File size: 20,663 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from deepspeed.inference.config import DeepSpeedInferenceConfig
from deepspeed.module_inject.replace_policy import replace_policies
from deepspeed.module_inject.utils import policy_to_ds_container
from .engine import DeepSpeedEngine
from .utils import TLinear, get_inactive_params
from deepspeed.runtime.zero import GatheredParameters
import time
import gc
import math
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from torch import nn
from deepspeed.utils import logger

from deepspeed.ops.op_builder import InferenceBuilder

from deepspeed.module_inject.layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding
try:
    import transformers
    OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding
except:
    OPTLearnedPositionalEmbedding = None
inference_cuda_module = None


class DeepSpeedHybridEngine(DeepSpeedEngine):
    r"""DeepSpeed engine for training and inference."""
    inference_mp_group = None

    def __init__(self, args, model, **kwargs):

        super().__init__(args, model, **kwargs)

        # synch seed between all GPUs
        _rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name())
        dist.broadcast(_rng_state, 0)
        get_accelerator().set_rng_state(_rng_state.cpu())

        self.Z3_enabled = (self._config.zero_config.stage == 3)
        self.gather_all_layers = self._config.hybrid_engine.pin_parameters

        # inference containers / fwds
        self._inference_containers = []
        self._orig_modules = []
        self._orig_fwds = []
        self.create_inference_module()

        # Performance stats
        self._t_start = None
        self._total_latency = 0
        self._iters = 0
        self._training_start_time = None
        self._generate_latency = 0
        self._training_latency = 0
        self._total_batch_size = None
        self._gather_latency = 0

        global inference_cuda_module
        if inference_cuda_module is None:
            builder = InferenceBuilder()
            inference_cuda_module = builder.load()

        self.is_lora_fused = False

    def convert_to_linear_transposed(self, model):

        def _replace_linear_layer(r_module, parent_type=None, prev_type=None):
            for name, child in r_module.named_children():
                if child.__class__ in [torch.nn.Linear] and \
                    (parent_type is torch.nn.ModuleList or prev_type is torch.nn.ModuleList):
                    setattr(r_module, name, TLinear(child, name))
                else:
                    _replace_linear_layer(child, type(r_module), prev_type=parent_type)
            return r_module

        _replace_linear_layer(model)

    def new_inference_container(self, orig_layer, policy_cls, layer_id):
        policy = policy_cls(orig_layer, inference=True)

        if self._config.fp16_enabled:
            inference_dtype = torch.float16
        elif self._config.bfloat16_enabled:
            inference_dtype = torch.bfloat16
        else:
            inference_dtype = torch.float32

        _container = policy_to_ds_container(
            policy=policy,
            config=DeepSpeedInferenceConfig(
                set_empty_params=True,
                dtype=inference_dtype,
                max_out_tokens=self._config.hybrid_engine.max_out_tokens,
                min_out_tokens=self._config.hybrid_engine.max_out_tokens,
                transposed_mode=True,
            ),
            model_config=self.module.config if hasattr(self.module, 'config') else None,
            layer_id=layer_id,
            child=orig_layer)

        if self.mpu is not None:
            if hasattr(self.mpu, 'get_model_parallel_world_size'):
                _container.set_tensor_parallel_config(self.mpu.get_model_parallel_world_size(),
                                                      self.mpu.get_model_parallel_group())
            else:
                _container.set_tensor_parallel_config(self.mpu.get_tensor_model_parallel_world_size(),
                                                      self.mpu.get_tensor_model_parallel_group())
        else:
            _container.set_tensor_parallel_config(self._config.hybrid_engine.inference_tp_size, self.mp_group)
        _container.initialize_tensors(enable_training=True)
        _container.create_ds_model_config()
        _container.create_module()
        _container.set_params_wo_copy(Z3_enabled=self.Z3_enabled)
        return _container

    def populate_all_inference_policies(self):
        self.inference_policies = {}
        for plcy in replace_policies:
            _ = plcy(None)
            if isinstance(plcy._orig_layer_class, list):
                for orig_layer_class in plcy._orig_layer_class:
                    self.inference_policies.update({orig_layer_class: (self.new_inference_container, plcy)})
            elif plcy._orig_layer_class is not None:
                self.inference_policies.update({plcy._orig_layer_class: (self.new_inference_container, plcy)})
        self.inference_policies.update({
            nn.Linear: (LinearLayer, ),
            nn.Embedding: (EmbeddingLayer, ),
            nn.LayerNorm: (Normalize, ),
            OPTLearnedPositionalEmbedding: (OPTEmbedding, )
        })

    def _fuse_lora_layer(self, layer_id):
        self._inference_containers[layer_id].fuse_lora()

    def fuse_lora_weight(self):
        for layer_id in range(len(self.layer_params)):
            self._fuse_lora_layer(layer_id)

    def _unfuse_lora_layer(self, layer_id):
        self._inference_containers[layer_id].unfuse_lora()

    def unfuse_lora_weight(self):
        for layer_id in range(len(self.layer_params)):
            self._unfuse_lora_layer(layer_id)

    def unfuse_lora_weight_non_pinned(self):
        for layer_id in range(len(self.layer_params)):
            non_active_params = get_inactive_params(self.layer_params[layer_id])
            non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id])
            non_active_params.extend(non_active_lora_params)

            with GatheredParameters(non_active_params):
                self._unfuse_lora_layer(layer_id)

    def retake_inference_cache(self):
        if self._config.hybrid_engine.release_inference_cache:
            retake_success = inference_cuda_module.retake_workspace()

            if not retake_success:
                logger.warning("Unable to acquire workspace on first attempt, emptying cache and retrying.")
                gc.collect()
                get_accelerator().empty_cache()
                retake_success = inference_cuda_module.retake_workspace()

                if not retake_success:
                    raise RuntimeError("Unable to retake inference workspace.")

    def generate(self, *inputs, **kwargs):
        if self._total_batch_size is None:
            bsz = inputs[0].shape[0] if len(inputs) > 0 else \
                kwargs['input_ids'].shape[0]
            self._total_batch_size = bsz * dist.get_world_size()

        self._t0 = time.time()

        if self.Z3_enabled and self.gather_all_layers:
            if self._config.hybrid_engine.inference_tp_size > 1:
                non_tp_params = []
                for other_layer in self._other_layers:
                    non_tp_params.extend(list(other_layer.parameters()))

                partition_size = self._config.hybrid_engine.tp_gather_partition_size

                layer_groups = math.ceil(len(self.layer_params) / partition_size)
                for lg in range(layer_groups):
                    non_active_params = []
                    non_active_lora_params = []
                    for layer_id in range(lg * partition_size, min(len(self.layer_params), (lg + 1) * partition_size),
                                          1):
                        non_tp_params.extend(self.layer_params[layer_id][:4])
                        non_active_params.extend(get_inactive_params(self.layer_params[layer_id]))
                        non_active_params.extend(get_inactive_params(self.layer_lora_params[layer_id]))
                    with GatheredParameters(non_active_params):
                        for layer_id in range(lg * partition_size,
                                              min(len(self.layer_params), (lg + 1) * partition_size), 1):
                            if len(self.all_lora_params) > 0:
                                self._fuse_lora_layer(layer_id)

                            if self.mpu is not None:
                                self._inference_containers[layer_id].apply_tensor_parallelism(self.mp_replace,
                                                                                              reversed_dim=True)

                # TODO(cmikeh2) Evaluate if this can be deferred when release_inference_cache
                # is enabled.
                gc.collect()
                get_accelerator().empty_cache()

                self._gather_latency = time.time() - self._t0

                input_shape = inputs[0].shape if len(inputs) > 0 else \
                                kwargs['input_ids'].shape
                output = torch.zeros(
                    (input_shape[0] * self._config.hybrid_engine.inference_tp_size, ) + input_shape[1:],
                    dtype=inputs[0].dtype if len(inputs) > 0 else kwargs['input_ids'].dtype,
                    device=inputs[0].device if len(inputs) > 0 else kwargs['input_ids'].device)
                input_cont = inputs[0].contiguous() if len(inputs) > 0 else kwargs['input_ids'].contiguous()
                dist.all_gather_into_tensor(output, input_cont, group=self.mp_group)

                if len(inputs) > 0:
                    inputs = (output, *inputs[1:])
                else:
                    kwargs['input_ids'] = output

                self.retake_inference_cache()

                non_active_params = get_inactive_params(non_tp_params)
                with GatheredParameters(non_active_params):
                    generate_ret_vals = self._generate(*inputs, **kwargs)

                for layer_id in range(len(self.layer_params)):
                    self._inference_containers[layer_id].release_memory()

                rank = dist.get_rank(group=self.mp_group)
                generate_ret_vals = generate_ret_vals[input_shape[0] * rank:input_shape[0] * (rank + 1)]

            else:
                non_active_layers = get_inactive_params(self.all_layers_params)
                non_active_lora_params = get_inactive_params(self.all_lora_params)
                non_active_layers.extend(non_active_lora_params)
                with GatheredParameters(non_active_layers):
                    self._gather_latency = time.time() - self._t0

                    if len(self.all_lora_params) > 0:
                        self.fuse_lora_weight()

                    self.retake_inference_cache()
                    generate_ret_vals = self._generate(*inputs, **kwargs)

                    if len(self.all_lora_params) > 0:
                        self.unfuse_lora_weight()
        else:
            if len(self.all_lora_params) > 0 and (not self.Z3_enabled):
                self.fuse_lora_weight()

            self.retake_inference_cache()
            generate_ret_vals = self._generate(*inputs, **kwargs)

            if len(self.all_lora_params) > 0:
                if (not self.Z3_enabled):
                    self.unfuse_lora_weight()
                else:
                    self.unfuse_lora_weight_non_pinned()
                self.is_lora_fused = False

        if self._config.hybrid_engine.release_inference_cache:
            inference_cuda_module.release_workspace()
            gc.collect()
            get_accelerator().empty_cache()

        self._generate_latency = time.time() - self._t0 - self._gather_latency

        return generate_ret_vals

    def create_inference_containers(self, module, layer_id=0):
        for name, child in module.named_children():
            if child.__class__ in self.inference_policies:
                if self.inference_policies[child.__class__][0] == self.new_inference_container:
                    self._inference_containers.append(self.inference_policies[child.__class__][0](
                        child, self.inference_policies[child.__class__][-1], layer_id))
                    self._orig_modules.append(child)
                    self._orig_fwds.append(child.forward)

                    self.layer_params.append(self._inference_containers[layer_id].get_all_params())

                    self.lora_params.append(self._inference_containers[layer_id].get_lora_params())
                    self.layer_lora_params.append([])
                    for lora_param in self.lora_params[layer_id]:
                        self.layer_lora_params[layer_id].extend(lora_param[:-1])
                        self.all_lora_params.extend(lora_param[:-1])

                    layer_id += 1
                else:
                    self._other_layers.append(self.inference_policies[child.__class__][0](
                        weight=child.weight, bias=child.bias if hasattr(child, 'bias') else None))
                    self._orig_modules_others.append(child)
                    self._orig_fwds_others.append(child.forward)
            else:
                self.create_inference_containers(child, layer_id=layer_id)

    def create_inference_module(self):
        self.layer_params = []
        self.layer_lora_params = []
        self.lora_params = []
        self.all_lora_params = []

        self._other_layers = []
        self._orig_modules_others = []
        self._orig_fwds_others = []

        if self._config.hybrid_engine.inference_tp_size > 1:
            if self.mpu is None:
                global_rank = dist.get_rank()
                world_size = dist.get_world_size()
                mp_group_id = global_rank // self._config.hybrid_engine.inference_tp_size
                num_mp_groups = world_size // self._config.hybrid_engine.inference_tp_size
                for mp_group_id in range(num_mp_groups):
                    ranks = list(
                        range(mp_group_id * self._config.hybrid_engine.inference_tp_size, \
                            (mp_group_id + 1) * self._config.hybrid_engine.inference_tp_size, \
                            1)
                    )
                    mp_group = dist.new_group(ranks)
                    if global_rank in ranks:
                        # mp_group is used for broader collective
                        self.mp_group = mp_group

                        # mp_replace is used for container tensor slicing
                        from deepspeed.module_inject import ReplaceWithTensorSlicing
                        self.mp_replace = ReplaceWithTensorSlicing(
                            mp_group=self.mp_group,
                            mp_size=self._config.hybrid_engine.inference_tp_size,
                            out_dim=0,
                            in_dim=1)

            else:
                self.mp_group = self.mpu.get_model_parallel_group() if hasattr(self.mpu, 'get_model_parallel_group') else \
                    self.mpu.get_tensor_model_parallel_group()

                from deepspeed.module_inject import ReplaceWithTensorSlicing
                self.mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group,
                                                           mp_size=self._config.hybrid_engine.inference_tp_size,
                                                           out_dim=0,
                                                           in_dim=1)
        else:
            self.mp_group = None
            self.mp_replace = None
        self.populate_all_inference_policies()
        self.all_layers_params = list(self.module.parameters())
        self.create_inference_containers(self.module)

        if len(self._inference_containers) > 0:
            self._generate = self.module.generate
            self.module.generate = self.generate

        self._t0 = time.time()

    def _zero3_forward(self, layer_id):

        def run_forward(*inputs, **kwargs):
            non_active_params = get_inactive_params(self.layer_params[layer_id])
            non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id])
            non_active_params.extend(non_active_lora_params)

            with GatheredParameters(non_active_params):
                if len(self.all_lora_params) > 0:
                    # Use the is_lora_fused flag to prevent multiple fusion in Z3 with non-pinned memory
                    if not self.is_lora_fused:
                        self._fuse_lora_layer(layer_id)
                    # Set the is_lora_fused to true when reaching the last layer
                    if layer_id == len(self.layer_params) - 1:
                        self.is_lora_fused = True
                return self._inference_containers[layer_id].module.forward(*inputs, **kwargs)

        return run_forward

    def eval(self):
        if self._t_start is not None:
            latency = time.time() - self._t_start
            self._total_latency = self._total_latency + latency
            self._iters = self._iters + 1
            if not dist.is_initialized() or dist.get_rank() == 0:
                if self._total_batch_size is not None:
                    cur_samples_p_sec = f'|CurSamplesPerSec={(1 / latency * self._total_batch_size):.2f} '
                    avg_samples_p_sec = f'|AvgSamplesPerSec={(1 / (self._total_latency / self._iters) * self._total_batch_size):.2f}'
                else:
                    cur_samples_p_sec = ''
                    avg_samples_p_sec = ''
                others = latency - (self._generate_latency + self._training_latency)
                print(f'|E2E latency={(latency):.2f}s ' + \
                      f'|Gather latency={self._gather_latency:.2f}s ({(self._gather_latency / latency * 100):.2f}%) '
                      f'|Generate time={(self._generate_latency):.2f}s ({(self._generate_latency / latency * 100):.2f}%) ' + \
                      f'|Training time={(self._training_latency):.2f}s ({(self._training_latency / latency * 100):.2f}%) ' + \
                      f'|Others={others:.2f} ({(others / latency * 100):.2f}%)' + \
                      cur_samples_p_sec + \
                      avg_samples_p_sec)
            self._t_start = time.time()
        self._training_latency = 0
        super().eval()
        if len(self._inference_containers) > 0:
            for i, (orig_module, inference_container) in enumerate(zip(self._orig_modules,
                                                                       self._inference_containers)):
                if self.Z3_enabled and not self.gather_all_layers:
                    orig_module.forward = self._zero3_forward(i)
                else:
                    orig_module.forward = inference_container.module.forward

                inference_container.transform_for_inference()

            if not self.Z3_enabled or self.gather_all_layers:
                for orig_module, inference_layer in zip(self._orig_modules_others, self._other_layers):
                    orig_module.forward = inference_layer.forward
        if self.Z3_enabled:
            gc.collect()
            get_accelerator().empty_cache()
        if self._t_start is None:
            self._t_start = time.time()

    def train(self, mode=True):
        if mode and len(self._orig_modules) > 0:
            for inference_container, orig_module, orig_fwd in zip(self._inference_containers, self._orig_modules,
                                                                  self._orig_fwds):
                inference_container.transform_for_training()
                orig_module.forward = orig_fwd
            for orig_module, orig_fwd in zip(self._orig_modules_others, self._orig_fwds_others):
                orig_module.forward = orig_fwd
        super().train(mode)
        if mode:
            self._training_start_time = time.time()

    def step(self, lr_kwargs=None):
        super().step(lr_kwargs=lr_kwargs)

        if len(self._inference_containers) > 0:
            if not self.Z3_enabled:
                for inference_container in self._inference_containers:
                    inference_container.reset_params()

        if self._training_start_time is not None:
            self._training_latency += (time.time() - self._training_start_time)
            self._training_start_time = time.time()