_parallel_rank() == 0:
# Get non-moe parameters
# Classes DeepSpeedEngine and PipelineEngine have different behavior for method module_state_dict.
# DeepSpeedEngine returns the state dict, where PipelineEngine saves the state dict and returns None.
# We need to get the state dict, therefore, call to DeepSpeedEngine (base class for PipelineEngine)
model_state_dict = self._get_non_moe_state_dict(
DeepSpeedEngine.module_state_dict(self, exclude_frozen_parameters=exclude_frozen_parameters))
# TODO: update num experts info,.. in checkpoint
state = {
'module':
model_state_dict,
'lr_scheduler':
self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
'data_sampler':
self.training_dataloader.data_sampler.state_dict() if
(self.training_dataloader is not None and self.curriculum_learning_enabled()) else None,
'random_ltd':
self.random_ltd_scheduler.state_dict() if self.random_ltd_enabled() else None,
'sparse_tensor_module_names':
self.sparse_tensor_module_names,
'skipped_steps':
self.skipped_steps,
'global_steps':
self.global_steps,
'global_samples':
self.global_samples,
'dp_world_size':
self.dp_world_size,
'mp_world_size':
self.mp_world_size,
'num_experts':
self.num_experts
}
state.update(client_state)
logger.info(f'Saving model checkpoint: {save_path}')
self.checkpoint_engine.save(state, save_path)
def _create_checkpoint_file(self, save_dir, tag, zero_checkpoint):
name_function = (self._get_zero_ckpt_name if zero_checkpoint else self._get_ckpt_name)
try:
checkpoint_name = name_function(save_dir, tag)
path = os.path.dirname(checkpoint_name)
self.checkpoint_engine.makedirs(path, exist_ok=True)
except:
logger.error(f"Failed saving model checkpoint to {save_dir} with tag {tag}")
return False
return True
def _create_zero_checkpoint_files(self, save_dir, tag):
success = True
# zero checkpoint files are created sequentially
for rank in range(dist.get_world_size(self.optimizer.dp_process_group)):
if rank == self.global_rank:
success = self._create_checkpoint_file(save_dir, tag, True)
dist.barrier(group=self.optimizer.dp_process_group)
return success
def _save_checkpoint(self, save_dir, tag, client_state={}, exclude_frozen_parameters=False):
save_path = self._get_ckpt_name(save_dir, tag)
zero_optimizer_state = self.zero_optimization() or self.bfloat16_enabled()
save_frozen_param = self.zero_optimization_partition_gradients() and not exclude_frozen_parameters
# A hack to save the checkpointing directory. Pipeline parallelism overrides
# module_state_dict() and uses this path to save the model. module_state_dict()
# then instead just returns None. The module_state_dict() implementation in
# PipelineEngine expects the save path to be set in self._curr_ckpt_path.
self._curr_ckpt_path = os.path.join(save_dir, tag)
module = self.module_state_dict(exclude_frozen_parameters=exclude_frozen_parameters)
self._curr_ckpt_path = None
state = dict(module=module,
buffer_names=self._get_buffer_names(),
optimizer=self.optimizer.state_dict() if self.optimizer and not zero_optimizer_state else None,
param_shapes=self._get_zero_param_shapes() if self.optimizer and zero_optimizer_state else None,
frozen_param_shapes=self._get_zero_frozen_param_attributes(self._get_param_shape_func)
if save_frozen_param else None,
shared_params=self._get_shared_params() if self.optimizer and zero_optimizer_state else None,
frozen_param_fragments=self._get_zero_frozen_param_attributes(self._get_param_fragment_func)
if save_frozen_param else None,
lr_scheduler=self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
data_sampler=self.training_dataloader.data_sampler.state_dict() if
(self.training_dataloader is not None and self.curriculum_learning_enabled()) else None,
random_ltd=self.random_ltd_scheduler.state_dict() if self.random_ltd_enabled() else None,
sparse_tensor_module_names=self.sparse_tensor_module_names,
skipped_steps=self.skipped_steps,
global_steps=self.global_steps,
global_samples=self.global_samples,
dp_world_size=self.seq_dp_world_size,
mp_world_size=self.mp_world_size,
ds_config=self.config,
ds_version=version)
state.update(client_state)
if self.save_non_zero_checkpoint:
log_dist(message=f'Saving model checkpoint: {save_path}', ranks=[0, 1])
self.checkpoint_engine.save(state, save_path)
def _get_buffer_names(self):
buffer_names = []
# we save buffer names so that we could extract later the real buffers from the saved
# state_dict["module"] in the non-zero checkpoint - the buffers are already there but they
# are intermixed with param placeholders
# have to traverse the tree to be able to skip non-persistent buffers
def get_layer_named_buffers(module, prefix=""):
for name, buf in module.named_buffers(recurse=False):
if buf is not None and name not in module._non_persistent_buffers_set:
buffer_names.append(prefix + name)
for name, child in module.named_children():
if child is not None:
get_layer_named_buffers(child, prefix + name + ".")
get_layer_named_buffers(self.module, prefix="")
return buffer_names
def _get_param_shape_func(self, param):
return param.ds_shape if hasattr(param, 'ds_id') else param.shape
def _get_param_fragment_func(self, param):
return param.ds_tensor.detach().cpu() if hasattr(param, 'ds_id') else param.detach().cpu()
def _get_zero_frozen_param_attributes(self, attr_func):
frozen_param_fragments = OrderedDict()
for param in self.module.parameters():
if param.requires_grad:
continue
if param not in self.param_names:
raise ValueError(f"failed to find frozen {param} in named params")
name = self.param_names[param]
frozen_param_fragments[name] = attr_func(param)
return frozen_param_fragments
def _get_zero_param_shapes(self):
"""Returns a dict of name to shape mapping, only for the flattened fp32 weights saved by the
optimizer. the names are exactly as in state_dict. The order is absolutely important, since
the saved data is just flattened data with no identifiers and requires reconstruction in the
same order it was saved.
We can't rely on self.module.named_parameters() to get the saved tensors, as some params
will be missing and others unsaved and then it'd be impossible to reconstruct state_dict
from the flattened weights.
optimizer.bit16_groups seems to be the easiest to use as it's in all zeroX versions.
"""
param_group_shapes = []
cnt = 0
numel = 0
# zero2 started using a round_robin_bit16_groups which is a shuffled version of bit16_groups -
# if we don't use it, we get parameters ordered incorrectly
if hasattr(self.optimizer, "round_robin_bit16_groups"):
bit16_groups = self.optimizer.round_robin_bit16_groups
elif self.bfloat16_enabled() and hasattr(self.optimizer, "bf16_groups"):
bit16_groups = self.optimizer.bf16_groups
else:
bit16_groups = self.optimizer.bit16_groups if self.zero_optimization_stage(
) == 2 else self.optimizer.fp16_groups
for bit16_group in bit16_groups:
param_shapes = OrderedDict()
for param in bit16_group:
cnt += 1
numel += param.ds_numel if hasattr(param, "ds_numel") else param.numel()
shape = param.ds_shape if hasattr(param, "ds_shape") else param.shape
if param not in self.param_names:
raise ValueError(f"failed to find optimizer param in named params")
name = self.param_names[param]
param_shapes[name] = shape
# uncomment to debug zero_to_fp32.py problems
# if self.global_rank == 0: print(f"saving param {name} {shape} (numel={shape.numel()})")
param_group_shapes.append(param_shapes)
# if self.global_rank == 0: print(f"Total saved {numel} numels in {cnt} params")
return param_group_shapes
def _get_shared_params(self):
"""
Returns a dict of shared params, which can later be used to reconstruct the original state dict,
e.g. in `zero_to_fp32`. Each dict entry is a pair of param names, where the key is the name
of the variable that isn't stored and the value is the actual param holding data.
"""
shared_index = {}
shared_params_by_full_name = {}
is_zero3_model = (self.zero_optimization_partition_weights()
and any(hasattr(param, "ds_id") for param in self.module.parameters()))
def get_layer_state_dict(module, prefix=""):
# handle params
for name, param in module.named_parameters(recurse=False):
if param is None or (is_zero3_model and not hasattr(param, "ds_id")):
continue
key = prefix + name
# When weights are manged by stage 3, we can't rely on param.data_ptr() as it will be reused
# as weights get gathered and reduced, but param.ds_id is unique across all zero weights
# (and shared params will have the same param.ds_id)
param_id = param.ds_id if is_zero3_model else param.data_ptr()
if param_id in shared_index:
# shared weights
#print(f"`{key}` is shared with `{shared_index[param_id]}`")
shared_params_by_full_name[key] = shared_index[param_id]
else:
shared_index[param_id] = key
for name, child in module.named_children():
if child is not None:
get_layer_state_dict(child, prefix + name + ".")
if dist.get_rank() == 0:
get_layer_state_dict(self.module, prefix="")
return shared_params_by_full_name
def _copy_recovery_script(self, save_path):
base_dir = os.path.dirname(os.path.dirname(__file__))
script = "zero_to_fp32.py"
src = os.path.join(base_dir, "utils", script)
dst = os.path.join(save_path, script)
#logger.info(f"creating recovery script {dst}")
copyfile(src, dst)
self._change_recovery_script_permissions(dst)
def _change_recovery_script_permissions(self, dst):
# make executable (safeguard for file shares - Azure as example)
try:
os.chmod(dst, os.stat(dst).st_mode | stat.S_IEXEC)
except (FileNotFoundError, PermissionError) as e:
#this message is used in unit test TestZeRONonDistributed
logger.info(
f'Warning: Could not change permissions for {dst} due to error: {e}. Continuing without changing permissions.'
)
def _save_zero_checkpoint(self, save_path, tag):
zero_checkpoint_name = self._get_zero_ckpt_name(save_path, tag)
zero_sd = dict(optimizer_state_dict=self.optimizer.state_dict(), ds_config=self.config, ds_version=version)
self.checkpoint_engine.save(zero_sd, zero_checkpoint_name)
if self.global_rank == 0:
self._copy_recovery_script(save_path)
ckpt_type = 'zero' if self.zero_optimization() else 'bf16_zero'
logger.info(f'{ckpt_type} checkpoint saved {zero_checkpoint_name}')
def _zero3_consolidated_16bit_state_dict(self, exclude_frozen_parameters=False):
"""
Get a full non-partitioned state_dict with fp16 weights on cpu.
Important: this function must be called on all ranks and not just rank 0.
This is similar to nn.Module.state_dict (modelled after _save_to_state_dict), but:
1. consolidates the weights from different partitions on gpu0
2. works on one layer at a time to require as little gpu0 memory as possible, by
moving the already consolidated weights to cpu
3. takes care to keep the shared params shared when gradually copying the params to cpu
Returns:
a consolidated fp16 ``state_dict`` on cpu on rank 0, ``None`` on other ranks
"""
if not self.zero_optimization_partition_weights():
raise ValueError("this function requires ZeRO-3 mode")
state_dict = OrderedDict() if dist.get_rank() == 0 else None
shared_params = {}
def get_layer_state_dict(module, prefix=""):
# gather one layer at a time to be memory-efficient
# must use modifier_rank=0 to release GPU memory after each layer gathered
#see_memory_usage("before GatheredParameters", force=True)
with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
if dist.get_rank() == 0:
# handle params
for name, param in module.named_parameters(recurse=False):
if param is None or (exclude_frozen_parameters and not param.requires_grad):
continue
key = prefix + name
# can't rely on param.data_ptr() as it will be reused as weights gets
# gathered and reduced, but param.ds_id is unique across all zero weights
# (and shared params will have the same param.ds_id)
if param.ds_id in shared_params:
# shared weights
#print(f"`{key}` is shared with `{shared_params[param.ds_id]}`")
state_dict[key] = state_dict[shared_params[param.ds_id]]
else:
state_dict[key] = param.detach().cpu()
shared_params[param.ds_id] = key
#print(f"param {param.ds_id} {param.shape} {key} ")
# now buffers - not sure if need to take care of potentially shared weights here
for name, buf in module.named_buffers(recurse=False):
if (buf is not None and name not in module._non_persistent_buffers_set):
state_dict[prefix + name] = buf.detach().cpu()
#see_memory_usage("after GatheredParameters", force=True)
for name, child in module.named_children():
if child is not None:
get_layer_state_dict(child, prefix + name + ".")
# Prepare for checkpoint save by ensuring all parameters are partitioned
if self._optimizer_has_ckpt_event_prologue():
self.optimizer.checkpoint_event_prologue()
see_memory_usage("before get_layer_state_dict", force=False)
get_layer_state_dict(self.module, prefix="")
see_memory_usage("after get_layer_state_dict", force=False)
if self._optimizer_has_ckpt_event_epilogue():
self.optimizer.checkpoint_event_epilogue()
return state_dict
def save_fp16_model(self, save_dir, save_filename="pytorch_model.bin"):
"""has been renamed to save_16bit_model, keeping this around for backwards
compatibility"""
return self.save_16bit_model(save_dir, save_filename)
def save_16bit_model(self, save_dir, save_filename="pytorch_model.bin", exclude_frozen_parameters=False):
"""
Save 16bit model weights
This method saves the 16bit model weights at the desired destination.
Arguments:
save_dir: Required. Directory for saving the model
save_filename: Optional. Filename to save to. Defaults to ``pytorch_model.bin``
exclude_frozen_parameters: Optional. Exclude frozen parameters from checkpointed state.
Returns:
``True`` when a model has been saved, ``False`` otherwise. It will not be saved if
stage3_gather_16bit_weights_on_model_save is ``False``.
Important: all processes must call this method and not just the process with rank 0. It is
because the processes need to work in sync to gather the weights. This method will hang
waiting to synchronize with other processes if it's called just for the process with rank 0.
"""
path = os.path.join(save_dir, save_filename)
if self.zero_optimization_partition_weights():
if self.zero_gather_16bit_weights_on_model_save():
# consolidation is expensive in time and memory and therefore isn't a default
state_dict = self._zero3_consolidated_16bit_state_dict(
exclude_frozen_parameters=exclude_frozen_parameters)
else:
# the model will be bogus if not consolidated so don't confuse the user by saving it
logger.info(
f"Did not save the model {path} because `stage3_gather_16bit_weights_on_model_save` is False")
return False
else:
state_dict = self.module_state_dict(exclude_frozen_parameters=exclude_frozen_parameters)
tag = f"global_step{self.global_steps}"
tag = str(tag)
self.checkpoint_engine.create(tag)
if dist.get_rank() == 0:
self.checkpoint_engine.makedirs(save_dir, exist_ok=True)
logger.info(f"Saving model weights to {path}, tag: {tag}")
self.checkpoint_engine.save(state_dict, path)
self.checkpoint_engine.commit(tag)
return True
def empty_partition_cache(self):
"""
Release GPU memory consumed by offloaded model parameters.
"""
if hasattr(self.optimizer, 'empty_partition_cache'):
self.optimizer.empty_partition_cache()
gc.collect()
get_accelerator().empty_cache()
|