File size: 169,755 Bytes
0cee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import os
import re
import stat
import torch
import hashlib
from collections import defaultdict, OrderedDict, deque
from shutil import copyfile
import gc

from torch.nn.modules import Module
from torch.nn.parameter import Parameter
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors

from typing import Callable, Dict, Union, Iterable

import deepspeed

from deepspeed import comm as dist
from deepspeed.runtime.utils import see_memory_usage, DummyOptim
from .zero.offload_config import OffloadDeviceEnum
from deepspeed.runtime.zero.stage_1_and_2 import DeepSpeedZeroOptimizer
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from deepspeed.runtime.zero.utils import is_zero_supported_optimizer, ZeRORuntimeException
from deepspeed.runtime.zero.parameter_offload import DeepSpeedZeRoOffload
from deepspeed.runtime.zero.config import ZERO_OPTIMIZATION

from deepspeed.runtime.fp16.fused_optimizer import FP16_Optimizer
from deepspeed.runtime.fp16.unfused_optimizer import FP16_UnfusedOptimizer
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer

from deepspeed.runtime.config import DEEPSPEED_OPTIMIZERS, \
    ADAGRAD_OPTIMIZER, ADAM_OPTIMIZER, ADAMW_OPTIMIZER, LAMB_OPTIMIZER, ONEBIT_ADAM_OPTIMIZER, ONEBIT_LAMB_OPTIMIZER, \
    TORCH_ADAM_PARAM, ADAM_W_MODE, ADAM_W_MODE_DEFAULT, ZERO_ONE_ADAM_OPTIMIZER, MUADAM_OPTIMIZER, MUADAMW_OPTIMIZER, \
    MUSGD_OPTIMIZER, LION_OPTIMIZER

from deepspeed.runtime.dataloader import DeepSpeedDataLoader
from deepspeed.runtime.constants import \
    ROUTE_TRAIN, ROUTE_PREDICT, ROUTE_EVAL, \
    PLD_THETA, PLD_GAMMA, BFLOAT16, FP16, AMP, GRADIENT_ACCUMULATION_STEPS, \
    DATA_PARALLEL_GROUP, GLOBAL_RANK
from deepspeed.runtime.zero.config import ZeroStageEnum
from deepspeed.compression import compression_scheduler
from deepspeed.compression.constants import \
    WEIGHT_QUANTIZE_IN_FORWARD_ENABLED, \
    WEIGHT_QUANTIZATION, SHARED_PARAMETERS, \
    WEIGHT_QUANTIZE_ENABLED, \
    WEIGHT_QUANTIZE_GROUPS, \
    WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE, \
    WEIGHT_QUANTIZE_CHANGE_RATIO, \
    WEIGHT_QUANTIZE_TYPE, \
    WEIGHT_QUANTIZE_ROUNDING, \
    WEIGHT_QUANTIZE_VERBOSE, \
    WEIGHT_QUANTIZE_KERNEL
from deepspeed.checkpoint.constants import OPTIMIZER_STATE_DICT, FROZEN_PARAM_FRAGMENTS
from deepspeed.runtime.sparse_tensor import SparseTensor

from deepspeed.runtime import lr_schedules
from deepspeed.utils import groups
from deepspeed.utils import logger, log_dist, instrument_w_nvtx
from deepspeed.utils.timer import NoopTimer, ThroughputTimer, SynchronizedWallClockTimer, \
    FORWARD_MICRO_TIMER, BACKWARD_MICRO_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_REDUCE_MICRO_TIMER, \
    STEP_MICRO_TIMER, \
    FORWARD_GLOBAL_TIMER, BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_GLOBAL_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER, \
    STEP_GLOBAL_TIMER
from deepspeed.utils.debug import debug_extract_module_and_param_names, debug_clear_module_and_param_names
from deepspeed.monitor.monitor import MonitorMaster
from deepspeed.runtime.progressive_layer_drop import ProgressiveLayerDrop
from deepspeed.runtime.utils import clip_grad_norm_
from deepspeed.runtime.eigenvalue import Eigenvalue
from deepspeed.runtime.data_pipeline.constants import DATA_SAMPLING, \
    DATA_ROUTING, DATA_SAMPLING_ENABLED, CURRICULUM_LEARNING, \
    CURRICULUM_LEARNING_ENABLED, DATA_SAMPLING_NUM_WORKERS, RANDOM_LTD, \
    RANDOM_LTD_ENABLED, RANDOM_LTD_LAYER_ID, RANDOM_LTD_LAYER_NUM, \
    RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE, RANDOM_LTD_LAYER_TOKEN_LR_ENABLED, \
    RANDOM_LTD_GLOBAL_BATCH_SIZE, RANDOM_LTD_MICRO_BATCH_SIZE, DATA_EFFICIENCY
from deepspeed.runtime.data_pipeline.curriculum_scheduler import CurriculumScheduler
from deepspeed.runtime.data_pipeline.data_routing.scheduler import RandomLTDScheduler
from deepspeed.runtime.data_pipeline.data_routing.helper import remove_random_ltd_state_dict
from deepspeed.runtime.data_pipeline.data_routing.basic_layer import RandomLayerTokenDrop

from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint

from .pipe.module import PipelineModule
from .utils import get_ma_status
from .compiler import CompiledModuleWrapper
from ..ops.adam import FusedAdam
from ..moe.sharded_moe import TopKGate, MOELayer
from ..moe.layer import MoE
from ..moe.utils import is_moe_param, configure_moe_param_groups
from ..git_version_info import version

from deepspeed.profiling.flops_profiler.profiler import FlopsProfiler
from deepspeed.utils.logging import print_json_dist, print_configuration

from deepspeed.accelerator import get_accelerator

from deepspeed.runtime.config import DtypeEnum

MEMORY_OPT_ALLREDUCE_SIZE = 500000000

DeepSpeedOptimizerCallable = \
    Callable[[Union[Iterable[Parameter], Dict[str, Iterable]]], Optimizer]
DeepSpeedSchedulerCallable = Callable[[Optimizer], _LRScheduler]

try:
    import apex
    from apex import amp
    APEX_INSTALLED = True
except ImportError:
    # Fail silently so we don't spam logs unnecessarily if user isn't using amp
    APEX_INSTALLED = False


def split_half_float_double_sparse(tensors):
    device_type = get_accelerator().device_name()
    supported_types = get_accelerator().supported_dtypes()

    for t in tensors:
        assert t.dtype in supported_types, f"attempting to reduce an unsupported grad type: {t.dtype}"

    sparse_tensor_buckets, dense_tensor_buckets = [], []
    for i, dtype in enumerate(supported_types):
        sparse_bucket, dense_bucket = [], []
        for t in tensors:
            if t.dtype == dtype:
                if isinstance(t, SparseTensor):
                    sparse_bucket.append(t)
                else:
                    dense_bucket.append(t)
        if sparse_bucket:
            sparse_tensor_buckets.append((dtype, sparse_bucket))
        if dense_bucket:
            dense_tensor_buckets.append((dtype, dense_bucket))
    return sparse_tensor_buckets, dense_tensor_buckets


class EngineTimers(object):
    r"""Wallclock timers for DeepSpeedEngine"""

    def __init__(self, enable_micro_timers, enable_global_timers):
        self.forward_timers = []
        self.backward_timers = []
        self.backward_inner_timers = []
        self.backward_reduce_timers = []
        self.step_timers = []
        self.global_timers = []
        self.micro_timers = []

        if enable_micro_timers:
            self.forward_timers += [FORWARD_MICRO_TIMER]
            self.backward_timers += [BACKWARD_MICRO_TIMER]
            self.backward_inner_timers += [BACKWARD_INNER_MICRO_TIMER]
            self.backward_reduce_timers += [BACKWARD_REDUCE_MICRO_TIMER]
            self.step_timers += [STEP_MICRO_TIMER]
            self.micro_timers += [
                FORWARD_MICRO_TIMER, BACKWARD_MICRO_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_REDUCE_MICRO_TIMER,
                STEP_MICRO_TIMER
            ]

        if enable_global_timers:
            self.forward_timers += [FORWARD_GLOBAL_TIMER]
            self.backward_timers += [BACKWARD_GLOBAL_TIMER]
            self.backward_inner_timers += [BACKWARD_INNER_GLOBAL_TIMER]
            self.backward_reduce_timers += [BACKWARD_REDUCE_GLOBAL_TIMER]
            self.step_timers += [STEP_GLOBAL_TIMER]
            self.global_timers += [
                FORWARD_GLOBAL_TIMER, BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_GLOBAL_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER,
                STEP_GLOBAL_TIMER
            ]


class DeepSpeedEngine(Module):
    r"""DeepSpeed engine for training."""

    def __init__(self,
                 args,
                 model,
                 optimizer=None,
                 model_parameters=None,
                 training_data=None,
                 lr_scheduler=None,
                 mpu=None,
                 dist_init_required=None,
                 collate_fn=None,
                 config=None,
                 config_class=None,
                 dont_change_device=False):
        super(DeepSpeedEngine, self).__init__()
        self.dont_change_device = dont_change_device
        self.client_optimizer = optimizer
        self.client_lr_scheduler = lr_scheduler
        self.training_data = training_data
        self.collate_fn = collate_fn
        self.mpu = mpu
        self.all_to_all_group = None
        self.data_parallel_group = None
        self.global_steps = 0
        self.global_samples = 0
        self.micro_steps = 0
        self.skipped_steps = 0
        self.gradient_average = True
        self.warn_unscaled_loss = True
        self.config = config
        self._config = config_class
        self.loaded_checkpoint_mp_world_size = None
        self.loaded_checkpoint_dp_world_size = None
        self.enable_backward_allreduce = True
        self.progressive_layer_drop = None
        self.eigenvalue = None
        self.block_eigenvalue = None
        self.gas_boundary_ctr = 0
        self.dist_backend = get_accelerator().communication_backend_name()
        self.has_moe_layers = False
        self.num_experts = []
        self.gate_modules = []
        self.moe_layers = []
        self._step_applied = False
        self._global_grad_norm = None
        self.use_ds_comm = False  # False --> Use torch.dist, True --> Use ds.comm backend.

        self.checkpoint_engine = None

        self._is_gradient_accumulation_boundary = None
        self.scale_wrt_gas = None
        self.losses = None

        # for debug purposes - can then debug print: debug_get_module_name(module)
        debug_extract_module_and_param_names(model)

        self._do_args_sanity_check(args)
        self._configure_with_arguments(args, mpu)
        self._do_sanity_check()
        see_memory_usage(f"DeepSpeed Engine: After args sanity test", force=self.memory_breakdown())
        if mpu is not None:
            if self.elasticity_enabled():
                if not self.is_elastic_model_parallel_supported():
                    assert not self.elasticity_enabled(), ("Elasticity is not currently supported"
                                                           " with model parallelism.")

        self._set_distributed_vars(args)

        dist.configure(self._config)

        self.monitor = MonitorMaster(self._config.monitor_config)

        see_memory_usage(
            f"DeepSpeed Engine: Before configure distributed model",
            force=self.memory_breakdown(),
        )

        self.pipeline_parallelism = isinstance(model, PipelineModule)

        # Configure distributed model
        self._configure_distributed_model(model)

        # needed for zero_to_fp32 weights reconstruction to remap nameless data to state_dict
        self.param_names = {param: name for name, param in model.named_parameters()}

        self._get_model_parameters()

        see_memory_usage(f"DeepSpeed Engine: After configure distributed model")

        # Configure wall clock timers
        self.timers = SynchronizedWallClockTimer()
        # Throughput timer
        self.tput_timer = ThroughputTimer(
            batch_size=self.train_batch_size(),
            steps_per_output=self.steps_per_print(),
            monitor_memory=False,
        )

        log_dist(f"DeepSpeed Flops Profiler Enabled: {self.flops_profiler_enabled()}", ranks=[0])

        if self.flops_profiler_enabled():
            self.flops_profiler = FlopsProfiler(self.module, self, self.flops_profiler_recompute_fwd_factor())

        if training_data:
            self.training_dataloader = self.deepspeed_io(training_data)
        else:
            self.training_dataloader = None

        # Configure optimizer and scheduler
        self.optimizer = None
        self.basic_optimizer = None
        self.lr_scheduler = None
        has_optimizer = False

        if optimizer or self.optimizer_name():
            has_optimizer = True
        # If no parameters given by init default to module parameters
        if model_parameters is None:
            model_parameters = self.module.parameters()

        # Convert model parameters from generator to list
        if not isinstance(model_parameters, list):
            model_parameters = list(model_parameters)

        if has_optimizer:
            self._configure_optimizer(optimizer, model_parameters)
            self._configure_lr_scheduler(lr_scheduler)
            self._report_progress(0)
        elif self.zero_optimization():
            # no optim selected but zero is enabled
            self.optimizer = self._configure_zero_optimizer(optimizer=None)
        elif self.bfloat16_enabled():
            self.optimizer = self._configure_bf16_optimizer(optimizer=None)

        # Hook optimizer for snip_momentum pruning
        if hasattr(model, 'pruners'):
            from ..compression.helper import rewrite_optimizer_step
            self.optimizer.pruners = model.pruners
            rewrite_optimizer_step(self.optimizer)

        # Bookkeeping for sparse support
        self.sparse_tensor_module_names = set()
        # if self.sparse_gradients_enabled():
        for name, module in self.module.named_modules():
            if isinstance(module, (torch.nn.Embedding, torch.nn.EmbeddingBag)) and self.sparse_gradients_enabled():
                self.sparse_tensor_module_names.add(name + ".weight")
                logger.info("Will convert {} to sparse tensor during training".format(name))

        self.save_non_zero_checkpoint = False
        self.save_zero_checkpoint = False
        if not isinstance(self.optimizer, DeepSpeedZeRoOffload):
            self._configure_checkpointing(dist_init_required)

        if self.eigenvalue_enabled():
            self.eigenvalue = self._configure_eigenvalue()

        if self.pld_enabled():
            self.progressive_layer_drop = self._configure_progressive_layer_drop()

        if self.curriculum_enabled_legacy():
            self.curriculum_scheduler_legacy = self._configure_curriculum_scheduler_legacy()

        if self.random_ltd_enabled():
            random_ltd_config = self.random_ltd_config()
            random_ltd_config[RANDOM_LTD_GLOBAL_BATCH_SIZE] = self.train_batch_size()
            random_ltd_config[RANDOM_LTD_MICRO_BATCH_SIZE] = self.train_micro_batch_size_per_gpu()
            self.random_ltd_scheduler = self._configure_random_ltd_scheduler(random_ltd_config)

        # Engine timers

        self.engine_timers = EngineTimers(enable_micro_timers=self.wall_clock_breakdown(),
                                          enable_global_timers=self.wall_clock_breakdown()
                                          or self.flops_profiler_enabled())

        if self.global_rank == 0:
            self._config.print("DeepSpeedEngine configuration")
            if self.dump_state():
                print_configuration(self, "DeepSpeedEngine")

        # Use torch (un)flatten ops
        self.flatten = _flatten_dense_tensors
        self.unflatten = _unflatten_dense_tensors

        if self._config.compile_config.enabled:
            self._set_client_model(CompiledModuleWrapper(self.module, self._config.compile_config))

    def destroy(self):
        if self.optimizer is not None and hasattr(self.optimizer, 'destroy'):
            self.optimizer.destroy()
        debug_clear_module_and_param_names()

    def _get_model_parameters(self):
        if self.autotuning_profile_model_info():
            self.autotuning_model_info = {}
            num_params = 0
            trainable_num_params = 0

            for p in self.module.parameters():
                # since user code might call deepspeed.zero.Init() before deepspeed.initialize(), need to check the attribute to check if the parameter is partitioned in zero 3 already or not
                n = 0
                if hasattr(p, "ds_tensor"):  # if the parameter is partitioned in zero 3
                    n += p.ds_numel
                else:  # if the parameter is not partitioned in zero 3 yet
                    n += p.numel()
                num_params += n
                if p.requires_grad:
                    trainable_num_params += n
            if self.global_rank == 0:
                self.autotuning_model_info["num_params"] = num_params * self.mp_world_size
                self.autotuning_model_info["trainable_num_params"] = trainable_num_params * self.mp_world_size

            logger.info(f"model parameter = {num_params}")

    def get_batch_info(self):
        """Get all training batch related settings.
        Returns:
            train_batch_size (int): The effective training batch size. This is the amount of data
                samples that leads to one step of model update.
            train_micro_batch_size_per_gpu (int): Batch size to be processed by one GPU in one
                step (without gradient accumulation).
            gradient_accumulation_steps (int): Number of training steps to accumulate gradients
                before averaging and applying them.
        """
        return (
            self.train_batch_size,
            self.train_micro_batch_size_per_gpu,
            self.gradient_accumulation_steps,
        )

    def set_train_batch_size(self, train_batch_size):
        """Adjust the global batch size by increasing or decreasing the number of
        micro-batches (i.e., gradient accumulation steps). The size of each micro-batch
        (i.e., ``train_micro_batch_size_per_gpu``) is not changed.
        Args:
            train_batch_size (int): The new global batch size for training.
        Raises:
            ValueError: if ``train_batch_size`` is not divisible by the
                configured micro-batch size and data parallelism.
        """
        if train_batch_size % (self.train_micro_batch_size_per_gpu() * self.dp_world_size) != 0:
            #print(f'{train_batch_size=} {self.train_micro_batch_size_per_gpu()=} {self.dp_world_size=}')
            raise ValueError(f'Train batch size must be divisible by micro-batch data parallelism')
        new_gas = train_batch_size // (self.train_micro_batch_size_per_gpu() * self.dp_world_size)
        # overwrite config
        self._config.train_batch_size = train_batch_size
        self._config.gradient_accumulation_steps = new_gas

    def set_train_micro_batch_size(self, micro_batch_size):
        """Adjust the micro batch size(i.e., the micro batch size in every data parallel group),
        while keep the gradient accumulation steps the same.
        Args:
            micro_batch_size (int): The new micro batch size for training.
        """
        # overwrite config
        new_global_batch_size = micro_batch_size * self._config.gradient_accumulation_steps * self.dp_world_size
        self._config.train_batch_size = new_global_batch_size
        self._config.train_micro_batch_size_per_gpu = micro_batch_size

    def set_data_post_process_func(self, post_process_func):
        if self.training_dataloader is not None:
            self.training_dataloader.post_process_func = post_process_func

    def set_custom_curriculum_learning_schedule(self, schedule_func_dict):
        if self.training_dataloader is not None and self.curriculum_learning_enabled():
            self.training_dataloader.data_sampler.set_custom_curriculum_learning_schedule(schedule_func_dict)

    def get_global_grad_norm(self) -> float:
        """Return the 2-norm of all gradients. If there is model parallelism,
        the norm will be global.
        The computed norm will be cached and reused until the next step() pass.
        .. note::
            In the presence of model parallelism, this is a collective call
            and acts as a barrier among ``mpu.get_model_parallel_group()``.
        Returns:
            float: norm
        """
        return self._global_grad_norm

    def __getattr__(self, name):
        """
        Pass through attributes defined in the model if they are not overridden by ds-engine.
        """

        _module = {}
        if "module" in self.__dict__:
            _module = self.__dict__['module']
        if name in dir(self):
            return getattr(self, name)
        elif name in dir(_module):
            return getattr(_module, name)
        elif isinstance(_module, CompiledModuleWrapper):
            try:
                return getattr(_module, name)
            except AttributeError:
                raise AttributeError(
                    f"None of {type(self).__name__}, CompiledModuleWrapper, or the wrapped model has the attribute '{name}'"
                )
        else:
            raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

    def checkpoint_tag_validation_enabled(self):
        return self._config.checkpoint_tag_validation_enabled

    def checkpoint_tag_validation_fail(self):
        return self._config.checkpoint_tag_validation_fail

    def elasticity_enabled(self):
        return self._config.elasticity_enabled

    def is_elastic_model_parallel_supported(self):
        if self.elasticity_enabled():
            # Add code for finding number of GPUs per node automatically
            if self._config.num_gpus_per_node % self._config.elastic_model_parallel_size == 0:
                return True
            else:
                return False

    def pld_enabled(self):
        return self._config.pld_enabled

    def pld_params(self):
        return self._config.pld_params

    def pld_theta(self):
        return self.pld_params()[PLD_THETA]

    def pld_gamma(self):
        return self.pld_params()[PLD_GAMMA]

    def eigenvalue_enabled(self):
        return self._config.eigenvalue_enabled

    def eigenvalue_verbose(self):
        return self._config.eigenvalue_verbose

    def eigenvalue_max_iter(self):
        return self._config.eigenvalue_max_iter

    def eigenvalue_tol(self):
        return self._config.eigenvalue_tol

    def eigenvalue_stability(self):
        return self._config.eigenvalue_stability

    def eigenvalue_gas_boundary_resolution(self):
        return self._config.eigenvalue_gas_boundary_resolution

    def eigenvalue_layer_name(self):
        return self._config.eigenvalue_layer_name

    def eigenvalue_layer_num(self):
        return self._config.eigenvalue_layer_num

    def curriculum_enabled_legacy(self):
        return self._config.curriculum_enabled_legacy

    def curriculum_params_legacy(self):
        return self._config.curriculum_params_legacy

    def data_efficiency_enabled(self):
        return self._config.data_efficiency_enabled

    def data_efficiency_config(self):
        return self._config.data_efficiency_config

    def data_sampling_enabled(self):
        return self._config.data_efficiency_config[DATA_SAMPLING][DATA_SAMPLING_ENABLED]

    def data_sampling_config(self):
        return self._config.data_efficiency_config[DATA_SAMPLING]

    def curriculum_learning_enabled(self):
        return self._config.data_efficiency_config[DATA_SAMPLING][CURRICULUM_LEARNING][CURRICULUM_LEARNING_ENABLED]

    def curriculum_learning_config(self):
        return self._config.data_efficiency_config[DATA_SAMPLING][CURRICULUM_LEARNING]

    def random_ltd_enabled(self):
        return self._config.data_efficiency_config[DATA_ROUTING][RANDOM_LTD][RANDOM_LTD_ENABLED]

    def random_ltd_config(self):
        return self._config.data_efficiency_config[DATA_ROUTING][RANDOM_LTD]

    def random_ltd_initialize(self):
        assert self.random_ltd_enabled()
        random_ltd_config = self.random_ltd_config()
        random_ltd_queue = deque([x for x in sorted(random_ltd_config[RANDOM_LTD_LAYER_ID])])
        count = 0
        for name, layer in self.module.named_modules():
            if isinstance(layer, RandomLayerTokenDrop):
                if len(random_ltd_queue) != 0 and str(random_ltd_queue[0]) in name:  ###[1,2,3]
                    layer.init_config(random_ltd_config, self.random_ltd_scheduler, count)
                    random_ltd_queue.popleft()
                    count += 1

        if random_ltd_config[RANDOM_LTD_LAYER_NUM] != count:
            raise ValueError(f'random_ltd_layer_num {random_ltd_config[RANDOM_LTD_LAYER_NUM]} must be \
                equivalent to the len of random_ltd_layer_id {count}')

        if random_ltd_config[RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE][RANDOM_LTD_LAYER_TOKEN_LR_ENABLED]:
            assert self.client_lr_scheduler is None
            raise ValueError(f'not yet support')
            #self.lr_scheduler = lr_schedules.WarmupLayerTokenDecayLR(self.optimizer, self.random_ltd_scheduler)

    def wall_clock_breakdown(self):
        return self._config.wall_clock_breakdown

    def flops_profiler_enabled(self):
        return self._config.flops_profiler_config.enabled or self.autotuning_enabled()

    def flops_profiler_recompute_fwd_factor(self):
        return self._config.flops_profiler_config.recompute_fwd_factor

    def flops_profiler_profile_step(self):
        step = self._config.flops_profiler_config.profile_step
        if self._config.autotuning_config.enabled:
            step = self.autotuning_start_profile_step()
        return step

    def flops_profiler_module_depth(self):
        return self._config.flops_profiler_config.module_depth

    def flops_profiler_top_modules(self):
        return self._config.flops_profiler_config.top_modules

    def flops_profiler_detailed(self):
        if self._config.autotuning_config.enabled:
            return False
        return self._config.flops_profiler_config.detailed

    def flops_profiler_output_file(self):
        return self._config.flops_profiler_config.output_file

    def memory_breakdown(self):
        return self._config.memory_breakdown

    def autotuning_enabled(self):
        return self._config.autotuning_config.enabled

    def autotuning_start_profile_step(self):
        return self._config.autotuning_config.start_profile_step

    def autotuning_end_profile_step(self):
        return self._config.autotuning_config.end_profile_step

    def autotuning_metric_path(self):
        path = self._config.autotuning_config.metric_path
        if not path:
            path = os.path.join(os.getcwd(), "autotuning_metric.json")
        return path

    def autotuning_model_info_path(self):
        path = self._config.autotuning_config.model_info_path
        if not path:
            path = os.path.join(os.getcwd(), "autotuning_model_info.json")
        return path

    def autotuning_metric(self):
        return self._config.autotuning_config.metric

    def autotuning_profile_model_info(self):
        return self.autotuning_enabled(
        ) and self._config.autotuning_config.model_info and self._config.autotuning_config.model_info.get(
            "profile", False)

    def sparse_gradients_enabled(self):
        return self._config.sparse_gradients_enabled

    def train_batch_size(self):
        return self._config.train_batch_size

    def train_micro_batch_size_per_gpu(self):
        return self._config.train_micro_batch_size_per_gpu

    def optimizer_name(self):
        return (self.client_optimizer.__class__.__name__ if self.client_optimizer else self._config.optimizer_name)

    def optimizer_params(self):
        return self._config.optimizer_params

    def optimizer_legacy_fusion(self):
        return self._config.optimizer_legacy_fusion

    def scheduler_name(self):
        return self._config.scheduler_name

    def scheduler_params(self):
        return self._config.scheduler_params

    def quantize_training(self):
        return (
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS]
            [WEIGHT_QUANTIZE_IN_FORWARD_ENABLED],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_ENABLED],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_GROUPS],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS]
            [WEIGHT_QUANTIZE_FP16_MIXED_QUANTIZE],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_CHANGE_RATIO],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_TYPE],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_ROUNDING],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_VERBOSE],
            self._config.compression_config[WEIGHT_QUANTIZATION][SHARED_PARAMETERS][WEIGHT_QUANTIZE_KERNEL],
        )

    def zero_optimization(self):
        return self._config.zero_enabled

    def zero_allow_untested_optimizer(self):
        return self._config.zero_allow_untested_optimizer

    def zero_force_ds_cpu_optimizer(self):
        return self._config.zero_force_ds_cpu_optimizer

    def zero_reduce_scatter(self):
        return self._config.zero_config.reduce_scatter

    def zero_overlap_comm(self):
        return self._config.zero_config.overlap_comm

    def zero_offload_optimizer(self):
        return self._config.zero_config.offload_optimizer

    def zero_offload_param(self):
        return self._config.zero_config.offload_param

    def zero_use_cpu_optimizer(self):
        if self._config.zero_config.offload_optimizer is not None:
            return self._config.zero_config.offload_optimizer.device in [OffloadDeviceEnum.cpu, OffloadDeviceEnum.nvme]
        return False

    def zero_cpu_offload(self):
        if self._config.zero_config.offload_optimizer is not None:
            return self._config.zero_config.offload_optimizer.device == OffloadDeviceEnum.cpu
        return False

    def zero_partial_offload(self):
        return getattr(self._config.zero_config.offload_optimizer, "ratio", 1.0)

    def zero_sub_group_size(self):
        return self._config.zero_config.sub_group_size

    def zero_optimization_stage(self):
        return self._config.zero_optimization_stage

    def mics_shard_size(self):
        return self._config.mics_shard_size

    def zero_reduce_bucket_size(self):
        return self._config.zero_config.reduce_bucket_size

    def zero_multi_rank_bucket_allreduce(self):
        return self._config.zero_config.use_multi_rank_bucket_allreduce

    def zero_allgather_bucket_size(self):
        return self._config.zero_config.allgather_bucket_size

    def zero_optimization_partition_gradients(self):
        return self.zero_optimization_stage() >= ZeroStageEnum.gradients

    def zero_optimization_partition_weights(self):
        return self.zero_optimization_stage() >= ZeroStageEnum.weights

    def is_first_weights_partition_group(self):
        ret = True if self.mics_shard_size() < 0 \
            and self.zero_optimization_partition_weights() else False
        if self.mics_shard_size() > 0 and self.global_rank < self.mics_shard_size():
            ret = True
        return ret

    def zero_contiguous_gradients(self):
        return self._config.zero_config.contiguous_gradients

    def zero_load_from_fp32_weights(self):
        return self._config.zero_config.load_from_fp32_weights

    def zero_elastic_checkpoint(self):
        return self._config.zero_config.elastic_checkpoint

    def zero_has_nvme_offload(self):
        if not hasattr(self.optimizer, "swap_optimizer"):
            return False
        return self.optimizer.swap_optimizer or self.optimizer.params_in_nvme_and_cpu

    def zero_max_live_parameters(self):
        return self._config.zero_config.max_live_parameters

    def zero_max_reuse_distance(self):
        return self._config.zero_config.max_reuse_distance

    def zero_prefetch_bucket_size(self):
        return self._config.zero_config.prefetch_bucket_size

    def zero_param_persistence_threshold(self):
        return self._config.zero_config.param_persistence_threshold

    def zero_model_persistence_threshold(self):
        return self._config.zero_config.model_persistence_threshold

    def zero_gather_16bit_weights_on_model_save(self):
        return self._config.zero_config.gather_16bit_weights_on_model_save

    def zero_grad_hooks(self):
        return self._config.zero_config.grad_hooks

    def zero_legacy_stage1(self):
        return self._config.zero_config.legacy_stage1

    def zero_ignore_unused_parameters(self):
        return self._config.zero_config.ignore_unused_parameters

    def graph_harvesting(self):
        return self._config.graph_harvesting

    def fp16_enabled(self):
        return self._config.fp16_enabled

    def bfloat16_enabled(self):
        return self._config.bfloat16_enabled

    def fp16_master_weights_and_gradients(self):
        return self._config.fp16_master_weights_and_gradients

    def amp_enabled(self):
        return self._config.amp_enabled

    def amp_params(self):
        return self._config.amp_params

    def fp16_auto_cast(self):
        return self._config.fp16_auto_cast

    def loss_scale(self):
        return self._config.loss_scale

    def gradient_accumulation_steps(self):
        return self._config.gradient_accumulation_steps

    def use_node_local_storage(self):
        return self._config.use_node_local_storage

    def load_universal_checkpoint(self):
        return self._config.load_universal_checkpoint

    @property
    def communication_data_type(self):
        res = self._config.communication_data_type
        if res is not None:
            return res

        if self.fp16_enabled():
            return torch.float16

        if self.bfloat16_enabled():
            return torch.bfloat16

        return torch.float32

    @communication_data_type.setter
    def communication_data_type(self, value):
        self._config.communication_data_type = value

    def postscale_gradients(self):
        return not self._config.prescale_gradients

    def gradient_predivide_factor(self):
        return self._config.gradient_predivide_factor

    def steps_per_print(self):
        return self._config.steps_per_print

    def zero_allgather_partitions(self):
        return self._config.zero_config.allgather_partitions

    def zero_round_robin_gradients(self):
        return self._config.zero_config.round_robin_gradients

    def zero_hpz_partition_size(self):
        return self._config.zero_config.zero_hpz_partition_size

    def zero_quantized_weights(self):
        return self._config.zero_config.zero_quantized_weights

    def zero_quantized_nontrainable_weights(self):
        return self._config.zero_config.zero_quantized_nontrainable_weights

    def zero_quantized_gradients(self):
        return self._config.zero_config.zero_quantized_gradients

    def dump_state(self):
        return self._config.dump_state

    def gradient_clipping(self):
        return self._config.gradient_clipping

    def dynamic_loss_scale(self):
        return self._config.loss_scale == 0

    def initial_dynamic_scale(self):
        return self._config.initial_dynamic_scale

    def dynamic_loss_scale_args(self):
        return self._config.dynamic_loss_scale_args

    def swap_tensor_config(self):
        return self._config.swap_tensor_config

    def aio_config(self):
        return self._config.aio_config

    def get_data_types(self):
        model_dtype = torch.float32
        if self.fp16_enabled():
            model_dtype = torch.float16
        elif self.bfloat16_enabled():
            model_dtype = torch.bfloat16

        if self._config.grad_accum_dtype is None:
            if model_dtype == torch.bfloat16 and not self.zero_optimization():
                grad_accum_dtype = torch.float32
            else:
                grad_accum_dtype = model_dtype
        else:
            grad_accum_dtype = DtypeEnum(self._config.grad_accum_dtype).value

        return (model_dtype, grad_accum_dtype)

    def _optimizer_has_ckpt_event_prologue(self):
        return self.optimizer is not None and hasattr(self.optimizer, 'checkpoint_event_prologue')

    def _optimizer_has_ckpt_event_epilogue(self):
        return self.optimizer is not None and hasattr(self.optimizer, 'checkpoint_event_epilogue')

    def _configure_lr_scheduler(self, client_lr_scheduler):
        # First check for scheduler in json configuration
        lr_scheduler = self._scheduler_from_config(self.optimizer)
        if lr_scheduler:
            log_dist(f"DeepSpeed using configured LR scheduler = {self.scheduler_name()}", ranks=[0])
            self.lr_scheduler = lr_scheduler
        else:
            if isinstance(client_lr_scheduler, Callable):
                log_dist('DeepSpeed using client callable to create LR scheduler', ranks=[0])
                self.lr_scheduler = client_lr_scheduler(self.basic_optimizer)
            else:
                log_dist('DeepSpeed using client LR scheduler', ranks=[0])
                self.lr_scheduler = client_lr_scheduler

        log_dist(f'DeepSpeed LR Scheduler = {self.lr_scheduler}', ranks=[0])

    def _configure_checkpointing(self, dist_init_required):
        self.checkpoint_engine = TorchCheckpointEngine()

        if self._config is not None and self._config.nebula_config.enabled:
            try:
                from deepspeed.runtime.checkpoint_engine.nebula_checkpoint_engine import \
                    NebulaCheckpointEngine
                self.checkpoint_engine = NebulaCheckpointEngine(config_params=self._config.nebula_config)
            except ImportError as err:
                logger.error(f"No torch_nebula was found! Will fall back to torch.save. Details: {err}")
                self.checkpoint_engine = TorchCheckpointEngine()

        dp_rank = groups._get_sequence_data_parallel_rank()

        rank = self.local_rank if self.use_node_local_storage() else dp_rank

        # only the first data parallel process needs to store the model checkpoint
        # if you want to use node local storage this must be done by rank 0 on each
        # node
        self.save_non_zero_checkpoint = (rank == 0) or (self.zero_optimization_partition_weights()
                                                        and self.is_first_weights_partition_group())

        if self.zero_optimization() or self.bfloat16_enabled():
            param_rank = dist.get_rank(group=self.optimizer.dp_process_group)

            # Only the first parameter parallel process needs to store the
            # optimizer state checkpoints for zero
            self.save_zero_checkpoint = param_rank == dp_rank

    def _scheduler_from_config(self, optimizer):
        scheduler_name = self.scheduler_name()
        if scheduler_name is not None:
            if hasattr(lr_schedules, scheduler_name):
                scheduler = getattr(lr_schedules, scheduler_name)
            else:
                assert hasattr(torch.optim.lr_scheduler,
                               scheduler_name), f"DeepSpeed does not recognize LR scheduler {scheduler_name}"

                scheduler = getattr(torch.optim.lr_scheduler, scheduler_name)

            scheduler_params = self.scheduler_params()
            instantiated_scheduler = scheduler(optimizer, **scheduler_params)
            return instantiated_scheduler
        else:
            return None

    def _set_distributed_vars(self, args):
        device_rank = args.device_rank if args is not None and hasattr(args, 'device_rank') else self.local_rank
        if device_rank >= 0:
            get_accelerator().set_device(device_rank)
            self.device = torch.device(get_accelerator().device_name(), device_rank)
            self.world_size = dist.get_world_size()
            self.global_rank = dist.get_rank()
        else:
            self.world_size = 1
            self.global_rank = 0
            self.device = torch.device(get_accelerator().device_name())

    # Configure based on command line arguments
    def _configure_with_arguments(self, args, mpu):
        # After the distributed backend is initialized we are guaranteed the LOCAL_RANK
        # environment variable is set. We must align args.local_rank to this value for
        # backwards compatibility with scripts relying on [args|self].local_rank containing
        # the correct local rank info. _do_args_sanity_check will ensure this is the case.

        if "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ:
            ompi_local_rank = os.environ.get("OMPI_COMM_WORLD_LOCAL_RANK")
            local_rank = os.environ.get('LOCAL_RANK', ompi_local_rank)
            assert ompi_local_rank == local_rank, f"LOCAL_RANK ({local_rank}) != OMPI_COMM_WORLD_LOCAL_RANK ({ompi_local_rank}), " \
                "not sure how to proceed as we're seeing conflicting local rank info."
            os.environ['LOCAL_RANK'] = local_rank

        self.local_rank = int(os.environ['LOCAL_RANK'])
        if hasattr(args, 'local_rank'):
            args.local_rank = self.local_rank

    # Validate command line arguments
    def _do_args_sanity_check(self, args):
        assert "LOCAL_RANK" in os.environ or "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ, "DeepSpeed requires the LOCAL_RANK environment " \
            "variable, it is set by the deepspeed launcher, deepspeed.init_distributed, or the torch's launcher. If using a " \
            "different launcher please ensure LOCAL_RANK is set prior to initializing deepspeed."

        if hasattr(args, 'local_rank') and args.local_rank is not None:
            assert isinstance(args.local_rank,
                              int), f"args.local_rank of {args.local_rank} is an unknown type {type(args.local_rank)}"
            if args.local_rank >= 0:
                env_local_rank = int(os.environ.get("LOCAL_RANK"))
                assert (
                    env_local_rank == args.local_rank
                ), f"Mismatch in local rank setting, args.local_rank={args.local_rank} but env['LOCAL_RANK']={env_local_rank}."

    def _is_supported_optimizer(self, optimizer_name):
        return (optimizer_name in DEEPSPEED_OPTIMIZERS or getattr(torch.optim, optimizer_name, None) is not None)

    def _supported_optims(self):
        FairseqOptimizer = None
        try:
            from fairseq.optim.fairseq_optimizer import FairseqOptimizer
        except ImportError:
            pass

        expected_optim_types = [Optimizer]
        if FairseqOptimizer:
            # fairseq optims are not torch.optim objects
            expected_optim_types.append(FairseqOptimizer)
        return expected_optim_types

    # Validate configuration based on command line arguments
    def _do_sanity_check(self):
        if self.fp16_enabled() and not get_accelerator().is_fp16_supported():
            raise ValueError("Type fp16 is not supported.")

        expected_optim_types = self._supported_optims()
        expected_optim_types += [type(None), Callable]
        assert isinstance(self.client_optimizer, tuple(expected_optim_types)), \
            f'Client Optimizer is of unexpected type {type(self.client_optimizer)}'

        if not self.client_optimizer:
            if self.optimizer_name() is not None:
                assert self._is_supported_optimizer(
                    self.optimizer_name()), "{} is not a supported DeepSpeed Optimizer".format(self.optimizer_name())

        if (self.optimizer_name() == LAMB_OPTIMIZER or self.optimizer_name() == ONEBIT_LAMB_OPTIMIZER):
            assert (self.dynamic_loss_scale()), "DeepSpeed {} optimizer requires dynamic loss scaling".format(
                self.optimizer_name())

        # Detect invalid combinations of client optimizer and client scheduler
        if isinstance(self.client_lr_scheduler, _LRScheduler):
            assert isinstance(self.client_optimizer, Optimizer), \
                f'Client Optimizer (type = {type(self.client_optimizer)} is not instantiated but Client LR Scheduler is instantiated'

    def _broadcast_model(self):

        def is_replicated(p):
            if hasattr(p, "ds_status") and p.ds_status is not ZeroParamStatus.AVAILABLE:
                return False
            return True

        for p in self.module.parameters():
            # Broadcast the model for different parameters
            if is_moe_param(p):
                if torch.is_tensor(p) and is_replicated(p):
                    dist.broadcast(p.data,
                                   groups._get_expert_broadcast_src_rank(p.group_name),
                                   group=self.expert_data_parallel_group[p.group_name])
            else:
                if torch.is_tensor(p) and is_replicated(p):
                    dist.broadcast(p.data, groups._get_broadcast_src_rank(), group=self.seq_data_parallel_group)

    @staticmethod
    def __check_params(model: Module, dtype: torch.dtype) -> None:
        return
        if not all(param.dtype == dtype for param in model.parameters()) and dist.get_rank() == 0:
            raise ValueError(f"{dtype} is enabled but the following parameters have dtype that is "
                             f"not {dtype}: "
                             f"{[(n, p.dtype) for n, p in model.named_parameters() if p.dtype != dtype]}")

    def _set_client_model(self, model):
        # register client model in _modules so that nn.module methods work correctly
        modules = self.__dict__.get('_modules')
        modules['module'] = model
        # register module attribute in engine but avoid getattr
        self.__dict__['module'] = model

    def _configure_distributed_model(self, model):
        self._set_client_model(model)
        is_zero_init_model = self.zero_optimization_partition_weights() and any(
            [hasattr(param, "ds_id") for param in self.module.parameters()])

        if self.fp16_enabled():
            if is_zero_init_model:
                self.__check_params(self.module, torch.half)
            self.module.half()
        elif self.bfloat16_enabled():
            if is_zero_init_model:
                self.__check_params(self.module, torch.bfloat16)
            self.module.bfloat16()
        else:
            self.__check_params(self.module, torch.float)

        # zero.Init() handles device placement of model
        if not (self.dont_change_device or is_zero_init_model):
            self.module.to(self.device)

        # MoE related initialization
        for _, module in self.module.named_modules():
            if isinstance(module, MoE):
                self.has_moe_layers = True
                self.num_experts.append(module.num_experts)

        if self.has_moe_layers:
            for _, module in self.module.named_modules():
                if isinstance(module, TopKGate):
                    self.gate_modules.append(module)
                    if self.wall_clock_breakdown():
                        module.wall_clock_breakdown = True
                if isinstance(module, MOELayer):
                    self.moe_layers.append(module)
                    if self.wall_clock_breakdown():
                        module.wall_clock_breakdown = True

        # Pass the mpu from here to groups. For subsequent use, just query groups
        if self.mpu is not None:
            groups.mpu = self.mpu

        # Set deepspeed parallelism spec. for the model including expert parallelism
        for _, module in self.module.named_modules():
            if hasattr(module, 'set_deepspeed_parallelism'):
                module.set_deepspeed_parallelism(self._config.use_data_before_expert_parallel_)

        # Query the groups module to get information about various parallel groups
        self.local_all_to_all_group = None
        if self.zero_quantized_gradients():
            log_dist("Using quantized gradients", ranks=[0])
            self.local_all_to_all_group = groups._get_local_all_to_all_group()
        self.data_parallel_group = groups._get_data_parallel_group()
        self.dp_world_size = groups._get_data_parallel_world_size()
        self.seq_data_parallel_group = groups._get_sequence_data_parallel_group()
        self.seq_dp_world_size = groups._get_sequence_data_parallel_world_size()
        self.mp_world_size = groups._get_model_parallel_world_size()
        self.expert_parallel_group = groups._get_expert_parallel_group_dict()
        self.expert_data_parallel_group = groups._get_expert_data_parallel_group_dict()
        self.sequence_parallel_size = groups._get_sequence_parallel_world_size()
        if self.sequence_parallel_size > 1:
            self.communication_data_type = self._config.seq_parallel_communication_data_type

        if not (self.amp_enabled() or is_zero_init_model):
            self._broadcast_model()

    # check if parameters are duplicated in optimizer param_groups
    def _check_for_duplicates(self, optimizer):
        for name, param in self.module.named_parameters():
            param_id = id(param)

            def ids_list(group):
                return [id(param) for param in group]

            occurrence = sum([
                ids_list(group['params']).count(param_id) if param_id in ids_list(group['params']) else 0
                for group in optimizer.param_groups
            ])
            assert occurrence <= 1, f"Parameter with name: {name} occurs multiple times in optimizer.param_groups. Make sure it only appears once to prevent undefined behavior."

    def _do_optimizer_sanity_check(self, basic_optimizer):
        model_dtype, grad_accum_dtype = self.get_data_types()
        zero_enabled = self.zero_optimization()
        amp_enabled = self.amp_enabled()
        # config based assertions
        assert (
            not (amp_enabled and zero_enabled)
        ), "Amp and ZeRO are not currently compatible, please use (legacy) fp16 mode which performs similar to amp opt_mode=O2"
        if zero_enabled:
            if not is_zero_supported_optimizer(basic_optimizer):
                assert (
                    self.zero_allow_untested_optimizer()
                ), 'You are using an untested ZeRO Optimizer. Please add <"zero_allow_untested_optimizer": true> in the configuration file to use it.'

                if self.global_rank == 0:
                    logger.warning("**** You are using ZeRO with an untested optimizer, proceed with caution *****")
            if model_dtype == torch.bfloat16 and grad_accum_dtype == torch.float32 and self.zero_optimization_stage(
            ) == 1 and not self.zero_cpu_offload():
                return BFLOAT16
            return ZERO_OPTIMIZATION
        elif amp_enabled:
            if model_dtype != grad_accum_dtype:
                raise NotImplementedError(
                    "Model data type and gradient accumulation data type must be equal to use Amp")
            if model_dtype == torch.bfloat16 or model_dtype == torch.float16:
                raise NotImplementedError("Cannot enable both amp with (legacy) fp16 or bfloat16 mode")
            try:
                logger.info("Initializing Apex amp from: {}".format(amp.__path__))
            except NameError:
                # If apex/amp is available it will be imported above
                raise RuntimeError("Unable to import apex/amp, please make sure it is installed")
            return AMP
        # data type checks
        elif model_dtype == grad_accum_dtype:
            if model_dtype == torch.bfloat16:
                if self.pipeline_parallelism:
                    logger.warning(
                        "**** BF16 gradient accumulation is not safe numerically with large number of accumulation steps, proceed with caution *****"
                    )
                    return BFLOAT16
                else:
                    raise NotImplementedError(
                        "Bfloat16 wrapper must use a gradient accumulation type of fp32, enable ZeRO to use Bfloat16 gradient accumulation"
                    )
            if model_dtype == torch.float16:
                return FP16
            # else optimizer_wrapper = None
        elif model_dtype == torch.bfloat16 and grad_accum_dtype == torch.float32:
            return BFLOAT16
        else:
            raise NotImplementedError("unsupported mix of model dtype and gradient accumulation type")

        return None

    # Configure optimizer
    def _configure_optimizer(self, client_optimizer, model_parameters):
        if client_optimizer is None:
            if self.has_moe_layers:
                model_parameters = configure_moe_param_groups(model_parameters)
            basic_optimizer = self._configure_basic_optimizer(model_parameters)
            log_dist(f"Using DeepSpeed Optimizer param name {self.optimizer_name()} as basic optimizer", ranks=[0])
        else:
            if isinstance(client_optimizer, tuple(self._supported_optims())):
                basic_optimizer = client_optimizer
                log_dist('Using client Optimizer as basic optimizer', ranks=[0])
            else:
                basic_optimizer = client_optimizer(model_parameters)
                log_dist('Using client callable to create basic optimizer', ranks=[0])

            if self.zero_use_cpu_optimizer() and not isinstance(basic_optimizer, deepspeed.ops.adam.DeepSpeedCPUAdam):
                if self.zero_force_ds_cpu_optimizer():
                    msg = f'You are using ZeRO-Offload with a client provided optimizer ({type(basic_optimizer)}) which in most cases will yield poor performance. Please either use deepspeed.ops.adam.DeepSpeedCPUAdam or set an optimizer in your ds-config (https://www.deepspeed.ai/docs/config-json/#optimizer-parameters). If you really want to use a custom optimizer w. ZeRO-Offload and understand the performance impacts you can also set <"zero_force_ds_cpu_optimizer": false> in your configuration file.'
                    raise ZeRORuntimeException(msg)

        basic_optimizer.param_groups[:] = [pg for pg in basic_optimizer.param_groups if len(pg["params"]) != 0]
        log_dist("Removing param_group that has no 'params' in the basic Optimizer", ranks=[0])

        self._check_for_duplicates(basic_optimizer)

        self.basic_optimizer = basic_optimizer
        log_dist("DeepSpeed Basic Optimizer = {}".format(basic_optimizer.__class__.__name__), ranks=[0])

        optimizer_wrapper = self._do_optimizer_sanity_check(basic_optimizer)

        if optimizer_wrapper == ZERO_OPTIMIZATION:
            self.optimizer = self._configure_zero_optimizer(basic_optimizer)
        elif optimizer_wrapper == AMP:
            amp_params = self.amp_params()
            log_dist(f"Initializing AMP with these params: {amp_params}", ranks=[0])
            model, self.optimizer = amp.initialize(self.module, basic_optimizer, **amp_params)
            self._set_client_model(model)
            self._broadcast_model()
            # TODO: maybe need to broadcast experts differently?
        elif optimizer_wrapper == FP16:
            self.optimizer = self._configure_fp16_optimizer(basic_optimizer)
        elif optimizer_wrapper == BFLOAT16:
            self.optimizer = self._configure_bf16_optimizer(basic_optimizer)
        else:
            self.optimizer = basic_optimizer

        log_dist("DeepSpeed Final Optimizer = {}".format(self.optimizer_name()), ranks=[0])

        self.compression_scheduler = self._configure_compression_scheduler()
        self.quantizer = self._configure_quantization()

    def _configure_basic_optimizer(self, model_parameters):
        optimizer_parameters = self.optimizer_params()
        if optimizer_parameters is None:
            optimizer_parameters = {}
        # print(optimizer_parameters.keys())
        if "max_grad_norm" in optimizer_parameters.keys():
            raise ValueError(
                "'max_grad_norm' is not supported as an optimizer parameter, please switch to using the deepspeed parameter 'gradient_clipping' see: https://www.deepspeed.ai/docs/config-json/#gradient-clipping for more details"
            )

        if self.optimizer_name() in [ADAM_OPTIMIZER, ADAMW_OPTIMIZER]:
            torch_adam = optimizer_parameters.pop(TORCH_ADAM_PARAM, False)
            adam_w_mode = optimizer_parameters.pop(ADAM_W_MODE, ADAM_W_MODE_DEFAULT)

            # Optimizer name of Adam forces AdamW logic unless adam_w_mode is explicitly set
            effective_adam_w_mode = self.optimizer_name() == ADAMW_OPTIMIZER or adam_w_mode

            if torch_adam:
                if not effective_adam_w_mode:
                    optimizer = torch.optim.Adam(model_parameters, **optimizer_parameters)
                else:
                    optimizer = torch.optim.AdamW(model_parameters, **optimizer_parameters)
            else:
                if self.zero_use_cpu_optimizer():
                    from deepspeed.ops.adam import DeepSpeedCPUAdam
                    optimizer = DeepSpeedCPUAdam(model_parameters,
                                                 **optimizer_parameters,
                                                 adamw_mode=effective_adam_w_mode)
                else:
                    from deepspeed.ops.adam import FusedAdam

                    optimizer = FusedAdam(
                        model_parameters,
                        **optimizer_parameters,
                        adam_w_mode=effective_adam_w_mode,
                    )

        elif self.optimizer_name() == ADAGRAD_OPTIMIZER:
            if self.zero_use_cpu_optimizer():
                from deepspeed.ops.adagrad import DeepSpeedCPUAdagrad
                optimizer = DeepSpeedCPUAdagrad(model_parameters, **optimizer_parameters)
            else:
                optimizer = torch.optim.Adagrad(model_parameters, **optimizer_parameters)
        elif self.optimizer_name() == LAMB_OPTIMIZER:
            from deepspeed.ops.lamb import FusedLamb

            optimizer = FusedLamb(model_parameters, **optimizer_parameters)
        elif self.optimizer_name() == ONEBIT_ADAM_OPTIMIZER:
            assert not self.zero_optimization(), "1bit-Adam is not compatible with ZeRO"
            from deepspeed.runtime.fp16.onebit.adam import OnebitAdam

            optimizer = OnebitAdam(model_parameters, self, **optimizer_parameters)
            if not self.fp16_enabled():
                logger.warning(f"Currently the convergence of 1-bit Adam is only verified under FP16")
        elif self.optimizer_name() == ZERO_ONE_ADAM_OPTIMIZER:
            assert not self.zero_optimization(), "0/1 Adam is not compatible with ZeRO"
            from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam

            optimizer = ZeroOneAdam(model_parameters, self, **optimizer_parameters)
            if not self.fp16_enabled():
                logger.warning(f'Currently the convergence of 0/1 Adam is only verified under FP16')
        elif self.optimizer_name() == ONEBIT_LAMB_OPTIMIZER:
            assert not self.zero_optimization(), "1bit-Lamb is not compatible with ZeRO"
            from deepspeed.runtime.fp16.onebit.lamb import OnebitLamb

            optimizer = OnebitLamb(model_parameters, self, **optimizer_parameters)
            if not self.fp16_enabled():
                logger.warning(f"Currently the convergence of 1-bit Lamb is only verified under FP16")
        elif self.optimizer_name() == LION_OPTIMIZER:
            if self.zero_use_cpu_optimizer():
                from deepspeed.ops.lion import DeepSpeedCPULion
                optimizer = DeepSpeedCPULion(model_parameters, **optimizer_parameters)
            else:
                from deepspeed.ops.lion import FusedLion
                optimizer = FusedLion(model_parameters, **optimizer_parameters)
        elif self.optimizer_name() == MUADAM_OPTIMIZER:
            try:
                from mup import MuAdam
            except ImportError:
                logger.error(f"Install mup to use MuAdam optimizer")
            optimizer = MuAdam(model_parameters, **optimizer_parameters)
        elif self.optimizer_name() == MUADAMW_OPTIMIZER:
            try:
                from mup import MuAdamW
            except ImportError:
                logger.error(f"Install mup to use MuAdamW optimizer")
            optimizer = MuAdamW(model_parameters, **optimizer_parameters)
        elif self.optimizer_name() == MUSGD_OPTIMIZER:
            try:
                from mup import MuSGD
            except ImportError:
                logger.error(f"Install mup to use MuSGD optimizer")
            optimizer = MuSGD(model_parameters, **optimizer_parameters)
        else:
            torch_optimizer = getattr(torch.optim, self.optimizer_name())
            optimizer = torch_optimizer(model_parameters, **optimizer_parameters)
        return optimizer

    def _configure_compression_scheduler(self):
        return compression_scheduler(self.module, self._config.compression_config)

    def _configure_random_ltd_scheduler(self, configs):
        return RandomLTDScheduler(configs)

    def _configure_quantization(self):
        (
            quantize_weight_in_forward,
            quantize_enabled,
            q_groups,
            q_mixed_fp16,
            q_change_ratio,
            q_type,
            q_rounding,
            q_verbose,
            use_quantizer_kernel,
        ) = self.quantize_training()
        if quantize_enabled and not quantize_weight_in_forward:
            assert self.fp16_enabled(
            ), "MoQ (quantize in optimization step) weight quantization is only supported for FP16"
        quantizer = None
        if quantize_enabled and not quantize_weight_in_forward:
            from deepspeed.runtime.quantize import Quantizer

            quantizer = Quantizer(
                q_groups,
                q_mixed_fp16,
                q_change_ratio,
                q_type,
                q_rounding,
                q_verbose,
                self.eigenvalue_enabled(),
                use_quantizer_kernel,
                self.eigenvalue_layer_num() if self.eigenvalue_enabled() else 0,
            )
        return quantizer

    def _configure_fp16_optimizer(self, optimizer):
        initial_dynamic_scale = self.initial_dynamic_scale()
        dynamic_loss_args = self.dynamic_loss_scale_args()
        clip_grad = self.gradient_clipping()
        if APEX_INSTALLED:
            fused_opts = (apex.optimizers.FusedAdam, FusedAdam)
        else:
            fused_opts = FusedAdam
        if isinstance(optimizer, fused_opts) \
                or self.optimizer_name() in [ONEBIT_ADAM_OPTIMIZER, ZERO_ONE_ADAM_OPTIMIZER]:
            if self.dynamic_loss_scale():
                log_dist(f'Creating fp16 optimizer with dynamic loss scale', ranks=[0])
                timers = self.timers if self.wall_clock_breakdown() else NoopTimer()
                optimizer = FP16_Optimizer(
                    optimizer,
                    deepspeed=self,
                    dynamic_loss_scale=True,
                    initial_dynamic_scale=initial_dynamic_scale,
                    dynamic_loss_args=dynamic_loss_args,
                    mpu=self.mpu,
                    clip_grad=clip_grad,
                    fused_adam_legacy=self.optimizer_legacy_fusion(),
                    timers=timers,
                    has_moe_layers=self.has_moe_layers,
                )
            else:
                log_dist(f'Creating fp16 optimizer with static loss scale: {self.loss_scale()}', ranks=[0])
                optimizer = FP16_Optimizer(
                    optimizer,
                    deepspeed=self,
                    static_loss_scale=self.loss_scale(),
                    mpu=self.mpu,
                    clip_grad=clip_grad,
                    fused_adam_legacy=self.optimizer_legacy_fusion(),
                    has_moe_layers=self.has_moe_layers,
                )
        else:
            log_dist(f'Creating fp16 unfused optimizer with dynamic loss scale', ranks=[0])
            optimizer = FP16_UnfusedOptimizer(
                optimizer,
                deepspeed=self,
                static_loss_scale=self.loss_scale(),
                dynamic_loss_scale=self.dynamic_loss_scale(),
                dynamic_loss_args=dynamic_loss_args,
                mpu=self.mpu,
                clip_grad=clip_grad,
                fused_lamb_legacy=self.optimizer_name() == LAMB_OPTIMIZER,
            )

        return optimizer

    def _configure_bf16_optimizer(self, optimizer):
        clip_grad = self.gradient_clipping()

        if optimizer is None:
            optimizer = DummyOptim(list(self.module.parameters()))

        log_dist('Creating BF16 optimizer', ranks=[0])

        timers = self.timers if self.wall_clock_breakdown() else NoopTimer()
        optimizer = BF16_Optimizer(optimizer,
                                   self.param_names,
                                   mpu=self.mpu,
                                   clip_grad=clip_grad,
                                   allgather_bucket_size=self.zero_allgather_bucket_size(),
                                   dp_process_group=self.seq_data_parallel_group,
                                   timers=timers,
                                   grad_acc_dtype=self.get_data_types()[1],
                                   graph_harvesting=self.graph_harvesting(),
                                   immediate_grad_update=self._config.bfloat16_immediate_grad_update,
                                   has_moe_layers=self.has_moe_layers)

        return optimizer

    def _configure_zero_optimizer(self, optimizer):
        zero_stage = self.zero_optimization_stage()

        mics_shard_size = self.mics_shard_size()
        model_dtype, gradient_accumulation_dtype = self.get_data_types()

        timers = self.timers if self.wall_clock_breakdown() else NoopTimer()

        if optimizer is None:
            optimizer = DummyOptim(list(self.module.parameters()))

        if self.zero_legacy_stage1():
            raise Exception(
                "The deprecated version of ZeRO Stage 1 is not supported in deepspeed >= 0.5.9. Please downgrade to a version less than 0.5.9 if you need to use this deprecated version of ZeRO."
            )

        if zero_stage <= ZeroStageEnum.gradients:
            overlap_comm = self.zero_overlap_comm()
            contiguous_gradients = self.zero_contiguous_gradients()
            round_robin_gradients = self.zero_round_robin_gradients()
            assert not isinstance(optimizer, DummyOptim), "zero stage {} requires an optimizer".format(zero_stage)

            log_dist(f'Creating {model_dtype} ZeRO stage {zero_stage} optimizer', ranks=[0])

            if isinstance(self.module, PipelineModule):
                if overlap_comm:
                    logger.warning("Pipeline parallelism does not support overlapped communication, will be disabled.")
                    overlap_comm = False
            optimizer = DeepSpeedZeroOptimizer(
                optimizer,
                self.param_names,
                timers=timers,
                static_loss_scale=self.loss_scale(),
                dynamic_loss_scale=self.dynamic_loss_scale(),
                dynamic_loss_args=self.dynamic_loss_scale_args(),
                clip_grad=self.gradient_clipping(),
                contiguous_gradients=contiguous_gradients,
                reduce_bucket_size=self.zero_reduce_bucket_size(),
                use_multi_rank_bucket_allreduce=self.zero_multi_rank_bucket_allreduce(),
                allgather_bucket_size=self.zero_allgather_bucket_size(),
                dp_process_group=self.seq_data_parallel_group,
                expert_parallel_group=self.expert_parallel_group if self.has_moe_layers else None,
                expert_data_parallel_group=self.expert_data_parallel_group if self.has_moe_layers else None,
                reduce_scatter=self.zero_reduce_scatter(),
                overlap_comm=overlap_comm,
                offload_optimizer_config=self.zero_offload_optimizer(),
                mpu=self.mpu,
                postscale_gradients=self.postscale_gradients(),
                gradient_predivide_factor=self.gradient_predivide_factor(),
                gradient_accumulation_steps=self.gradient_accumulation_steps(),
                ignore_unused_parameters=self.zero_ignore_unused_parameters(),
                partition_grads=zero_stage == ZeroStageEnum.gradients,
                round_robin_gradients=round_robin_gradients,
                has_moe_layers=self.has_moe_layers,
                fp16_master_weights_and_gradients=self.fp16_master_weights_and_gradients(),
                gradient_accumulation_dtype=gradient_accumulation_dtype,
                communication_data_type=self.communication_data_type,
                elastic_checkpoint=self.zero_elastic_checkpoint())

        elif zero_stage == ZeroStageEnum.weights:
            assert not self.has_moe_layers, "MoE not supported with Stage 3"
            if isinstance(optimizer, DummyOptim):
                log_dist("Creating ZeRO Offload", ranks=[0])
                zero_param_parallel_group = groups._get_zero_param_intra_parallel_group()
                if self.zero_hpz_partition_size() > 1 and zero_param_parallel_group is None:
                    self._set_zero_group_parallelism()
                    zero_param_parallel_group = groups._get_zero_param_intra_parallel_group()
                optimizer = DeepSpeedZeRoOffload(
                    self.module,
                    timers=timers,
                    ds_config=self.config,
                    overlap_comm=self.zero_overlap_comm(),
                    prefetch_bucket_size=self.zero_prefetch_bucket_size(),
                    max_reuse_distance=self.zero_max_reuse_distance(),
                    max_live_parameters=self.zero_max_live_parameters(),
                    param_persistence_threshold=self.zero_param_persistence_threshold(),
                    model_persistence_threshold=self.zero_model_persistence_threshold(),
                    offload_param_config=self.zero_offload_param(),
                    mpu=self.mpu,
                    zero_param_parallel_group=zero_param_parallel_group,
                    zero_quantized_weights=self.zero_quantized_weights(),
                    zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights(),
                )
            else:
                log_dist(
                    f'Creating fp16 ZeRO stage {zero_stage} optimizer,'
                    f' MiCS is enabled {mics_shard_size>0},'
                    f' Hierarchical params gather {self._config.mics_hierarchial_params_gather}',
                    ranks=[0])
                if mics_shard_size > 0:
                    return self._return_mics_optimizer(optimizer, timers)

                log_dist(f'Creating {model_dtype} ZeRO stage {zero_stage} optimizer', ranks=[0])
                from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
                optimizer = DeepSpeedZeroOptimizer_Stage3(
                    self.module,
                    optimizer,
                    timers=timers,
                    ds_config=self.config,
                    static_loss_scale=self.loss_scale(),
                    dynamic_loss_scale=self.dynamic_loss_scale(),
                    dynamic_loss_args=self.dynamic_loss_scale_args(),
                    clip_grad=self.gradient_clipping(),
                    contiguous_gradients=self.zero_contiguous_gradients(),
                    reduce_bucket_size=self.zero_reduce_bucket_size(),
                    prefetch_bucket_size=self.zero_prefetch_bucket_size(),
                    max_reuse_distance=self.zero_max_reuse_distance(),
                    max_live_parameters=self.zero_max_live_parameters(),
                    param_persistence_threshold=self.zero_param_persistence_threshold(),
                    model_persistence_threshold=self.zero_model_persistence_threshold(),
                    dp_process_group=self.seq_data_parallel_group,
                    all2all_process_group=self.local_all_to_all_group,
                    reduce_scatter=self.zero_reduce_scatter(),
                    overlap_comm=self.zero_overlap_comm(),
                    offload_optimizer_config=self.zero_offload_optimizer(),
                    offload_param_config=self.zero_offload_param(),
                    sub_group_size=self.zero_sub_group_size(),
                    offload_ratio=self.zero_partial_offload(),
                    mpu=self.mpu,
                    postscale_gradients=self.postscale_gradients(),
                    gradient_predivide_factor=self.gradient_predivide_factor(),
                    gradient_accumulation_steps=self.gradient_accumulation_steps(),
                    aio_config=self.aio_config(),
                    gradient_accumulation_dtype=gradient_accumulation_dtype,
                    communication_data_type=self.communication_data_type,
                    zero_hpz_partition_size=self.zero_hpz_partition_size(),
                    zero_quantized_weights=self.zero_quantized_weights(),
                    zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights(),
                )

        else:
            raise NotImplementedError("ZeRO stage {} not implemented".format(zero_stage))

        return optimizer

    def _return_mics_optimizer(self, basic_optimizer, timers):
        from deepspeed.runtime.zero.mics import MiCS_Optimizer
        model_dtype, gradient_accumulation_dtype = self.get_data_types()
        optimizer = MiCS_Optimizer(self.module,
                                   basic_optimizer,
                                   timers=timers,
                                   ds_config=self.config,
                                   static_loss_scale=self.loss_scale(),
                                   dynamic_loss_scale=self.dynamic_loss_scale(),
                                   dynamic_loss_args=self.dynamic_loss_scale_args(),
                                   clip_grad=self.gradient_clipping(),
                                   contiguous_gradients=self.zero_contiguous_gradients(),
                                   reduce_bucket_size=self.zero_reduce_bucket_size(),
                                   prefetch_bucket_size=self.zero_prefetch_bucket_size(),
                                   max_reuse_distance=self.zero_max_reuse_distance(),
                                   max_live_parameters=self.zero_max_live_parameters(),
                                   param_persistence_threshold=self.zero_param_persistence_threshold(),
                                   model_persistence_threshold=self.zero_model_persistence_threshold(),
                                   dp_process_group=self.seq_data_parallel_group,
                                   reduce_scatter=self.zero_reduce_scatter(),
                                   overlap_comm=self.zero_overlap_comm(),
                                   offload_optimizer_config=self.zero_offload_optimizer(),
                                   offload_param_config=self.zero_offload_param(),
                                   sub_group_size=self.zero_sub_group_size(),
                                   mpu=self.mpu,
                                   postscale_gradients=self.postscale_gradients(),
                                   gradient_predivide_factor=self.gradient_predivide_factor(),
                                   gradient_accumulation_steps=self.gradient_accumulation_steps(),
                                   aio_config=self.aio_config(),
                                   gradient_accumulation_dtype=gradient_accumulation_dtype,
                                   communication_data_type=self.communication_data_type)
        return optimizer

    def _configure_eigenvalue(self):
        eigenvalue = Eigenvalue(
            verbose=self.eigenvalue_verbose(),
            max_iter=self.eigenvalue_max_iter(),
            tol=self.eigenvalue_tol(),
            stability=self.eigenvalue_stability(),
            gas_boundary_resolution=self.eigenvalue_gas_boundary_resolution(),
            layer_name=self.eigenvalue_layer_name(),
            layer_num=self.eigenvalue_layer_num(),
        )

        return eigenvalue

    def _configure_progressive_layer_drop(self):
        pld = ProgressiveLayerDrop(theta=self.pld_theta(), gamma=self.pld_gamma())

        return pld

    def _configure_curriculum_scheduler_legacy(self):
        scheduler = CurriculumScheduler(self.curriculum_params_legacy())
        return scheduler

    @staticmethod
    def is_map_style_dataset(obj):
        return hasattr(obj, "__getitem__") and hasattr(obj, "__len__")

    @staticmethod
    def is_iterable_style_dataset(obj):
        return isinstance(obj, torch.utils.data.IterableDataset)  # hasattr(obj, "__iter__") should work as well

    def dataloader_drop_last(self):
        return self._config.dataloader_drop_last

    def was_step_applied(self) -> bool:
        """Returns True if the latest ``step()`` produced in parameter updates.
        Note that a ``False`` return is not an error condition. Steps are frequently
        no-ops, such as between gradient accumulation boundaries or when overflows
        occur.
        Returns:
            bool: Whether the latest ``step()`` modified model parameters.
        """
        return self._step_applied

    def deepspeed_io(self,
                     dataset,
                     batch_size=None,
                     route=ROUTE_TRAIN,
                     pin_memory=True,
                     data_sampler=None,
                     collate_fn=None,
                     num_local_io_workers=None):
        if not (self.is_map_style_dataset(dataset) or self.is_iterable_style_dataset(dataset)):
            raise ValueError("Training data must be a torch Dataset")

        if batch_size is None:
            batch_size = self.train_micro_batch_size_per_gpu()

        if collate_fn is None:
            collate_fn = self.collate_fn

        # Currently we only use timer in train route
        deepspeed_io_timer = None
        if route == ROUTE_TRAIN:
            deepspeed_io_timer = self.tput_timer

        # If mpu is provided, forward world size and parallel rank to sampler.
        data_parallel_world_size = self.dp_world_size
        data_parallel_rank = self.global_rank
        if self.mpu is not None:
            data_parallel_world_size = self.mpu.get_data_parallel_world_size()
            data_parallel_rank = self.mpu.get_data_parallel_rank()

        if data_sampler is None and (route == ROUTE_PREDICT or route == ROUTE_EVAL):
            data_sampler = torch.utils.data.DistributedSampler(
                dataset,
                num_replicas=data_parallel_world_size,
                rank=data_parallel_rank,
                shuffle=False,
            )

        deepspeed_dataloader_config = {}
        if self.curriculum_learning_enabled():
            deepspeed_dataloader_config = {
                CURRICULUM_LEARNING: self.curriculum_learning_enabled(),
                DATA_EFFICIENCY: self.data_efficiency_config(),
                DATA_PARALLEL_GROUP: self.data_parallel_group,
                GRADIENT_ACCUMULATION_STEPS: self.gradient_accumulation_steps(),
                GLOBAL_RANK: self.global_rank,
                DATA_SAMPLING_NUM_WORKERS: self.data_sampling_config()[DATA_SAMPLING_NUM_WORKERS]
            }

        return DeepSpeedDataLoader(dataset=dataset,
                                   batch_size=batch_size,
                                   pin_memory=pin_memory,
                                   collate_fn=collate_fn,
                                   local_rank=self.local_rank,
                                   tput_timer=deepspeed_io_timer,
                                   num_local_io_workers=num_local_io_workers,
                                   data_sampler=data_sampler,
                                   data_parallel_world_size=data_parallel_world_size,
                                   data_parallel_rank=data_parallel_rank,
                                   dataloader_drop_last=self.dataloader_drop_last(),
                                   deepspeed_dataloader_config=deepspeed_dataloader_config)

    def train(self, mode=True):
        r""""""

        self.warn_unscaled_loss = True
        self.module.train(mode)

    def eval(self):
        r""""""

        self.warn_unscaled_loss = True
        self.module.train(False)

    def _scale_loss_by_gas(self, prescaled_loss, eval_micro_batches=None):
        # In pipeline evaluation, there is an option to use different micro-bs, which creates different number of
        # micro batches, thus the training gas, is not valid in this case. need to use the number of eval_micro_batches
        scaling_factor = self.gradient_accumulation_steps() if eval_micro_batches is None else eval_micro_batches
        if isinstance(prescaled_loss, torch.Tensor):
            scaled_loss = prescaled_loss / scaling_factor
        elif isinstance(prescaled_loss, tuple) or isinstance(prescaled_loss, list):
            scaled_loss = []
            for l in prescaled_loss:
                if isinstance(l, torch.Tensor):
                    scaled_loss.append(l / scaling_factor)
                else:
                    scaled_loss.append(l)
        else:
            scaled_loss = prescaled_loss
            if self.warn_unscaled_loss:
                logger.warning(f"DeepSpeed unable to scale loss because of type: {type(prescaled_loss)}")
                self.warn_unscaled_loss = False

        return scaled_loss

    @instrument_w_nvtx
    def forward(self, *inputs, **kwargs):
        r"""Execute forward propagation
        Arguments:
            *inputs: Variable length input list
            **kwargs: variable length keyword arguments
        """

        if self.autotuning_profile_model_info():
            ma = get_ma_status()
        else:
            see_memory_usage("Engine before forward", force=self.memory_breakdown())

        flops_profiler_active = (self.flops_profiler_enabled()
                                 and self.global_steps == self.flops_profiler_profile_step() and self.global_rank == 0)

        # used to check quantization happens at step 0!
        if self.global_steps == 0 and hasattr(self, "compression_scheduler"):
            self.compression_scheduler.step(step_zero_check=True)
            if self.quantizer:
                tensor_to_quantize = self.optimizer.bit16_groups if self.zero_optimization_stage(
                ) == 2 else self.optimizer.fp16_groups
                if self.compression_scheduler.weight_quantization_enabled:
                    self.quantizer.quantize(
                        tensor_to_quantize,
                        (self.optimizer.overflow if self.fp16_enabled() else False),
                        self.eigenvalue_enabled(),
                        None,
                    )

        if flops_profiler_active:
            self.flops_profiler.start_profile(ignore_list=None)

        if self.module.training:
            if self.progressive_layer_drop:
                kwargs.update(self.progressive_layer_drop.get_state())

        if self.__class__.__name__ != "PipelineEngine":
            # TODO: The above if condition is a HACK since for PipelineEngine
            # it's difficult to inject argument in forward pass.
            if self.module.training and self.curriculum_enabled_legacy():
                self.curriculum_scheduler_legacy.update_difficulty(self.global_steps + 1)
                if self.curriculum_params_legacy()["curriculum_type"] == "seqlen":
                    kwargs.update({"curriculum_seqlen": self.curriculum_scheduler_legacy.get_current_difficulty()})

        if self.module.training and self.random_ltd_enabled():
            self.random_ltd_scheduler.update_seq(self.global_steps)

        if self.zero_optimization_partition_weights():
            # Enable automated discovery of external parameters by indicating that
            # we are in a forward pass.
            for module in self.module.modules():
                module._parameters._in_forward = True

        self._start_timers(self.engine_timers.forward_timers)

        if self.training_dataloader is None:
            self.tput_timer.start()

        if self.fp16_auto_cast():
            inputs = self._cast_inputs_half(inputs)

        loss = self.module(*inputs, **kwargs)

        if self.zero_optimization_partition_weights():
            # Disable automated discovery of external parameters
            for module in self.module.modules():
                module._parameters._in_forward = False

        self._stop_timers(self.engine_timers.forward_timers)

        if flops_profiler_active:
            self.flops_profiler.stop_profile()

        if self.autotuning_profile_model_info():
            activation_mem = get_ma_status() - ma
            self.autotuning_model_info["activation_mem_per_gpu"] = activation_mem
            print_json_dist(self.autotuning_model_info, [0], path=self.autotuning_model_info_path())
            exit()
        else:
            see_memory_usage("Engine after forward", force=self.memory_breakdown())
        return loss

    def _cast_inputs_half(self, inputs):
        if isinstance(inputs, (list, tuple)):
            new_inputs = []
            for v in inputs:
                new_inputs.append(self._cast_inputs_half(v))
            return inputs.__class__(new_inputs)
        elif isinstance(inputs, dict):
            new_inputs = {}
            for k, v in inputs.items():
                new_inputs[k] = self._cast_inputs_half(v)
            return new_inputs
        elif hasattr(inputs, 'half'):
            return inputs.half()
        else:
            return inputs

    def print_forward_breakdown(self, fwd_time):
        gate_time = 0.0
        moe_time = 0.0
        falltoall = 0.0
        salltoall = 0.0

        for gate in self.gate_modules:
            #logger.info(f"Individual TopK gate time: {gate.gate_time:.2f} ms")
            gate_time += gate.gate_time

        for l in self.moe_layers:
            #logger.info(f"MoE layer; total: {l.time_moe:.2f} ms, first alltoall: {l.time_falltoall:.2f}, second alltoall: {l.time_salltoall:.2f}")
            moe_time += l.time_moe
            falltoall += l.time_falltoall
            salltoall += l.time_salltoall

        # TODO: Allreduce/average them across ranks for more accurate timing.

        # if deepspeed.comm.get_rank() == 0:
        log_dist(
            f"time (ms) | fwd: {fwd_time:.2f} (fwd_moe: {moe_time:.2f}, 1st_a2a: {falltoall:.2f}, 2nd_a2a: {salltoall:.2f}, top_k: {gate_time:.2f})",
            ranks=[0])

    @instrument_w_nvtx
    def allreduce_gradients(self, bucket_size=MEMORY_OPT_ALLREDUCE_SIZE):
        # Pass (PP) gas boundary flag to optimizer (required for zero)
        self.optimizer.is_gradient_accumulation_boundary = self.is_gradient_accumulation_boundary()
        # ZeRO stage >= 2 communicates during non gradient accumulation boundaries as well
        if self.zero_optimization_partition_gradients():
            self.optimizer.overlapping_partition_gradients_reduce_epilogue()

        # Communicate only at gradient accumulation boundaries
        elif self.is_gradient_accumulation_boundary():
            if self.zero_optimization_stage() == ZeroStageEnum.optimizer_states and hasattr(
                    self.optimizer, 'reduce_gradients'):
                self.optimizer.reduce_gradients(pipeline_parallel=self.pipeline_parallelism)
            else:
                grads = None
                self.buffered_allreduce_fallback(grads=grads, elements_per_buffer=bucket_size)

    @instrument_w_nvtx
    def backward(self, loss, allreduce_gradients=True, release_loss=False, retain_graph=False, scale_wrt_gas=True):
        r"""Execute backward pass on the loss
        Arguments:
            loss: Torch tensor on which to execute backward propagation
            allreduce_gradients: is deprecated, ignored, and will soon be removed'
            retain_graph: bool, default: false
                forward on user defined choice of retain_graph
        """

        see_memory_usage("Engine before backward", force=self.memory_breakdown())

        if self.scale_wrt_gas is not None:
            scale_wrt_gas = self.scale_wrt_gas

        if not allreduce_gradients:
            logger.warning(f"Argument `allreduce_gradients` is deprecated, ignored, and will soon be removed")

        # scale loss w.r.t. gradient accumulation if needed
        if self.gradient_accumulation_steps() > 1 and scale_wrt_gas:
            loss = self._scale_loss_by_gas(loss.float())

        # Log training loss
        mean_loss = loss.mean().detach()
        self.losses = mean_loss if self.losses is None else self.losses + mean_loss
        if self.monitor.enabled:
            if self.is_gradient_accumulation_boundary():
                if self.global_rank == 0:
                    self.summary_events = [(
                        f"Train/Samples/train_loss",
                        self.losses.item(),
                        self.global_samples,
                    )]
                    self.monitor.write_events(self.summary_events)

        self._start_timers(self.engine_timers.backward_timers)

        assert self.optimizer is not None and not isinstance(self.optimizer, DummyOptim), \
            "must provide optimizer during init in order to use backward"

        self._start_timers(self.engine_timers.backward_inner_timers)

        if self.zero_optimization():
            self.optimizer.is_gradient_accumulation_boundary = self.is_gradient_accumulation_boundary()
            self.optimizer.backward(loss, retain_graph=retain_graph)
        elif self.amp_enabled():
            # AMP requires delaying unscale when inside gradient accumulation boundaries
            # https://nvidia.github.io/apex/advanced.html#gradient-accumulation-across-iterations
            delay_unscale = not self.is_gradient_accumulation_boundary()
            with amp.scale_loss(loss, self.optimizer, delay_unscale=delay_unscale) as scaled_loss:
                scaled_loss.backward(retain_graph=retain_graph)
        elif self.fp16_enabled():
            if self.eigenvalue_enabled():
                self.optimizer.backward(loss, create_graph=True, retain_graph=True)
            else:
                self.optimizer.backward(loss, retain_graph=retain_graph)
        elif self.bfloat16_enabled():
            self.optimizer.backward(loss)
        else:
            if self.eigenvalue_enabled():
                loss.backward(create_graph=True, retain_graph=True)
            else:
                loss.backward(retain_graph=retain_graph)

        self._stop_timers(self.engine_timers.backward_inner_timers)

        self._start_timers(self.engine_timers.backward_reduce_timers)

        if allreduce_gradients and self.enable_backward_allreduce:
            # Traditional code path that allreduces the module parameter grads
            self.allreduce_gradients()

        self._stop_timers(self.engine_timers.backward_reduce_timers)

        self._stop_timers(self.engine_timers.backward_timers)

        if release_loss:
            # loss.data = None
            pass

        see_memory_usage("Engine after backward", force=self.memory_breakdown())

        return loss

    def is_gradient_accumulation_boundary(self):
        """
        Query whether the current micro-batch is at the boundary of
        gradient accumulation, and thus will trigger gradient reductions and
        an optimizer step.

        Returns:
            bool: if the current step is a gradient accumulation boundary.

        """
        if self._is_gradient_accumulation_boundary is None:
            return (self.micro_steps + 1) % \
                self.gradient_accumulation_steps() == 0
        else:
            return self._is_gradient_accumulation_boundary

    def set_gradient_accumulation_boundary(self, is_boundary):
        """
        Manually overrides the DeepSpeed engine's gradient accumulation boundary state, this is an optional
        feature and should be used with care. The state should be set before to the intended
        value before each forward/backward. The final forward/backward should have the
        boundary state set to True. This style allows client code to only call engine.step() once after all
        the gradient accumulation passes are complete. See example below:
        .. code-block:: python
        engine.set_gradient_accumulation_boundary(False)
        for _ in range(gradient_accumulation_steps - 1):
            micro_batch = next(data_loader)
            loss = engine(micro_batch)
            engine.backward(loss)
        engine.set_gradient_accumulation_boundary(True)
        micro_batch = next(data_loader)
        loss = engine(micro_batch)
        engine.backward(loss)
        engine.step()
        Arguments:
            is_boundary (bool): are we at a gradient accumulation boundary or not?
        """
        self._is_gradient_accumulation_boundary = is_boundary
        self.optimizer.is_gradient_accumulation_boundary = is_boundary

    def zero_grad(self):
        """
        Zero parameter grads.
        """
        for param_name, param in self.module.named_parameters():
            param.grad = None

    def clip_fp32_gradients(self):
        clip_grad_norm_(parameters=self.module.parameters(), max_norm=self.gradient_clipping(), mpu=self.mpu)

    def _take_model_step(self, lr_kwargs, block_eigenvalue={}):
        if self.gradient_clipping() > 0.0:
            if not (self.fp16_enabled() or self.bfloat16_enabled() or self.amp_enabled() or self.zero_optimization()):
                self.clip_fp32_gradients()
            elif self.amp_enabled():
                # AMP's recommended way of doing clipping
                # https://nvidia.github.io/apex/advanced.html#gradient-clipping
                master_params = amp.master_params(self.optimizer)
                clip_grad_norm_(parameters=master_params, max_norm=self.gradient_clipping(), mpu=self.mpu)
        self.optimizer.step()

        if hasattr(self.optimizer, '_global_grad_norm'):
            self._global_grad_norm = self.optimizer._global_grad_norm

        # Quantize the updated parameter if there is no overflow
        if self.quantizer:
            tensor_to_quantize = self.optimizer.bit16_groups if self.zero_optimization_stage(
            ) == 2 else self.optimizer.fp16_groups
            if self.compression_scheduler.weight_quantization_enabled:
                self.quantizer.quantize(
                    tensor_to_quantize,
                    (self.optimizer.overflow if self.fp16_enabled() else False),
                    self.eigenvalue_enabled(),
                    block_eigenvalue,
                )
        # zero grad in basic optimizer could be unreliable and may not exhibit
        # the behavior that we want
        if self.bfloat16_enabled():
            # TODO: Temporary until bf16_optimizer and zero_optimizer are integrated
            if self.zero_optimization() and hasattr(self.optimizer, "zero_grad"):
                self.optimizer.zero_grad()
            else:
                pass
        elif self.zero_optimization() or self.fp16_enabled() or self.amp_enabled():
            self.optimizer.zero_grad()
        else:
            self.zero_grad()

        report_progress = self.global_rank == 0 if self.global_rank else True

        # Check overflow here since in DS fp16 optimizer, the overflow is updated in above step() function.
        overflow = False
        if hasattr(self.optimizer, "overflow"):
            overflow = self.optimizer.overflow
        self._step_applied = not overflow

        if overflow:
            self.skipped_steps += 1
        else:
            self.compression_scheduler.step()
            if self.lr_scheduler is not None:
                try:
                    self.lr_scheduler.step(**(lr_kwargs or {}))
                except TypeError:
                    # XXX Hack to work with Megatron 2.0 and DeepSpeed pipelines.
                    # We don't currently have a way to specify lr_kwargs from
                    # pipe_engine.train_batch()
                    self.lr_scheduler.step(self.train_batch_size())

        if report_progress and (self.global_steps + 1) % self.steps_per_print() == 0:
            self._report_progress(self.global_steps + 1)

        self.losses = None
        self.global_steps += 1
        self.global_samples += self.train_batch_size()

    def step(self, lr_kwargs=None):
        r"""Execute the weight update step after forward and backward propagation
        on effective_train_batch.
        """
        see_memory_usage("Engine before step", force=self.memory_breakdown())

        # Check early because self.global_steps is incremented at some point here.
        # TODO: Delay self.global_steps increment until very end of this function.
        flops_profiler_active = self.flops_profiler_enabled(
        ) and self.global_steps == self.flops_profiler_profile_step() and self.global_rank == 0

        self._start_timers(self.engine_timers.step_timers)

        assert self.optimizer is not None and not isinstance(self.optimizer, DummyOptim), \
            "must provide optimizer during init in order to use step"

        report_progress = False

        self._step_applied = False  # assume False, will flip to True

        # Update the model when we reach gradient accumulation boundaries
        if self.is_gradient_accumulation_boundary():
            self.gas_boundary_ctr += 1

            if (self.eigenvalue_enabled() and (self.gas_boundary_ctr % self.eigenvalue_gas_boundary_resolution() == 0)
                    and self.quantizer.any_precision_switch()):
                log_dist(f"computing eigenvalue...", ranks=[0])
                self.block_eigenvalue = self.eigenvalue.compute_eigenvalue(self.module, self.device,
                                                                           self.optimizer.cur_scale)

            if self.progressive_layer_drop:
                self.progressive_layer_drop.update_state(self.global_steps)

            if (self.eigenvalue_enabled() and not self.gas_boundary_ctr % self.eigenvalue_gas_boundary_resolution()
                    and self.quantizer.any_precision_switch()):
                self._take_model_step(lr_kwargs, self.block_eigenvalue)
            else:
                self._take_model_step(lr_kwargs)

            report_progress = self.global_rank == 0 if self.global_rank else True

        self.tput_timer.stop(global_step=self.is_gradient_accumulation_boundary(), report_speed=report_progress)

        self._stop_timers(self.engine_timers.step_timers)

        # Log learning rate
        if self.monitor.enabled:
            if self.is_gradient_accumulation_boundary():
                if self.global_rank == 0:
                    self.summary_events = [(f"Train/Samples/lr", self.get_lr()[0], self.global_samples)]

                    if self.fp16_enabled() and hasattr(self.optimizer, "cur_scale"):
                        self.summary_events.append((
                            f"Train/Samples/loss_scale",
                            self.optimizer.cur_scale,
                            self.global_samples,
                        ))

                    if (self.eigenvalue_enabled()
                            and not self.gas_boundary_ctr % self.eigenvalue_gas_boundary_resolution()):
                        ev_values = self.block_eigenvalue.values()
                        for i in range(len(ev_values)):
                            self.summary_events.append((
                                f"Train/Eigenvalues/ModelBlockParam_{i}",
                                self.ev_values[i][0],
                                self.global_samples,
                            ))
                    self.monitor.write_events(self.summary_events)

        # Check flops profiling
        if flops_profiler_active:
            if self.autotuning_enabled():
                self.flops = self.flops_profiler.get_total_flops() * 3
                self.fwd_duration = self.flops_profiler.get_total_duration()
            else:
                self.flops_profiler.print_model_profile(
                    profile_step=self.global_steps,
                    module_depth=self.flops_profiler_module_depth(),
                    top_modules=self.flops_profiler_top_modules(),
                    detailed=self.flops_profiler_detailed(),
                    output_file=self.flops_profiler_output_file(),
                )
            self.flops_profiler.end_profile()

        if self.autotuning_enabled() and self.global_steps == (self.autotuning_end_profile_step() + 1):
            self._autotuning_exit()

        if self.wall_clock_breakdown():
            # Log micro timing and reset
            self.timers.log(names=self.engine_timers.micro_timers, memory_breakdown=self.memory_breakdown())

        if self.wall_clock_breakdown() or self.flops_profiler_enabled():
            # Log global timing and reset
            if self.is_gradient_accumulation_boundary():
                if self.monitor.enabled:
                    self._write_monitor()

                if self.has_moe_layers:
                    fwd_time = self.timers(FORWARD_GLOBAL_TIMER).elapsed(reset=False)
                    self.print_forward_breakdown(fwd_time=fwd_time)

                self.timers.log(self.engine_timers.global_timers)

        self.micro_steps += 1
        see_memory_usage("Engine after step", force=self.memory_breakdown())

    def _start_timers(self, timer_names):
        for name in timer_names:
            self.timers(name).start()

    def _stop_timers(self, timer_names):
        record = self.is_gradient_accumulation_boundary() and \
            self.flops_profiler_enabled() and \
                (self.global_steps >= self.flops_profiler_profile_step())
        for name in timer_names:
            self.timers(name).stop(record=record)

    def _autotuning_exit(self):
        if self.global_rank == 0:
            msg = self.timers.get_mean([
                FORWARD_GLOBAL_TIMER,
                BACKWARD_GLOBAL_TIMER,
                STEP_GLOBAL_TIMER,
            ], reset=False)
            titer = 0.0
            titer += msg[FORWARD_GLOBAL_TIMER] if FORWARD_GLOBAL_TIMER in msg else 0
            titer += msg[BACKWARD_GLOBAL_TIMER] if BACKWARD_GLOBAL_TIMER in msg else 0
            titer += msg[STEP_GLOBAL_TIMER] if STEP_GLOBAL_TIMER in msg else 0
            titer *= self.gradient_accumulation_steps()
            msg["latency"] = titer
            msg["FLOPS_per_gpu"] = self.flops * 1_000_000 * self.gradient_accumulation_steps() / titer
            msg["throughput"] = self.train_batch_size() * 1_000_000 / \
                msg["latency"]
            print_json_dist(msg, [0], path=self.autotuning_metric_path())
            log_dist(
                f"Wrote metrics to {self.autotuning_metric_path()}, {os.path.abspath(self.autotuning_metric_path())}",
                ranks=[0])
            import atexit
            atexit.register(print, "Autotuning: done with running current ds config.")
        exit()

    def _write_monitor(self):
        if self.global_rank == 0:
            self.summary_events = [
                (
                    f"Train/Samples/elapsed_time_ms_forward",
                    self.timers(FORWARD_GLOBAL_TIMER).elapsed(reset=False),
                    self.global_samples,
                ),
                (
                    f"Train/Samples/elapsed_time_ms_backward",
                    self.timers(BACKWARD_GLOBAL_TIMER).elapsed(reset=False),
                    self.global_samples,
                ),
                (
                    f"Train/Samples/elapsed_time_ms_backward_inner",
                    self.timers(BACKWARD_INNER_GLOBAL_TIMER).elapsed(reset=False),
                    self.global_samples,
                ),
                (
                    f"Train/Samples/elapsed_time_ms_backward_allreduce",
                    self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).elapsed(reset=False),
                    self.global_samples,
                ),
                (
                    f"Train/Samples/elapsed_time_ms_step",
                    self.timers(STEP_GLOBAL_TIMER).elapsed(reset=False),
                    self.global_samples,
                ),
            ]
            self.monitor.write_events(self.summary_events)

    def _get_optimizer_param(self, param_name):
        result = []
        if not self.optimizer:
            return result
        for group in self.optimizer.param_groups:
            if param_name in group:
                result.append(group[param_name])
            else:
                result.append(0.0)
        return result

    def get_lr(self):
        return self._get_optimizer_param("lr")

    def get_type(self):
        return self._get_optimizer_param("type")

    def get_mom(self):
        if self.optimizer_name() in ["SGD", "RMSprop"]:
            return self._get_optimizer_param("momentum")
        else:
            return self._get_optimizer_param("betas")

    def get_pld_theta(self):
        if self.progressive_layer_drop:
            return self.progressive_layer_drop.get_theta()
        else:
            return None

    def _report_progress(self, step):
        lr = self.get_lr()
        mom = self.get_mom()
        log_dist(f"step={step}, skipped={self.skipped_steps}, lr={lr}, mom={mom}", ranks=[0])

    def allreduce_bucket(self, bucket, dp_group, dp_world_size=None):
        tensor = self.flatten(bucket)

        tensor_to_allreduce = tensor

        if self.communication_data_type != tensor.dtype:
            tensor_to_allreduce = tensor.to(self.communication_data_type)

        if dp_world_size is None:
            dp_world_size = dist.get_world_size(group=dp_group)
        if self.postscale_gradients():
            if self.gradient_predivide_factor() != 1.0:
                tensor_to_allreduce.mul_(1.0 / self.gradient_predivide_factor())

            dist.all_reduce(tensor_to_allreduce, group=dp_group)
            if self.gradient_average:
                if self.gradient_predivide_factor() != dp_world_size:
                    tensor_to_allreduce.mul_(self.gradient_predivide_factor() / dp_world_size)
        else:
            tensor_to_allreduce.mul_(1. / dp_world_size)
            dist.all_reduce(tensor_to_allreduce, group=dp_group)

        if self.communication_data_type != tensor.dtype and tensor is not tensor_to_allreduce:
            tensor.copy_(tensor_to_allreduce)

        return tensor

    def allreduce_and_copy(self, small_bucket, dp_group, dp_world_size=None):
        allreduced = self.allreduce_bucket(small_bucket, dp_group, dp_world_size)
        for buf, synced in zip(small_bucket, self.unflatten(allreduced, small_bucket)):
            buf.copy_(synced)

    def allreduce_no_retain(self, bucket, dp_group, numel_per_bucket=500000000, dp_world_size=None):
        small_bucket = []
        numel = 0
        for tensor in bucket:
            small_bucket.append(tensor)
            numel = numel + tensor.numel()
            if numel > numel_per_bucket:
                self.allreduce_and_copy(small_bucket, dp_group, dp_world_size)
                small_bucket = []
                numel = 0
        if len(small_bucket) > 0:
            self.allreduce_and_copy(small_bucket, dp_group, dp_world_size)

    def _get_gradients_for_reduction(self):
        non_expert_grads = []
        expert_grads = {}
        if self.has_moe_layers:
            for key in self.expert_data_parallel_group.keys():
                expert_grads[key] = []

        for param_name, param in self.module.named_parameters():
            if not param.requires_grad:
                continue

            if param.grad is None:
                # In cases where there is an imbalance of empty grads across
                # ranks we must create empty grads, this will ensure that every
                # rank is reducing the same size. In some cases it may make
                # sense in the future to support the ability to average not
                # w.r.t. world size but with a different value.
                param.grad = torch.zeros(param.size(), dtype=param.dtype, device=param.device)

            grad_data = param.grad.data
            if param_name in self.sparse_tensor_module_names or grad_data.is_sparse:
                # Call param.grad without data to avoid problem with setting of updated grads
                grad_data = SparseTensor(param.grad)

            if is_moe_param(param):
                expert_grads[param.group_name].append(grad_data)
            else:
                non_expert_grads.append(grad_data)

        return non_expert_grads, expert_grads

    def _reduce_non_expert_gradients(self, grads, elements_per_buffer):
        split_sparse_tensor_buckets, split_dense_tensor_buckets = split_half_float_double_sparse(grads)
        if self.pipeline_parallelism:
            dp_group = self.mpu.get_data_parallel_group()
        else:
            dp_group = groups._get_sequence_data_parallel_group()

        for _, sparse_bucket_tuple in enumerate(split_sparse_tensor_buckets):
            if sparse_bucket_tuple:
                bucket_type, sparse_bucket = sparse_bucket_tuple
                self.sparse_allreduce_no_retain(sparse_bucket, dp_group=dp_group)

        for _, dense_bucket_tuple in enumerate(split_dense_tensor_buckets):
            if dense_bucket_tuple:
                bucket_type, dense_bucket = dense_bucket_tuple
                self.allreduce_no_retain(dense_bucket, dp_group=dp_group, numel_per_bucket=elements_per_buffer)

    def _reduce_expert_gradients(self, expert_grads, elements_per_buffer):
        # to maintain the gradients value unaffected by ep_size setting,
        # utilize dp_world_size for allreduce average
        dp_world_size = dist.get_world_size(groups._get_data_parallel_group())
        for ep_name, expert_grads_group in expert_grads.items():
            ep_dp_group = groups._get_expert_data_parallel_group(ep_name)
            split_sparse_tensor_buckets, split_dense_tensor_buckets = split_half_float_double_sparse(
                expert_grads_group)

            for _, sparse_bucket_tuple in enumerate(split_sparse_tensor_buckets):
                if sparse_bucket_tuple:
                    bucket_type, sparse_bucket = sparse_bucket_tuple
                    self.sparse_allreduce_no_retain(sparse_bucket, dp_group=ep_dp_group, dp_world_size=dp_world_size)

            for _, dense_bucket_tuple in enumerate(split_dense_tensor_buckets):
                if dense_bucket_tuple:
                    bucket_type, dense_bucket = dense_bucket_tuple
                    # Separate between diff groups
                    self.allreduce_no_retain(dense_bucket,
                                             dp_group=ep_dp_group,
                                             numel_per_bucket=elements_per_buffer,
                                             dp_world_size=dp_world_size)

    def buffered_allreduce_fallback(self, grads=None, elements_per_buffer=500000000):
        if grads is None:
            if hasattr(self.optimizer, "get_grads_for_reduction"):
                # This is currently for BF16 optimizer
                non_expert_grads, expert_grads = self.optimizer.get_grads_for_reduction()
            else:
                non_expert_grads, expert_grads = self._get_gradients_for_reduction()
        else:
            assert not self.has_moe_layers, "attempting to reduce grads in unsupported way w.r.t. MoE"
            non_expert_grads = grads

        self._reduce_non_expert_gradients(non_expert_grads, elements_per_buffer)

        if self.has_moe_layers:
            self._reduce_expert_gradients(expert_grads, elements_per_buffer)

    def sparse_allreduce_no_retain(self, bucket, dp_group, dp_world_size=None):
        allreduced_sparses = self.sparse_allreduce_bucket(bucket, dp_group, dp_world_size)
        # Densify sparse tensor and copy back to original location
        for tensor in allreduced_sparses:
            if tensor.is_sparse:
                tensor.orig_dense_tensor.data = tensor.to_coo_tensor()
            else:
                tensor.orig_dense_tensor.copy_(tensor.to_dense())

    def sparse_allreduce_bucket(self, bucket, dp_group, dp_world_size=None):
        sparse_list = []
        for sparse in bucket:
            sparse_list.append(self.sparse_allreduce(sparse, dp_group, dp_world_size))
        return sparse_list

    def sparse_allreduce(self, sparse, dp_group, dp_world_size=None):
        original_data_type = sparse.values.dtype
        if self.communication_data_type != sparse.values.dtype:
            if self.communication_data_type in (torch.float16, torch.bfloat16):
                indices = sparse.indices.to(torch.int32)
            else:
                indices = sparse.indices
            values = sparse.values.to(self.communication_data_type)
        else:
            indices = sparse.indices
            values = sparse.values

        if dp_world_size is None:
            dp_world_size = dist.get_world_size(group=dp_group)
        if self.postscale_gradients():
            if self.gradient_average:
                values.mul_(self.gradient_predivide_factor() / (dp_world_size / float(self.sequence_parallel_size)))
        else:
            values.mul_(1. / (dp_world_size / float(self.sequence_parallel_size)))

        indices_device_list = self.sparse_all_gather(indices, dp_group)
        values_device_list = self.sparse_all_gather(values, dp_group)

        sparse.indices = torch.cat(indices_device_list).to(torch.long)
        sparse.values = torch.cat(values_device_list).to(original_data_type)
        return sparse

    def sparse_all_gather(self, value, dp_group):
        my_size = torch.LongTensor([value.size()[0]]).to(self.device)
        all_sizes = self.all_gather_scalar(my_size, dp_group)
        max_size = torch.cat(all_sizes).max()
        fill_size = max_size - my_size

        assert value.dim() in [1, 2]
        if value.dim() == 1:
            if fill_size > 0:
                value = torch.cat([value, value.new_empty(fill_size)])
            tensor_list = [value.new_empty(max_size) for _ in range(dist.get_world_size(group=dp_group))]
        else:
            if fill_size > 0:
                value = torch.cat([value, value.new_empty(fill_size, value.size()[1])])
            tensor_list = [
                value.new_empty(max_size,
                                value.size()[1]) for _ in range(dist.get_world_size(group=dp_group))
            ]

        dist.all_gather(tensor_list, value, group=dp_group)
        tensors = []
        for dev_idx, t in enumerate(tensor_list):
            size = all_sizes[dev_idx][0]
            tensors.append(t.index_select(0, torch.arange(size, dtype=torch.long, device=self.device)))

        return tensors

    def all_gather_scalar(self, value, dp_group):
        tensor_list = [value.new_zeros(value.size()) for _ in range(dist.get_world_size(group=dp_group))]
        dist.all_gather(tensor_list, value, group=dp_group)
        return tensor_list

    def module_state_dict(self, destination=None, prefix="", keep_vars=False, exclude_frozen_parameters=False):
        sd = self.module.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)

        # Remove frozen parameter weights from state_dict if specified
        if exclude_frozen_parameters:
            for n, p in self.module.named_parameters():
                if not p.requires_grad and n in sd:
                    del sd[n]

        if self.random_ltd_enabled():
            sd = remove_random_ltd_state_dict(sd)
        return sd

    @staticmethod
    def load_moe_state_dict(checkpoint_path,
                            tag,
                            state_dict,
                            old_moe_load,
                            model=None,
                            mpu=None,
                            num_experts=1,
                            checkpoint_engine=TorchCheckpointEngine()):
        if old_moe_load:
            expp_rank = groups._get_expert_data_parallel_rank(groups._get_max_expert_size_name())

            num_local_experts = max(num_experts) // groups._get_expert_parallel_world_size(
                groups._get_max_expert_size_name())
            for local_expert_id in range(num_local_experts):
                global_expert_id = expp_rank * num_local_experts + local_expert_id
                expert_state_dict = checkpoint_engine.load(
                    DeepSpeedEngine._get_expert_ckpt_name(
                        checkpoint_path,
                        -1,  # -1 means ignore layer_id
                        global_expert_id,
                        tag,
                        mpu),
                    map_location=torch.device('cpu'))

                # Updating global -> local expert ids
                moe_str_prefix = '.deepspeed_moe.experts.deepspeed_experts.'
                for key in list(expert_state_dict.keys()):
                    local_key = key.replace(f'{moe_str_prefix}{global_expert_id}',
                                            f'{moe_str_prefix}{local_expert_id}')
                    expert_state_dict[local_key] = expert_state_dict.pop(key)
                state_dict.update(expert_state_dict)

        else:
            moe_layer_id = 0
            for n_module, module in model.named_modules():
                if isinstance(module, MoE):  # and deepspeed.comm.get_rank() == 0:
                    group_name = module.expert_group_name
                    num_local_experts = module.num_local_experts
                    expp_rank = groups._get_expert_parallel_rank(group_name)
                    # loop all local_experts
                    for local_expert_id in range(num_local_experts):
                        global_expert_id = expp_rank * num_local_experts + local_expert_id
                        expert_state_dict = checkpoint_engine.load(DeepSpeedEngine._get_expert_ckpt_name(
                            checkpoint_path, moe_layer_id, global_expert_id, tag, mpu),
                                                                   map_location=torch.device('cpu'))
                        # print(expert_state_dict.keys())
                        # Updating global -> local expert ids
                        moe_str_prefix = '.deepspeed_moe.experts.deepspeed_experts.'
                        for key in list(expert_state_dict.keys()):
                            local_key = key.replace(f'{moe_str_prefix}{global_expert_id}',
                                                    f'{moe_str_prefix}{local_expert_id}')
                            expert_state_dict[local_key] = expert_state_dict.pop(key)
                        state_dict.update(expert_state_dict)
                    moe_layer_id += 1

    def load_module_state_dict(self, checkpoint, strict=True, custom_load_fn=None, fetch_z3_params=False):
        if fetch_z3_params:
            params_to_fetch = [
                p for p in self.module.parameters()
                if hasattr(p, 'ds_id') and p.ds_status == ZeroParamStatus.NOT_AVAILABLE
            ]
        else:
            params_to_fetch = []

        with deepspeed.zero.GatheredParameters(params_to_fetch, modifier_rank=0):
            module_state_dict = checkpoint['module']
            if custom_load_fn:
                custom_load_fn(src=module_state_dict, dst=self.module)
            else:
                self.module.load_state_dict(
                    module_state_dict,  # TODO
                    strict=strict)

        if checkpoint.get(FROZEN_PARAM_FRAGMENTS, None) is not None:
            saved_frozen_params = checkpoint[FROZEN_PARAM_FRAGMENTS]
            for param in self.module.parameters():
                if param.requires_grad:
                    continue
                if param not in self.param_names:
                    raise ValueError(f"failed to find frozen {param} in named params")
                name = self.param_names[param]
                if hasattr(param, 'ds_id'):
                    param.ds_tensor.data.copy_(saved_frozen_params[name].data)
                else:
                    param.data.copy_(saved_frozen_params[name].data)

    def _get_zero_ckpt_prefix(self, dp_rank, bf16_mode):
        return f'{"bf16_" if bf16_mode else ""}zero_pp_rank_{dp_rank}'

    def _get_rank_zero_ckpt_name(self, checkpoints_path, tag, mp_rank, dp_rank, bf16_mode):
        file_prefix = self._get_zero_ckpt_prefix(dp_rank, bf16_mode=bf16_mode)
        zero_ckpt_name = os.path.join(
            checkpoints_path,
            str(tag),
            f"{file_prefix}_mp_rank_{mp_rank:02d}_optim_states.pt",
        )
        return zero_ckpt_name

    def _get_zero_ckpt_name(self, checkpoints_path, tag):
        mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
        pp_rank = dist.get_rank(group=self.optimizer.dp_process_group)
        bf16_mode = self.bfloat16_enabled()
        return self._get_rank_zero_ckpt_name(checkpoints_path, tag, mp_rank, pp_rank, bf16_mode)

    def _get_ckpt_name(self, checkpoints_path, tag, mp_placeholder=None):
        if mp_placeholder is not None:
            mp_rank_str = mp_placeholder
        else:
            mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
            mp_rank_str = f"{mp_rank:02d}"

        if self.zero_optimization_partition_weights():
            filename = "zero_pp_rank_{}".format(dist.get_rank(group=self.optimizer.dp_process_group))
            ckpt_name = os.path.join(
                checkpoints_path,
                str(tag),
                f"{filename}_mp_rank_{mp_rank_str}_model_states.pt",
            )
        else:
            ckpt_name = os.path.join(
                checkpoints_path,
                str(tag),
                "mp_rank_" + mp_rank_str + "_model_states.pt",
            )
        return ckpt_name

    def _get_optimizer_ckpt_name(self, checkpoints_path, tag, expp_rank):
        mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
        ckpt_name = os.path.join(checkpoints_path, str(tag),
                                 f'expp_rank_{expp_rank}_mp_rank_{mp_rank:02d}_optim_states.pt')
        return ckpt_name

    @staticmethod
    def _get_expert_ckpt_name(checkpoints_path, layer_id, expert_id, tag, mpu=None):
        mp_rank = 0 if mpu is None else mpu.get_model_parallel_rank()
        if layer_id <= -1:
            # Used to support old checkpoint loading
            ckpt_name = os.path.join(checkpoints_path, '' if tag is None else str(tag),
                                     f'expert_{expert_id}_mp_rank_{mp_rank:02d}_model_states.pt')
        else:
            # Used to support new checkpoint loading
            ckpt_name = os.path.join(checkpoints_path, '' if tag is None else str(tag),
                                     f'layer_{layer_id}_expert_{expert_id}_mp_rank_{mp_rank:02d}_model_states.pt')
        return ckpt_name

    def _get_all_ckpt_names(self, checkpoints_path, tag):
        # It is required that (checkpoints_path, tag) are consistent among all ranks.
        ckpt_file_pattern = self._get_ckpt_name(checkpoints_path, tag, mp_placeholder="*")
        import glob

        ckpt_files = glob.glob(ckpt_file_pattern)
        ckpt_files.sort()
        return ckpt_files

    def load_checkpoint(self,
                        load_dir,
                        tag=None,
                        load_module_strict=True,
                        load_optimizer_states=True,
                        load_lr_scheduler_states=True,
                        load_module_only=False,
                        custom_load_fn=None):
        """
        Load training checkpoint

        Arguments:
            load_dir: Required. Directory to load the checkpoint from
            tag: Checkpoint tag used as a unique identifier for checkpoint, if not provided will attempt to load tag in 'latest' file
            load_module_strict: Optional. Boolean to strictly enforce that the keys in state_dict of module and checkpoint match.
            load_optimizer_states: Optional. Boolean to load the training optimizer states from Checkpoint. Ex. ADAM's momentum and variance
            load_lr_scheduler_states: Optional. Boolean to add the learning rate scheduler states from Checkpoint.
            load_module_only: Optional. Boolean to load only the model weights from the checkpoint. Ex. warmstarting.
            custom_load_fn: Optional. Custom model load function.

        Returns:
            A tuple of ``load_path`` and ``client_state``.
            *``load_path``: Path of the loaded checkpoint. ``None`` if loading the checkpoint failed.
            *``client_state``: State dictionary used for loading required training states in the client code.

        Important: under ZeRO3, one cannot load checkpoint with ``engine.load_checkpoint()`` right
        after ``engine.save_checkpoint()``. It is because ``engine.module`` is partitioned, and
        ``load_checkpoint()`` wants a pristine model. If insisting to do so, please reinitialize engine
        before ``load_checkpoint()``.

        """

        if tag is None:
            latest_tag = "latest_universal" if self.load_universal_checkpoint() else "latest"
            latest_path = os.path.join(load_dir, latest_tag)
            if os.path.isfile(latest_path):
                with open(latest_path, "r") as fd:
                    tag = fd.read().strip()
            else:
                if self.load_universal_checkpoint():
                    raise ValueError(f'Invalid for universal checkpoint: {latest_path} does not exist')
                else:
                    logger.warning(
                        f"Unable to find latest file at {latest_path}, if trying to load latest "
                        "checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint."
                    )
                    return None, None

        if self._optimizer_has_ckpt_event_prologue():
            # Prepare for checkpoint load by ensuring all parameters are partitioned
            self.optimizer.checkpoint_event_prologue()

        load_path, client_states = self._load_checkpoint(load_dir,
                                                         tag,
                                                         load_module_strict=load_module_strict,
                                                         load_optimizer_states=load_optimizer_states,
                                                         load_lr_scheduler_states=load_lr_scheduler_states,
                                                         load_module_only=load_module_only,
                                                         custom_load_fn=custom_load_fn)

        load_zero_checkpoint = load_path is not None and (self.zero_optimization() or self.bfloat16_enabled())
        if load_zero_checkpoint:
            if (load_optimizer_states and not load_module_only) or self.load_universal_checkpoint():
                success = self._load_zero_checkpoint(load_dir, tag, load_optimizer_states=load_optimizer_states)
            else:
                success = False
            if not success:
                self.optimizer._restore_from_bit16_weights()

        if self.zero_has_nvme_offload():
            from shutil import copytree, disk_usage
            offload_dir = self.optimizer.optimizer_swapper.swap_folder
            offload_ckpt_dir = os.path.join(load_dir, tag, "offloaded_tensors")
            _, _, free = disk_usage(offload_dir)
            logger.info(
                f"Copying NVMe offload checkpoint from {offload_ckpt_dir} to {offload_dir}, {free / 1e9:,.2f} GB free on target filesystem..."
            )
            copytree(offload_ckpt_dir, offload_dir, dirs_exist_ok=True)
            _, _, free = disk_usage(offload_dir)
            logger.info(f"Copying complete! {free / 1e9:,.2f} GB free on target filesystem")
            self.optimizer.reset_swap_buffers()

        if self._optimizer_has_ckpt_event_epilogue():
            self.optimizer.checkpoint_event_epilogue()

        if self.load_universal_checkpoint():
            self.optimizer.update_lp_params()

        return load_path, client_states

    def _load_checkpoint(self,
                         load_dir,
                         tag,
                         load_module_strict=True,
                         load_optimizer_states=True,
                         load_lr_scheduler_states=True,
                         load_module_only=False,
                         custom_load_fn=None):

        from deepspeed.runtime.state_dict_factory import SDLoaderFactory

        ckpt_list = self._get_all_ckpt_names(load_dir, tag)
        sd_loader = SDLoaderFactory.get_sd_loader(ckpt_list, checkpoint_engine=self.checkpoint_engine)

        is_pipe_parallel = isinstance(self.module, PipelineModule)

        mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
        load_path, checkpoint, _ = sd_loader.load(self.mp_world_size, mp_rank, is_pipe_parallel=is_pipe_parallel)

        if checkpoint is None:
            return None, None

        fetch_z3_params = False
        if self.zero_optimization_partition_weights() and not load_optimizer_states:
            checkpoint['module'] = get_fp32_state_dict_from_zero_checkpoint(load_dir)
            fetch_z3_params = True

        if is_pipe_parallel:
            # Pipeline parallelism uses this to load its own checkpoint files.
            self._curr_ckpt_path = os.path.join(load_dir, tag)

        if self.has_moe_layers:
            # print(checkpoint.keys())
            old_moe_load = False
            if not isinstance(checkpoint['num_experts'], list):
                old_moe_load = True
            DeepSpeedEngine.load_moe_state_dict(load_dir,
                                                tag,
                                                state_dict=checkpoint['module'],
                                                old_moe_load=old_moe_load,
                                                model=self.module,
                                                mpu=self.mpu,
                                                num_experts=self.num_experts,
                                                checkpoint_engine=self.checkpoint_engine)
        if not self.load_universal_checkpoint():
            self.load_module_state_dict(checkpoint=checkpoint,
                                        strict=load_module_strict,
                                        custom_load_fn=custom_load_fn,
                                        fetch_z3_params=fetch_z3_params)

        self.loaded_checkpoint_dp_world_size = checkpoint['dp_world_size']

        optim_checkpoint = None
        if load_module_only:
            deepspeed_states = ['module']
            if self.optimizer is not None:
                self.optimizer.refresh_fp32_params()
        else:
            has_zero_optimizer_state = self.zero_optimization() or self.bfloat16_enabled()
            if load_optimizer_states and self.optimizer is not None and not has_zero_optimizer_state:
                if self.has_moe_layers:
                    largest_group_name = groups._get_max_expert_size_name()
                    expp_rank = groups._get_expert_parallel_rank(largest_group_name)
                    optim_load_path = self._get_optimizer_ckpt_name(load_dir, tag, expp_rank)
                    optim_checkpoint = self.checkpoint_engine.load(optim_load_path, map_location=torch.device('cpu'))
                else:
                    optim_checkpoint = checkpoint

                if self.fp16_enabled() or self.bfloat16_enabled():
                    self.optimizer.load_state_dict(optim_checkpoint['optimizer'],
                                                   load_optimizer_states=load_optimizer_states)
                else:
                    optim_checkpoint = checkpoint

                self.optimizer.load_state_dict(optim_checkpoint['optimizer'])

            if load_lr_scheduler_states and self.lr_scheduler is not None:
                self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])

            if self.random_ltd_enabled() and self.random_ltd_scheduler is not None and 'random_ltd' in checkpoint:
                self.random_ltd_scheduler.load_state_dict(checkpoint['random_ltd'])

            if self.training_dataloader is not None and self.curriculum_learning_enabled(
            ) and 'data_sampler' in checkpoint:
                self.training_dataloader.data_sampler.load_state_dict(checkpoint['data_sampler'])

            def get_sparse_tensor_module_names(original_set, loaded_set, original_parameters, loaded_parameters):
                result = set()

                for name in original_set:
                    if name in loaded_parameters and name not in loaded_set:
                        continue  # parameter existed in previous model and was not sparse
                    result.add(name)

                for name in loaded_set:
                    if name in original_parameters:
                        result.add(name)  # parameter exists in both configs and it was sparse

                return result

            if 'sparse_tensor_module_names' in checkpoint:
                sparse_tensor_module_names = checkpoint['sparse_tensor_module_names']
            elif 'csr_tensor_module_names' in checkpoint:
                sparse_tensor_module_names = checkpoint['csr_tensor_module_names']
            else:
                sparse_tensor_module_names = None
            if sparse_tensor_module_names is not None:
                if load_module_strict:
                    self.sparse_tensor_module_names = sparse_tensor_module_names
                else:
                    self.sparse_tensor_module_names = get_sparse_tensor_module_names(
                        self.sparse_tensor_module_names, sparse_tensor_module_names,
                        dict(self.module.named_parameters()), checkpoint["module"])

            self.global_steps = checkpoint['global_steps']
            self.global_samples = checkpoint.get('global_samples', self.global_steps * self.train_batch_size())
            self.skipped_steps = checkpoint['skipped_steps']
            self.loaded_checkpoint_mp_world_size = checkpoint['mp_world_size']
            deepspeed_states = [
                'module', 'sparse_tensor_module_names', 'skipped_steps', 'global_steps', 'dp_world_size',
                'mp_world_size', 'data_sampler', 'random_ltd'
            ]
        client_state = {}

        if load_lr_scheduler_states:
            deepspeed_states.append('lr_scheduler')
        if load_optimizer_states:
            deepspeed_states.append('optimizer')

        client_state = {key: value for key, value in checkpoint.items() if not key in deepspeed_states}

        if optim_checkpoint is not None:
            client_state['optimizer'] = optim_checkpoint['optimizer']

        return load_path, client_state

    def _load_zero_checkpoint(self, load_dir, tag, load_optimizer_states=True):

        load_serial = None
        # When use loading checkpoint serial, checkpoint loading start from local rank 0,
        # all other local rank would be paused, waiting for its rank-1 peer ready and its notification.
        if self._config.zero_config.pipeline_loading_checkpoint:
            assert self.zero_optimization_stage(
            ) == ZeroStageEnum.weights, "Only stage3 support for pipeline checkpoint loading"
            load_serial = torch.zeros(1).to(self.device)
            if dist.get_local_rank() != 0:
                dist.recv(tensor=load_serial, src=dist.get_rank() - 1)
        if self.load_universal_checkpoint():
            zero_sd_list = None
            checkpoint_folder = f'{os.path.join(load_dir, tag)}'
        else:
            if load_optimizer_states and self.seq_dp_world_size != self.loaded_checkpoint_dp_world_size:
                raise ZeRORuntimeException("The checkpoint being loaded used a DP " \
                    f"world size of {self.loaded_checkpoint_dp_world_size} but the " \
                    f"current world size is {self.seq_dp_world_size}. Automatic adjustment " \
                    "of ZeRO's optimizer state partitioning with a new world size is not " \
                    "currently supported.")
            checkpoint_folder = None
            zero_sd_list = self._get_all_zero_checkpoints(load_dir, tag)
            if zero_sd_list is None:
                return False

        self.optimizer.load_state_dict(state_dict_list=zero_sd_list,
                                       load_optimizer_states=load_optimizer_states,
                                       load_from_fp32_weights=self.zero_load_from_fp32_weights(),
                                       checkpoint_folder=checkpoint_folder,
                                       load_serial=load_serial)

        if self.load_universal_checkpoint():
            logger.info(f'loaded universal zero checkpoints from {checkpoint_folder} for rank {self.global_rank}')
        else:
            logger.info(f"loading {len(zero_sd_list)} zero partition checkpoints for rank {self.global_rank}")
        return True

    def _get_mp_rank_zero_checkpoint_names(self, load_dir, tag, mp_rank, dp_world_size, bf16_mode):
        zero_ckpt_names = []
        for dp_rank in range(dp_world_size):
            ckpt_name = self._get_rank_zero_ckpt_name(checkpoints_path=load_dir,
                                                      tag=tag,
                                                      mp_rank=mp_rank,
                                                      dp_rank=dp_rank,
                                                      bf16_mode=bf16_mode)
            zero_ckpt_names.append(ckpt_name)

        return zero_ckpt_names

    def _get_all_zero_checkpoint_names(self, load_dir, tag, bf16_mode):
        mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
        zero_ckpt_names = self._get_mp_rank_zero_checkpoint_names(load_dir=load_dir,
                                                                  tag=tag,
                                                                  mp_rank=mp_rank,
                                                                  dp_world_size=self.loaded_checkpoint_dp_world_size,
                                                                  bf16_mode=bf16_mode)
        for i, ckpt_name in enumerate(zero_ckpt_names):
            if not os.path.exists(ckpt_name):
                # transparently handle the old file pattern for optim_states
                if "optim_states.pt" in ckpt_name:
                    ckpt_name_try = ckpt_name.replace("_optim_states.pt", "optim_states.pt")
                    if os.path.exists(ckpt_name_try):
                        zero_ckpt_names[i] = ckpt_name_try
                        continue

        return zero_ckpt_names

    def _get_all_zero_checkpoint_state_dicts(self, zero_ckpt_names):
        zero_sd_list = []
        for i, ckpt_name in enumerate(zero_ckpt_names):
            _state = None
            if ckpt_name is None:
                _state = {OPTIMIZER_STATE_DICT: None}
            # Fully load state for current rank
            elif self.zero_elastic_checkpoint() or dist.get_rank(group=self.optimizer.dp_process_group) == i:
                _state = self.checkpoint_engine.load(
                    ckpt_name,
                    map_location='cpu',
                )
            else:
                _state = {OPTIMIZER_STATE_DICT: None}
            zero_sd_list.append(_state)

        zero_optimizer_sd = [sd[OPTIMIZER_STATE_DICT] for sd in zero_sd_list]
        logger.info(f"successfully read {len(zero_optimizer_sd)} ZeRO state_dicts for rank {self.global_rank}")
        return zero_optimizer_sd

    def _get_all_zero_checkpoints(self, load_dir, tag):
        for bf16_mode in [self.bfloat16_enabled(), not self.bfloat16_enabled()]:
            zero_ckpt_names = self._get_all_zero_checkpoint_names(load_dir, tag, bf16_mode)
            if zero_ckpt_names is not None:
                # Warn if loading checkpoint of different bit16 type
                if bf16_mode is not self.bfloat16_enabled():
                    checkpoint_bit16 = BFLOAT16 if bf16_mode else FP16
                    engine_bit16 = BFLOAT16 if self.bfloat16_enabled() else FP16
                    logger.warn(f'Loading {checkpoint_bit16} zero checkpoints into {engine_bit16} training engine')
                return self._get_all_zero_checkpoint_state_dicts(zero_ckpt_names)

        return None

    def _checkpoint_tag_validation(self, tag):
        if self.checkpoint_tag_validation_enabled():
            s_hash = hashlib.sha1(tag.encode())
            bhash = torch.ByteTensor([s_hash.digest()]).flatten().to(self.device)
            max_bhash = bhash.clone()
            min_bhash = bhash.clone()
            dist.all_reduce(max_bhash, op=dist.ReduceOp.MAX)
            dist.all_reduce(min_bhash, op=dist.ReduceOp.MIN)
            valid = all(min_bhash == bhash) and all(max_bhash == bhash)
            msg = (f"[rank={dist.get_rank()}] The checkpoint tag name '{tag}' is not consistent across "
                   "all ranks. Including rank unique information in checkpoint tag could cause issues when "
                   "restoring with different world sizes.")
            if self.checkpoint_tag_validation_fail():
                assert valid, msg
            elif not valid:
                logger.warning(msg)

    def save_checkpoint(self, save_dir, tag=None, client_state={}, save_latest=True, exclude_frozen_parameters=False):
        """Save training checkpoint

        Arguments:
            save_dir: Required. Directory for saving the checkpoint
            tag: Optional. Checkpoint tag used as a unique identifier for the checkpoint, global step is
                used if not provided. Tag name must be the same across all ranks.
            client_state: Optional. State dictionary used for saving required training states in the client code.
            save_latest: Optional. Save a file 'latest' pointing to the latest saved checkpoint.
            exclude_frozen_parameters: Optional. Exclude frozen parameters from checkpointed state.
        Important: all processes must call this method and not just the process with rank 0. It is
        because each process needs to save its master weights and scheduler+optimizer states. This
        method will hang waiting to synchronize with other processes if it's called just for the
        process with rank 0.

        """
        if self._optimizer_has_ckpt_event_prologue():
            # Custom preparation for checkpoint save, if applicable
            self.optimizer.checkpoint_event_prologue()

        rank = self.local_rank if self.use_node_local_storage() else self.global_rank

        # This is to make sure the checkpoint names are created without collision
        # There seems to be issue creating them in parallel

        # Ensure save_dir directory exists
        if rank == 0:
            self.checkpoint_engine.makedirs(save_dir, exist_ok=True)
        dist.barrier()

        if tag is None:
            tag = f"global_step{self.global_steps}"

        # Ensure tag is a string
        tag = str(tag)
        self.checkpoint_engine.create(tag)

        # Ensure checkpoint tag is consistent across ranks
        self._checkpoint_tag_validation(tag)

        if self.has_moe_layers:
            self.save_non_zero_checkpoint = False
            self._create_checkpoint_file(save_dir, tag, False)
            self._save_moe_checkpoint(save_dir,
                                      tag,
                                      client_state=client_state,
                                      exclude_frozen_parameters=exclude_frozen_parameters)

        # We distribute the task of saving layer checkpoint files among
        # data parallel instances, so all procs should call _save_checkpoint.
        # All procs then call module_state_dict(), but only procs of data
        # parallel rank 0 save the general model params.
        if not self.has_moe_layers:
            self._create_checkpoint_file(save_dir, tag, False)
            self._save_checkpoint(save_dir,
                                  tag,
                                  client_state=client_state,
                                  exclude_frozen_parameters=exclude_frozen_parameters)

        if self.save_zero_checkpoint:
            self._create_zero_checkpoint_files(save_dir, tag)
            self._save_zero_checkpoint(save_dir, tag)

        if self.zero_has_nvme_offload():
            from shutil import copytree, disk_usage
            offload_dir = self.optimizer.optimizer_swapper.swap_folder
            offload_ckpt_dir = os.path.join(save_dir, tag, "offloaded_tensors")
            _, _, free = disk_usage(save_dir)
            logger.info(
                f"Copying NVMe offload files from {offload_dir} to {offload_ckpt_dir}, {free / 1e9:,.2f} GB free on target filesystem..."
            )
            copytree(offload_dir,
                     offload_ckpt_dir,
                     ignore=lambda _, dir_list: list(filter(lambda x: 'gradient' in x, dir_list)),
                     dirs_exist_ok=False)
            _, _, free = disk_usage(save_dir)
            logger.info(f"Copying complete! {free / 1e9:,.2f} GB free on target filesystem")

        if self._optimizer_has_ckpt_event_epilogue():
            self.optimizer.checkpoint_event_epilogue()

        # Save latest checkpoint tag
        self.checkpoint_engine.commit(tag)
        if save_latest and rank == 0:
            with open(os.path.join(save_dir, 'latest'), 'w') as fd:
                fd.write(tag)

        dist.barrier()

        return True

    def _get_non_moe_state_dict(self, full_state_dict):
        """
            Get the state dict of the non-moe layers
        """
        for key in list(full_state_dict.keys()):
            if 'expert' in key and 'moe.gate.wg.weight' not in key:
                full_state_dict.pop(key)

        return full_state_dict

    def _save_moe_checkpoint(self, save_dir, tag, client_state={}, exclude_frozen_parameters=False):
        save_path = self._get_ckpt_name(save_dir, tag)
        # A hack to save the checkpointing directory. Pipeline parallelism overrides
        # module_state_dict() and uses this path to save the model. module_state_dict()
        # then instead just returns None.

        # Using layer_#_export_# to save the model's expert state_dict
        moe_layer_id = 0
        for n_module, module in self.module.named_modules():
            if isinstance(module, MoE):  # and deepspeed.comm.get_rank() == 0:
                group_name = module.expert_group_name
                num_local_experts = module.num_local_experts
                expp_rank = groups._get_expert_parallel_rank(group_name)
                exp_dp_rank = groups._get_expert_data_parallel_rank(group_name)
                # print(expp_rank, exp_dp_rank)
                if exp_dp_rank != 0:
                    moe_layer_id += 1
                    continue

                # get all moe parameters
                moe_state_dict = {}
                for n, p in module.state_dict().items():
                    if 'expert' in n and 'moe.gate.wg.weight' not in n:
                        moe_state_dict[n_module + '.' + n] = p
                moe_str_prefix = '.deepspeed_moe.experts.deepspeed_experts.'
                # print(moe_state_dict.keys()) # until now, everything is fine. So the bug happens at next few lines
                # Reorder the moe name rank, so that each checkpoint only has one expert
                experts_state_dict = defaultdict(dict)
                for key in list(moe_state_dict.keys()):
                    m = re.match(f".*{moe_str_prefix}([0-9]+).*", key)

                    local_expert_id = None
                    if not m:
                        logger.warn(f'No expert found in key {key}.')
                    else:
                        local_expert_id = m.group(1)

                    global_expert_id = expp_rank * \
                        num_local_experts + int(local_expert_id)
                    expert_key = key.replace(f'{moe_str_prefix}{local_expert_id}',
                                             f'{moe_str_prefix}{global_expert_id}')
                    # truncating extra tensor (shared) storage
                    truncated = moe_state_dict.pop(key).clone().detach()
                    experts_state_dict[str(global_expert_id)][expert_key] = truncated

                # let save the moe parameters
                for global_expert_id, expert_state_dict in experts_state_dict.items():
                    # save the moe parameters
                    moe_save_path = self._get_expert_ckpt_name(save_dir, moe_layer_id, global_expert_id, tag, self.mpu)
                    if self.random_ltd_enabled():
                        expert_state_dict = remove_random_ltd_state_dict(expert_state_dict)
                    self.checkpoint_engine.save(expert_state_dict, moe_save_path)
                moe_layer_id += 1

        self._curr_ckpt_path = os.path.join(save_dir, tag)

        largest_group_name = groups._get_max_expert_size_name()
        expp_rank = groups._get_expert_parallel_rank(largest_group_name)
        exp_dp_rank = groups._get_expert_data_parallel_rank(largest_group_name)

        # In the case of E + D parallelism, only the
        # first expert parallel group should save the expert weights
        # since each expert parallel group is a copy of the model's experts
        if exp_dp_rank == 0:
            # Save optimizer states. They are different across each exp parallel rank.
            optimizer_state = {
                'optimizer': self.optimizer.state_dict() if self.optimizer and not self.zero_optimization() else None
            }
            # TODO: why use BufferedWriter not the path
            file_path = self._get_optimizer_ckpt_name(save_dir, tag, expp_rank)
            self.checkpoint_engine.save(optimizer_state, file_path)

        # Load flow uses below saved file for model parameters, RNG and more
        if groups._get_data_parallel_rank() == 0:
            # Get non-moe parameters
            # Classes DeepSpeedEngine and PipelineEngine have different behavior for method module_state_dict.
            # DeepSpeedEngine returns the state dict, where PipelineEngine saves the state dict and returns None.
            # We need to get the state dict, therefore, call to DeepSpeedEngine (base class for PipelineEngine)
            model_state_dict = self._get_non_moe_state_dict(
                DeepSpeedEngine.module_state_dict(self, exclude_frozen_parameters=exclude_frozen_parameters))

            # TODO: update num experts info,.. in checkpoint
            state = {
                'module':
                model_state_dict,
                'lr_scheduler':
                self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
                'data_sampler':
                self.training_dataloader.data_sampler.state_dict() if
                (self.training_dataloader is not None and self.curriculum_learning_enabled()) else None,
                'random_ltd':
                self.random_ltd_scheduler.state_dict() if self.random_ltd_enabled() else None,
                'sparse_tensor_module_names':
                self.sparse_tensor_module_names,
                'skipped_steps':
                self.skipped_steps,
                'global_steps':
                self.global_steps,
                'global_samples':
                self.global_samples,
                'dp_world_size':
                self.dp_world_size,
                'mp_world_size':
                self.mp_world_size,
                'num_experts':
                self.num_experts
            }
            state.update(client_state)
            logger.info(f'Saving model checkpoint: {save_path}')
            self.checkpoint_engine.save(state, save_path)

    def _create_checkpoint_file(self, save_dir, tag, zero_checkpoint):
        name_function = (self._get_zero_ckpt_name if zero_checkpoint else self._get_ckpt_name)
        try:
            checkpoint_name = name_function(save_dir, tag)
            path = os.path.dirname(checkpoint_name)
            self.checkpoint_engine.makedirs(path, exist_ok=True)
        except:
            logger.error(f"Failed saving model checkpoint to {save_dir} with tag {tag}")
            return False

        return True

    def _create_zero_checkpoint_files(self, save_dir, tag):
        success = True
        # zero checkpoint files are created sequentially
        for rank in range(dist.get_world_size(self.optimizer.dp_process_group)):
            if rank == self.global_rank:
                success = self._create_checkpoint_file(save_dir, tag, True)

            dist.barrier(group=self.optimizer.dp_process_group)

        return success

    def _save_checkpoint(self, save_dir, tag, client_state={}, exclude_frozen_parameters=False):

        save_path = self._get_ckpt_name(save_dir, tag)

        zero_optimizer_state = self.zero_optimization() or self.bfloat16_enabled()

        save_frozen_param = self.zero_optimization_partition_gradients() and not exclude_frozen_parameters

        # A hack to save the checkpointing directory. Pipeline parallelism overrides
        # module_state_dict() and uses this path to save the model. module_state_dict()
        # then instead just returns None.  The module_state_dict() implementation in
        # PipelineEngine expects the save path to be set in self._curr_ckpt_path.
        self._curr_ckpt_path = os.path.join(save_dir, tag)
        module = self.module_state_dict(exclude_frozen_parameters=exclude_frozen_parameters)
        self._curr_ckpt_path = None

        state = dict(module=module,
                     buffer_names=self._get_buffer_names(),
                     optimizer=self.optimizer.state_dict() if self.optimizer and not zero_optimizer_state else None,
                     param_shapes=self._get_zero_param_shapes() if self.optimizer and zero_optimizer_state else None,
                     frozen_param_shapes=self._get_zero_frozen_param_attributes(self._get_param_shape_func)
                     if save_frozen_param else None,
                     shared_params=self._get_shared_params() if self.optimizer and zero_optimizer_state else None,
                     frozen_param_fragments=self._get_zero_frozen_param_attributes(self._get_param_fragment_func)
                     if save_frozen_param else None,
                     lr_scheduler=self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
                     data_sampler=self.training_dataloader.data_sampler.state_dict() if
                     (self.training_dataloader is not None and self.curriculum_learning_enabled()) else None,
                     random_ltd=self.random_ltd_scheduler.state_dict() if self.random_ltd_enabled() else None,
                     sparse_tensor_module_names=self.sparse_tensor_module_names,
                     skipped_steps=self.skipped_steps,
                     global_steps=self.global_steps,
                     global_samples=self.global_samples,
                     dp_world_size=self.seq_dp_world_size,
                     mp_world_size=self.mp_world_size,
                     ds_config=self.config,
                     ds_version=version)
        state.update(client_state)

        if self.save_non_zero_checkpoint:
            log_dist(message=f'Saving model checkpoint: {save_path}', ranks=[0, 1])
            self.checkpoint_engine.save(state, save_path)

    def _get_buffer_names(self):
        buffer_names = []

        # we save buffer names so that we could extract later the real buffers from the saved
        # state_dict["module"] in the non-zero checkpoint - the buffers are already there but they
        # are intermixed with param placeholders

        # have to traverse the tree to be able to skip non-persistent buffers
        def get_layer_named_buffers(module, prefix=""):
            for name, buf in module.named_buffers(recurse=False):
                if buf is not None and name not in module._non_persistent_buffers_set:
                    buffer_names.append(prefix + name)

            for name, child in module.named_children():
                if child is not None:
                    get_layer_named_buffers(child, prefix + name + ".")

        get_layer_named_buffers(self.module, prefix="")

        return buffer_names

    def _get_param_shape_func(self, param):
        return param.ds_shape if hasattr(param, 'ds_id') else param.shape

    def _get_param_fragment_func(self, param):
        return param.ds_tensor.detach().cpu() if hasattr(param, 'ds_id') else param.detach().cpu()

    def _get_zero_frozen_param_attributes(self, attr_func):
        frozen_param_fragments = OrderedDict()

        for param in self.module.parameters():
            if param.requires_grad:
                continue
            if param not in self.param_names:
                raise ValueError(f"failed to find frozen {param} in named params")
            name = self.param_names[param]
            frozen_param_fragments[name] = attr_func(param)

        return frozen_param_fragments

    def _get_zero_param_shapes(self):
        """Returns a dict of name to shape mapping, only for the flattened fp32 weights saved by the
        optimizer. the names are exactly as in state_dict. The order is absolutely important, since
        the saved data is just flattened data with no identifiers and requires reconstruction in the
        same order it was saved.
        We can't rely on self.module.named_parameters() to get the saved tensors, as some params
        will be missing and others unsaved and then it'd be impossible to reconstruct state_dict
        from the flattened weights.
        optimizer.bit16_groups seems to be the easiest to use as it's in all zeroX versions.
        """
        param_group_shapes = []
        cnt = 0
        numel = 0

        # zero2 started using a round_robin_bit16_groups which is a shuffled version of bit16_groups -
        # if we don't use it, we get parameters ordered incorrectly
        if hasattr(self.optimizer, "round_robin_bit16_groups"):
            bit16_groups = self.optimizer.round_robin_bit16_groups
        elif self.bfloat16_enabled() and hasattr(self.optimizer, "bf16_groups"):
            bit16_groups = self.optimizer.bf16_groups
        else:
            bit16_groups = self.optimizer.bit16_groups if self.zero_optimization_stage(
            ) == 2 else self.optimizer.fp16_groups

        for bit16_group in bit16_groups:
            param_shapes = OrderedDict()
            for param in bit16_group:
                cnt += 1
                numel += param.ds_numel if hasattr(param, "ds_numel") else param.numel()
                shape = param.ds_shape if hasattr(param, "ds_shape") else param.shape
                if param not in self.param_names:
                    raise ValueError(f"failed to find optimizer param in named params")
                name = self.param_names[param]
                param_shapes[name] = shape

                # uncomment to debug zero_to_fp32.py problems
                # if self.global_rank == 0: print(f"saving param {name} {shape} (numel={shape.numel()})")
            param_group_shapes.append(param_shapes)
        # if self.global_rank == 0: print(f"Total saved {numel} numels in {cnt} params")

        return param_group_shapes

    def _get_shared_params(self):
        """
        Returns a dict of shared params, which can later be used to reconstruct the original state dict,
        e.g. in `zero_to_fp32`. Each dict entry is a pair of param names, where the key is the name
        of the variable that isn't stored and the value is the actual param holding data.
        """
        shared_index = {}
        shared_params_by_full_name = {}

        is_zero3_model = (self.zero_optimization_partition_weights()
                          and any(hasattr(param, "ds_id") for param in self.module.parameters()))

        def get_layer_state_dict(module, prefix=""):
            # handle params
            for name, param in module.named_parameters(recurse=False):
                if param is None or (is_zero3_model and not hasattr(param, "ds_id")):
                    continue
                key = prefix + name

                # When weights are manged by stage 3, we can't rely on param.data_ptr() as it will be reused
                # as weights get gathered and reduced, but param.ds_id is unique across all zero weights
                # (and shared params will have the same param.ds_id)
                param_id = param.ds_id if is_zero3_model else param.data_ptr()

                if param_id in shared_index:
                    # shared weights
                    #print(f"`{key}` is shared with `{shared_index[param_id]}`")
                    shared_params_by_full_name[key] = shared_index[param_id]
                else:
                    shared_index[param_id] = key

            for name, child in module.named_children():
                if child is not None:
                    get_layer_state_dict(child, prefix + name + ".")

        if dist.get_rank() == 0:
            get_layer_state_dict(self.module, prefix="")

        return shared_params_by_full_name

    def _copy_recovery_script(self, save_path):
        base_dir = os.path.dirname(os.path.dirname(__file__))
        script = "zero_to_fp32.py"
        src = os.path.join(base_dir, "utils", script)
        dst = os.path.join(save_path, script)
        #logger.info(f"creating recovery script {dst}")
        copyfile(src, dst)
        self._change_recovery_script_permissions(dst)

    def _change_recovery_script_permissions(self, dst):
        # make executable (safeguard for file shares - Azure as example)
        try:
            os.chmod(dst, os.stat(dst).st_mode | stat.S_IEXEC)
        except (FileNotFoundError, PermissionError) as e:
            #this message is used in unit test TestZeRONonDistributed
            logger.info(
                f'Warning: Could not change permissions for {dst} due to error: {e}. Continuing without changing permissions.'
            )

    def _save_zero_checkpoint(self, save_path, tag):
        zero_checkpoint_name = self._get_zero_ckpt_name(save_path, tag)
        zero_sd = dict(optimizer_state_dict=self.optimizer.state_dict(), ds_config=self.config, ds_version=version)
        self.checkpoint_engine.save(zero_sd, zero_checkpoint_name)

        if self.global_rank == 0:
            self._copy_recovery_script(save_path)
        ckpt_type = 'zero' if self.zero_optimization() else 'bf16_zero'
        logger.info(f'{ckpt_type} checkpoint saved {zero_checkpoint_name}')

    def _zero3_consolidated_16bit_state_dict(self, exclude_frozen_parameters=False):
        """
        Get a full non-partitioned state_dict with fp16 weights on cpu.
        Important: this function must be called on all ranks and not just rank 0.
        This is similar to nn.Module.state_dict (modelled after _save_to_state_dict), but:
        1. consolidates the weights from different partitions on gpu0
        2. works on one layer at a time to require as little gpu0 memory as possible, by
        moving the already consolidated weights to cpu
        3. takes care to keep the shared params shared when gradually copying the params to cpu
        Returns:
            a consolidated fp16 ``state_dict`` on cpu on rank 0, ``None`` on other ranks
        """
        if not self.zero_optimization_partition_weights():
            raise ValueError("this function requires ZeRO-3 mode")

        state_dict = OrderedDict() if dist.get_rank() == 0 else None
        shared_params = {}

        def get_layer_state_dict(module, prefix=""):
            # gather one layer at a time to be memory-efficient
            # must use modifier_rank=0 to release GPU memory after each layer gathered
            #see_memory_usage("before GatheredParameters", force=True)
            with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                if dist.get_rank() == 0:
                    # handle params
                    for name, param in module.named_parameters(recurse=False):
                        if param is None or (exclude_frozen_parameters and not param.requires_grad):
                            continue
                        key = prefix + name
                        # can't rely on param.data_ptr() as it will be reused as weights gets
                        # gathered and reduced, but param.ds_id is unique across all zero weights
                        # (and shared params will have the same param.ds_id)
                        if param.ds_id in shared_params:
                            # shared weights
                            #print(f"`{key}` is shared with `{shared_params[param.ds_id]}`")
                            state_dict[key] = state_dict[shared_params[param.ds_id]]
                        else:
                            state_dict[key] = param.detach().cpu()
                            shared_params[param.ds_id] = key
                        #print(f"param {param.ds_id} {param.shape} {key} ")

                    # now buffers - not sure if need to take care of potentially shared weights here
                    for name, buf in module.named_buffers(recurse=False):
                        if (buf is not None and name not in module._non_persistent_buffers_set):
                            state_dict[prefix + name] = buf.detach().cpu()
            #see_memory_usage("after GatheredParameters", force=True)

            for name, child in module.named_children():
                if child is not None:
                    get_layer_state_dict(child, prefix + name + ".")

        # Prepare for checkpoint save by ensuring all parameters are partitioned
        if self._optimizer_has_ckpt_event_prologue():
            self.optimizer.checkpoint_event_prologue()

        see_memory_usage("before get_layer_state_dict", force=False)
        get_layer_state_dict(self.module, prefix="")
        see_memory_usage("after get_layer_state_dict", force=False)

        if self._optimizer_has_ckpt_event_epilogue():
            self.optimizer.checkpoint_event_epilogue()

        return state_dict

    def save_fp16_model(self, save_dir, save_filename="pytorch_model.bin"):
        """has been renamed to save_16bit_model, keeping this around for backwards
        compatibility"""
        return self.save_16bit_model(save_dir, save_filename)

    def save_16bit_model(self, save_dir, save_filename="pytorch_model.bin", exclude_frozen_parameters=False):
        """
        Save 16bit model weights

        This method saves the 16bit model weights at the desired destination.

        Arguments:
            save_dir: Required. Directory for saving the model
            save_filename: Optional. Filename to save to. Defaults to ``pytorch_model.bin``
            exclude_frozen_parameters: Optional. Exclude frozen parameters from checkpointed state.

        Returns:
            ``True`` when a model has been saved, ``False`` otherwise. It will not be saved if
            stage3_gather_16bit_weights_on_model_save is ``False``.

        Important: all processes must call this method and not just the process with rank 0. It is
        because the processes need to work in sync to gather the weights. This method will hang
        waiting to synchronize with other processes if it's called just for the process with rank 0.

        """

        path = os.path.join(save_dir, save_filename)

        if self.zero_optimization_partition_weights():
            if self.zero_gather_16bit_weights_on_model_save():
                # consolidation is expensive in time and memory and therefore isn't a default
                state_dict = self._zero3_consolidated_16bit_state_dict(
                    exclude_frozen_parameters=exclude_frozen_parameters)
            else:
                # the model will be bogus if not consolidated so don't confuse the user by saving it
                logger.info(
                    f"Did not save the model {path} because `stage3_gather_16bit_weights_on_model_save` is False")
                return False
        else:
            state_dict = self.module_state_dict(exclude_frozen_parameters=exclude_frozen_parameters)

        tag = f"global_step{self.global_steps}"
        tag = str(tag)
        self.checkpoint_engine.create(tag)

        if dist.get_rank() == 0:
            self.checkpoint_engine.makedirs(save_dir, exist_ok=True)
            logger.info(f"Saving model weights to {path}, tag: {tag}")
            self.checkpoint_engine.save(state_dict, path)

        self.checkpoint_engine.commit(tag)

        return True

    def empty_partition_cache(self):
        """
        Release GPU memory consumed by offloaded model parameters.
        """
        if hasattr(self.optimizer, 'empty_partition_cache'):
            self.optimizer.empty_partition_cache()
            gc.collect()
            get_accelerator().empty_cache()