File size: 5,421 Bytes
179036e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch

from .constants import (BASE_OPTIMIZER_STATE, GROUP_PADDINGS, OPTIMIZER_STATE_DICT, PARTITION_COUNT)

from .reshape_utils import (basic_folder_validation, get_zero_files, merge_state)

from .reshape_3d_utils import (model_3d_desc, get_model_3d_descriptor)

GROUP_STATE_KEY = 'state'


class ZeROCheckpoint(object):

    def __init__(self, dir):
        basic_folder_validation(dir)
        self.dir = dir
        self.file_list = get_zero_files(dir)
        self.num_files = len(self.file_list)
        assert self.num_files > 0, f'No ZeRO files found in {dir}'

        self.src_3d = get_model_3d_descriptor(dir)
        self.target_3d = model_3d_desc(pp_degree=self.src_3d.pp_degree,
                                       tp_degree=self.src_3d.tp_degree,
                                       dp_degree=self.src_3d.dp_degree)
        self._3d_file_map = self.src_3d.reshape(self.target_3d)

    def get_src_world_size(self):
        return self.src_3d.world_size()

    def get_src_tp_degree(self):
        return self.src_3d.tp_degree

    def get_src_pp_degree(self):
        return self.src_3d.pp_degree

    def get_src_dp_degree(self):
        return self.src_3d.dp_degree

    def get_file_indices_for_rank(self, pp_index, tp_index, dp_index):
        assert dp_index < len(self._3d_file_map), f'DP index {dp_index} >= DP degree {len(self._3d_file_map)}'
        dp_2d_map = self._3d_file_map[dp_index]
        return dp_2d_map.get_data(pp_index, tp_index)

    def get_files_for_rank(self, pp_index, tp_index, dp_index):
        file_idx_list = self.get_file_indices_for_rank(pp_index, tp_index, dp_index)
        return [self.file_list[idx] for idx in file_idx_list]

    def get_state_for_rank(self, pp_index, tp_index, dp_index, keys_to_ignore=[], strip_tensor_paddings=True):
        state_file_list = self.get_files_for_rank(pp_index, tp_index, dp_index)
        merged_sd = None
        for state_file in state_file_list:
            sd = torch.load(state_file, map_location=torch.device('cpu'))
            for key in keys_to_ignore:
                sd.pop(key, None)

            if strip_tensor_paddings:
                self._strip_tensor_paddings(sd)

            if merged_sd is None:
                merged_sd = sd
            else:
                merged_sd = merge_state(merged_sd, sd)

            self._update_partition_count(merged_sd)
            if strip_tensor_paddings:
                self._clear_group_paddings(merged_sd)

        return merged_sd

    def print_3d_index_map(self, tag=None):
        if tag:
            print(f'3D index map: {tag}')
        for dp_index, _2d_map in enumerate(self._3d_file_map):
            _2d_map.print_data(f'dp = {dp_index}')

    def print_3d_file_map(self, tag=None):
        if tag:
            print(f'3D file map: {tag}')
        for dp_index, _2d_map in enumerate(self._3d_file_map):
            for pp_index in _2d_map.pp_degree:
                for tp_index in _2d_map.tp_degree:
                    file_index_list = _2d_map.get_data(pp_index, tp_index)
                    file_list = [self.file_list[idx] for idx in file_index_list]
                    print(f'{pp_index}, {tp_index}, {dp_index} => {file_list}')

    def reshape(self, target_3d_desc: model_3d_desc):
        self.target_3d = target_3d_desc
        self._3d_file_map = self.src_3d.reshape(self.target_3d)

    def _strip_tensor_paddings(self, sd):
        param_group_states = self._get_param_group_states(sd)
        if param_group_states is None:
            return

        group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS)
        if group_paddings is None:
            return

        for key, group_state in param_group_states.items():
            if group_paddings[key] == 0:
                continue
            for state_name, state_value in group_state.items():
                if state_name != "step" and torch.is_tensor(state_value):
                    raw_length = state_value.numel() - group_paddings[key]
                    group_state[state_name] = torch.narrow(state_value, 0, 0, raw_length).clone()
                else:
                    group_state[state_name] = state_value

    def _clear_group_paddings(self, sd):
        group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS)
        if group_paddings:
            num_groups = len(group_paddings)
            sd[OPTIMIZER_STATE_DICT][GROUP_PADDINGS] = [0] * num_groups

    def _get_optimizer_state(self, sd, state_key):
        optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None)
        if optimizer_state is None:
            return None

        return optimizer_state.get(state_key, None)

    def _get_param_group_states(self, sd):
        optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None)
        if optimizer_state is None:
            return None

        base_optimizer_state = optimizer_state.get(BASE_OPTIMIZER_STATE, None)
        if base_optimizer_state is None:
            return None

        return base_optimizer_state.get(GROUP_STATE_KEY, None)

    def _update_partition_count(self, sd):
        partition_counts = self._get_optimizer_state(sd, PARTITION_COUNT)
        if partition_counts:
            num_groups = len(partition_counts)
            sd[OPTIMIZER_STATE_DICT][PARTITION_COUNT] = [self.target_3d.dp_degree] * num_groups