File size: 12,465 Bytes
179036e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import os
from typing import Dict
import torch

from .reshape_3d_utils import model_3d_desc
from .reshape_utils import (basic_folder_validation, merge_state, partition_data, get_files, get_files_with_prefix)

from .constants import (MODEL_FILE_PREFIX, LAYER_FILE_PREFIX)

from .reshape_meg_2d import reshape_meg_2d_parallel, meg_2d_parallel_map
from .zero_checkpoint import ZeROCheckpoint
from .constants import *

EMBEDDING_LAYER_INDEX = 0
FINAL_LAYER_NORM_INDEX = -1
ARGS_KEY = 'args'
CHECKPOINT_INFO_KEY = 'checkpoint_info'
ITERATION_KEY = 'iteration'

SEQUENTIAL_LAYERS = [
    'input_layernorm.weight', 'input_layernorm.bias', 'self_attention.dense.bias', 'post_attention_layernorm.weight',
    'post_attention_layernorm.bias', 'mlp.dense_4h_to_h.bias', 'position_embeddings.weight'
]

LAYER_CONCAT_DIM = {'self_attention.dense.weight': 1, 'mlp.dense_4h_to_h.weight': 1}


class DeepSpeedCheckpoint(object):

    def __init__(self, dir, tp_degree=None, pp_degree=None, dp_degree=None):
        self.dir = dir

        pipeline_parallel = len(get_files_with_prefix(get_files(dir), LAYER_FILE_PREFIX)) > 0

        self._validate_folder(dir, pipeline_parallel)

        self.zero_checkpoint = ZeROCheckpoint(dir)

        self.file_list = get_files(dir)
        self.layer_files = get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX)
        self.mp_rank_files = get_files_with_prefix(self.file_list, MODEL_FILE_PREFIX)

        self.layer_keys = self._get_layer_keys()
        self.layer_count = len(self.layer_keys)

        self.tp_degree = self.zero_checkpoint.get_src_tp_degree() if tp_degree is None else tp_degree
        self.pp_degree = self.zero_checkpoint.get_src_pp_degree() if pp_degree is None else pp_degree
        self.dp_degree = self.zero_checkpoint.get_src_dp_degree() if dp_degree is None else dp_degree

        self.original_world_size = self.zero_checkpoint.get_src_tp_degree() * self.zero_checkpoint.get_src_pp_degree(
        ) * self.zero_checkpoint.get_src_dp_degree()
        self.world_size = self.tp_degree * self.pp_degree * self.dp_degree

        self.old_2d_map = meg_2d_parallel_map(self.zero_checkpoint.get_src_pp_degree(),
                                              self.zero_checkpoint.get_src_tp_degree())
        self.old_2d_map.simple_init()
        self.new_2d_map = reshape_meg_2d_parallel(old_pp_degree=self.zero_checkpoint.get_src_pp_degree(),
                                                  old_tp_degree=self.zero_checkpoint.get_src_tp_degree(),
                                                  new_pp_degree=self.pp_degree,
                                                  new_tp_degree=self.tp_degree)

        if self.is_change_pp_degree() or self.is_change_tp_degree() or self.is_change_dp_degree():
            self.zero_checkpoint.reshape(model_3d_desc(self.pp_degree, self.tp_degree, self.dp_degree))

        self.global_state = {}

        self._sanity_check()
        self.pp_to_transformer_map = self._build_pp_transformer_map()
        self.transformer_file_map = self._build_transformer_file_map()
        self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX)
        self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX)
        self._build_global_state()

    def is_change_tp_degree(self):
        return self.tp_degree != self.zero_checkpoint.get_src_tp_degree()

    def is_change_pp_degree(self):
        return self.pp_degree != self.zero_checkpoint.get_src_pp_degree()

    def is_change_dp_degree(self):
        return self.dp_degree != self.zero_checkpoint.get_src_dp_degree()

    def show_2d_mapping(self):
        print(f'reshaped 2d map ---- begin')

        for i in range(self.pp_degree):
            for j in range(self.tp_degree):
                file_list = self.get_2d_parallel_files(pp_index=i, tp_index=j)
                print(f'[{i}, {j}] = {file_list}')

        print(f'reshaped 2d map ---- end')

    def show_tp_embedding_map(self):
        self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers')

    def show_tp_final_norm_map(self):
        self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers')

    def show_pp_transformer_map(self):
        self._dump_mapping(self.pp_to_transformer_map, 'pp_to_transformer_layers')

    def show_transformer_file_map(self):
        self._dump_mapping(self.transformer_file_map, 'rank_to_transformer_files')

    def _build_global_state(self):
        sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
        self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
        self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)

    def get_zero_checkpoint_state(self, pp_index, tp_index, dp_index) -> dict:
        return self.zero_checkpoint.get_state_for_rank(pp_index=pp_index,
                                                       tp_index=tp_index,
                                                       dp_index=dp_index,
                                                       keys_to_ignore=[PARAM_SHAPES])

    def get_zero_files(self, pp_index, tp_index, dp_index) -> list:
        return self.zero_checkpoint.get_files_for_rank(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index)

    def get_embedding_layer_id(self):
        return self.layer_keys[EMBEDDING_LAYER_INDEX]

    def get_final_norm_layer_id(self):
        return self.layer_keys[FINAL_LAYER_NORM_INDEX]

    def get_iteration(self):
        if not ITERATION_KEY in self.global_state:
            sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
            self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)

        return self.global_state[ITERATION_KEY]

    def get_embedding_state(self, tp_index: int) -> Dict:
        assert tp_index in self.tp_to_embedding_map.keys()
        sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]]
        sd = self._merge_state_dicts(sd_list)
        return sd

    def get_embedding_files(self, tp_index: int) -> list:
        assert tp_index in self.tp_to_embedding_map.keys()
        return self.tp_to_embedding_map[tp_index]

    def _get_checkpoint_value(self, key):
        if not key in self.global_state:
            sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
            self.global_state[key] = sd.get(key, None)

        return self.global_state[key]

    def get_args(self):
        return self._get_checkpoint_value(ARGS_KEY)

    def get_checkpoint_info(self, info_key=CHECKPOINT_INFO_KEY):
        return self._get_checkpoint_value(info_key)

    def get_2d_parallel_state(self, tp_index: int, pp_index: int) -> dict:
        assert tp_index < self.tp_degree
        assert pp_index < self.pp_degree
        fname_list = self.get_2d_parallel_files(tp_index=tp_index, pp_index=pp_index)
        sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]

        merged_sd = None
        for sd in sd_list:
            if merged_sd is None:
                merged_sd = sd
            else:
                merged_sd = merge_state(merged_sd, sd)

        return merged_sd

    def get_transformer_state(self, tp_index: int, pp_index: int) -> list:
        assert tp_index < self.tp_degree
        assert pp_index < self.pp_degree
        t_list = []
        for fname_list in self.transformer_file_map[(tp_index, pp_index)]:
            sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]
            sd = self._merge_state_dicts(sd_list)
            t_list.append(sd)
        return t_list

    def get_pp_transformer_map(self, pp_index: int) -> list:
        assert pp_index < self.pp_degree
        return self.pp_to_transformer_map[pp_index]

    def get_final_norm_state(self, tp_index: int) -> Dict:
        assert tp_index in self.tp_to_final_norm_map.keys()
        sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu'))
        return sd

    def get_final_norm_files(self, tp_index: int) -> list:
        assert tp_index in self.tp_to_final_norm_map.keys()
        return self.tp_to_final_norm_map[tp_index]

    def _build_tp_other_layer_map(self, layer_index: int):
        data_map = {}
        if len(self.layer_files) < 1:
            return data_map
        assert layer_index <= len(self.layer_files)
        layer_files = get_files_with_prefix(self.layer_files, self.layer_keys[layer_index])
        layer_file_partitions = partition_data(layer_files, self.tp_degree)
        data_map = {i: flist for i, flist in enumerate(layer_file_partitions)}
        return data_map

    def get_2d_parallel_files(self, tp_index: int, pp_index: int) -> list:
        assert tp_index < self.tp_degree
        assert pp_index < self.pp_degree
        file_indices = self.new_2d_map.get_data(pp_index=pp_index, tp_index=tp_index)
        return [self.mp_rank_files[i] for i in file_indices]

    def _build_pp_transformer_map(self):
        data_map = {}
        if self.pp_degree > 0:
            transformer_layers = self.layer_keys[1:-1]
            layers_per_pp = len(transformer_layers) // self.pp_degree
            data_map = {
                i: transformer_layers[i * layers_per_pp:(i + 1) * layers_per_pp]
                for i in range(0, self.pp_degree)
            }
        return data_map

    def _dump_mapping(self, data_map, map_tag=None):
        if map_tag is not None:
            print(f'Dump mapping: {map_tag}')
        for k, v in data_map.items():
            print(f'{k} = {v}')

    def _build_transformer_file_map(self):
        transformer_layer_keys = self.layer_keys[1:-1]
        file_map = {}
        # XXX: this is not guaranteed
        layers_per_pp = 1
        if self.pp_degree > 0:
            layers_per_pp = len(transformer_layer_keys) // self.pp_degree
        #print(f"{transformer_layer_keys} {layers_per_pp}")
        for key_index, layer_key in enumerate(transformer_layer_keys):
            pp_index = key_index // layers_per_pp
            layer_files = get_files_with_prefix(self.layer_files, layer_key)
            layer_file_partitions = partition_data(layer_files, self.tp_degree)
            for tp_index in range(self.tp_degree):
                map_key = (tp_index, pp_index)
                if not map_key in file_map.keys():
                    file_map[map_key] = []
                file_map[map_key].append(layer_file_partitions[tp_index])

        return file_map

    def _sanity_check(self):
        assert len(self.mp_rank_files) % self.tp_degree == 0
        assert self.zero_checkpoint.num_files % (self.pp_degree * self.tp_degree) == 0
        assert self.zero_checkpoint.num_files % (self.tp_degree) == 0
        # XXX: fix me - isn't always the case
        # only true with  --pp-partition-method 'type:transformer|embedding' \
        # assert (len(self.layer_keys) - 2) % self.pp_degree == 0

    def validate_files(self):
        for file in self.file_list:
            if not os.path.isfile(file):
                print(f'Error: {file} is not existent')

    def _get_layer_keys(self):
        key_set = set()
        key_len = len(LAYER_FILE_PREFIX) + 2
        for file_path in self.layer_files:
            _, fname = os.path.split(file_path)
            key_set.add(fname[:key_len])
        return sorted(list(key_set))

    def _merge_state_dicts(self, sd_list):
        merged_sd = {}
        for key in sd_list[0].keys():
            if not key in SEQUENTIAL_LAYERS:
                cat_dim = LAYER_CONCAT_DIM.get(key, 0)
                merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim)
            else:
                merged_sd[key] = sd_list[0][key]

        return merged_sd

    def _validate_folder(self, dir, pipeline_parallel):
        basic_folder_validation(dir)

        file_list = get_files(dir)
        file_prefix_list = [MODEL_FILE_PREFIX]
        if pipeline_parallel:
            file_prefix_list.extend([LAYER_FILE_PREFIX, f'{LAYER_FILE_PREFIX}01'])
        for file_prefix in file_prefix_list:
            ckpt_files = get_files_with_prefix(file_list, file_prefix)
            assert len(
                ckpt_files
            ) > 0, f'{dir} seems a bogus DeepSpeed checkpoint folder: Cannot find {file_prefix}* files in there.'