File size: 15,392 Bytes
734b6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import types
import torch
import numpy as np
from deepspeed.accelerator import get_accelerator
from deepspeed.utils.torch import required_torch_version
from deepspeed import comm as dist
class OnebitAdam(torch.optim.Optimizer):
"""Implements the 1-bit Adam algorithm. Currently GPU-only.
For usage example please see https://www.deepspeed.ai/tutorials/onebit-adam/
For technical details please read https://arxiv.org/abs/2102.02888
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
freeze_step (int, optional): Number of steps for warmup (uncompressed)
stage before we start using compressed communication. (default 100000)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in 1-bit Adam!
eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
adds eps to the bias-corrected second moment estimate before
evaluating square root instead of adding it to the square root of
second moment estimate as in the original paper. (default: False)
cuda_aware (boolean, required): Set True if the underlying MPI implementation
supports CUDA-Aware communication. (default: False)
comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl')
.. _Adam\\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self,
params,
deepspeed=None,
lr=1e-3,
freeze_step=100000,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
eps_inside_sqrt=False,
weight_decay=0.,
max_grad_norm=0.,
amsgrad=False,
cuda_aware=False,
comm_backend_name='nccl'):
if amsgrad:
raise RuntimeError('1-bit Adam does not support the AMSGrad variant.')
defaults = dict(lr=lr,
bias_correction=bias_correction,
betas=betas,
eps=eps,
weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(OnebitAdam, self).__init__(params, defaults)
self.eps_mode = 0 if eps_inside_sqrt else 1
self.comm_time = 0.0
self.step_time = 0.0
self.ave_step = 1
self.bk_time = 0.0
self.deepspeed = deepspeed
self.adam_freeze_key = False
self.initialize = False
self.freeze_step = freeze_step
self.cuda_aware = cuda_aware
self.using_pipeline = False
self.comm_backend_name = comm_backend_name
assert dist.is_initialized(), "Please initialize the torch distributed backend."
# Empty initializer. Set handle based on the comm backend as follows.
self.comm_backend_handle = None
if self.comm_backend_name == 'nccl':
assert (
required_torch_version(min_version=1.8)
), "Please use torch 1.8 or greater to enable NCCL backend in 1-bit Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend"
from deepspeed.runtime.comm.nccl import NcclBackend
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
self.comm_backend_handle = NcclBackend(self.deepspeed.mpu)
elif self.comm_backend_name == 'mpi':
from deepspeed.runtime.comm.mpi import MpiBackend
self.comm_backend_handle = MpiBackend(cuda_aware)
elif self.comm_backend_name == 'hccl':
from deepspeed.runtime.comm.hccl import HcclBackend
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
self.comm_backend_handle = HcclBackend(self.deepspeed.mpu)
self.size = self.comm_backend_handle.size
self.divider = int(self.size * 8 / np.gcd(self.size, 8))
def step(self, closure=None, grads=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
grads (list of tensors, optional): weight gradient to use for the
optimizer update. If gradients have type torch.half, parameters
are expected to be in type torch.float. (default: None)
output params (list of tensors, optional): A reduced precision copy
of the updated weights written out in addition to the regular
updated weights. Have to be of same type as gradients. (default: None)
scale (float, optional): factor to divide gradient tensor values
by before applying to weights. (default: 1)
"""
loss = None
if closure is not None:
loss = closure()
gather_time = 0
allgather_time = 0
all_time = 0
if self.adam_freeze_key is False:
v_diff_buffer = 0.0
if grads is None:
grads_group = [None] * len(self.param_groups)
# backward compatibility
# assuming a list/generator of parameter means single group
elif isinstance(grads, types.GeneratorType):
grads_group = [grads]
elif type(grads[0]) != list:
grads_group = [grads]
else:
grads_group = grads
for group, grads_this_group in zip(self.param_groups, grads_group):
if grads_this_group is None:
grads_this_group = [None] * len(group['params'])
bias_correction = 1 if group['bias_correction'] else 0
for p, grad in zip(group['params'], grads_this_group):
if p.grad is None and grad is None:
continue
if grad is None:
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('1-bit Adam does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if not self.initialize or (self.adam_freeze_key and 'worker_error' not in state.keys()):
state['tensor_size'] = torch.numel(p.data)
state['corrected_tensor_size'] = state['tensor_size']
if state['tensor_size'] % (self.size * self.divider) != 0:
state['corrected_tensor_size'] += ((self.size * self.divider) - (state['tensor_size'] %
(self.size * self.divider)))
state['server_chunk_size'] = state['corrected_tensor_size'] // self.size
get_accelerator().empty_cache()
state['worker_error'] = torch.zeros(state['corrected_tensor_size'], device=p.device)
state['server_error'] = torch.zeros(state['server_chunk_size'], device=p.device)
get_accelerator().empty_cache()
self.adam_freeze_key = True
if not self.initialize and dist.get_rank() == 0:
print("Cupy Buffers Initialized Successfully.")
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if self.adam_freeze_key is False:
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
grad = None
if self.initialize:
update = exp_avg / (exp_avg_sq.sqrt() + group['eps'])
else:
if 'non_freeze' in group.keys() and group['non_freeze'] is True:
dist.all_reduce(grad)
grad.mul_(1 / dist.get_world_size())
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
grad = None
else:
if self.initialize is True:
exp_avg.mul_(beta1).add_(1 - beta1, grad)
grad = None
if self.size > 1:
exp_avg.set_(
self.comm_backend_handle.compressed_allreduce(exp_avg, state['worker_error'],
state['server_error'],
self.deepspeed.local_rank))
# Because 1-bit compression cannot represent exact zero, it is required to
# provide a momentum mask for those params that have constant exact zeros in their
# momentums, otherwise the compression error would keep accumulating.
# For example, for BERT pre-training seq 128, bert.embeddings.position_embeddings.weight
# always have exact zeros in its momentum for row 129 to 512, because it only
# learns up to seq length 128 while the model supports up to 512 seq length.
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.)
if 'exp_avg_mask' in group:
if exp_avg.device != group['exp_avg_mask'].device:
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=exp_avg.device)
exp_avg.mul_(group['exp_avg_mask'])
if self.initialize:
update = exp_avg / (exp_avg_sq.sqrt() + group['eps'])
if self.initialize:
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
with torch.no_grad():
p.add_(-group['lr'] * update)
if not self.initialize:
print('Pop out errors', flush=True)
state.pop('worker_error')
state.pop('server_error')
if not self.initialize:
self.adam_freeze_key = False
self.initialize = True
print(f"Finished the initialization step at rank {dist.get_rank()}")
return loss
if self.adam_freeze_key is False:
if state['step'] >= self.freeze_step:
print('OnebitAdam - starting compressed communication')
self.adam_freeze_key = True
if self.using_pipeline:
self.deepspeed.pipeline_enable_backward_allreduce = False
else:
self.deepspeed.enable_backward_allreduce = False
return loss
def load_state_dict(self, state_dict):
"""
Overrides load_state_dict() to add special handling when loading checkpoints
"""
# Because at different stage exp_avg_mask may change (e.g.,
# BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask
# in checkpoints but always use the one user provided in training script.
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.)
# Thus here we keep the exp_avg_mask unchanged when loading checkpoint
for i, group in enumerate(self.param_groups):
if 'exp_avg_mask' in group:
state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask']
elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]:
state_dict['param_groups'][i].pop('exp_avg_mask')
super().load_state_dict(state_dict)
if self.state[self.param_groups[0]['params'][0]]['step'] < self.freeze_step:
if dist.get_rank() == 0:
print("Checkpoint loaded and OnebitAdam warmup stage starts/continues.")
if self.adam_freeze_key is True:
self.adam_freeze_key = False
if self.using_pipeline:
self.deepspeed.pipeline_enable_backward_allreduce = True
else:
self.deepspeed.enable_backward_allreduce = True
else:
if dist.get_rank() == 0:
print("Checkpoint loaded and OnebitAdam compression stage starts/continues.")
if self.adam_freeze_key is False:
self.adam_freeze_key = True
if self.using_pipeline:
self.deepspeed.pipeline_enable_backward_allreduce = False
else:
self.deepspeed.enable_backward_allreduce = False
# We reset the compression errors when loading checkpoints for 3 reasons:
# 1) The worker and server error at each GPU are distinct, so in current implementation
# only rank 0's errors are saved in the checkpoint. Thus we have to reset the errors.
# If we want to save them correctly we need O(num_gpu*model_size) memory in order to
# gather all the error, which is a very large memory requirement. It's possible to save
# them in a distributed way, but it will make the checkpoint saving/loading much more complicated.
# 2) Even if we are able to save the compression errors correctly, you need to have the
# exact same number of GPUs in order to load them correctly.
# 3) We verified on BERT pre-training that occasionally resetting the compression error
# at checkpoint loading does not affect the convergence.
# However, please avoid frequent checkpoint loading which could break the error
# compensation mechanism thus affect the convergence.
for group in self.param_groups:
for p in group['params']:
if 'worker_error' in self.state[p]:
self.state[p].pop('worker_error')
if 'server_error' in self.state[p]:
self.state[p].pop('server_error')
|