File size: 36,047 Bytes
179036e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
import math
from torch import nn
from torch.nn import init
import deepspeed.comm as dist
from .utils import TopKBinarizer, SymQuantizer, AsymQuantizer, TernaryQuantizer, BinaryQuantizer
from deepspeed.utils import logger
g_mpu = None
class QuantAct(nn.Module):
"""
Class to quantize given activations. Note that when using this function, the input activation quantization range will be fixed for all
tokens/images for inference. This generally will affect some accuracy but achieve better latency performance.
Parameters:
----------
act_range_momentum : float, default 0.95
Momentum for updating the activation quantization range.
quant_mode : str, default 'symmetric'
"""
def __init__(self, act_range_momentum=0.95, quant_mode='symmetric'):
super(QuantAct, self).__init__()
self.act_range_momentum = act_range_momentum
self.quant_mode = quant_mode
if quant_mode == 'symmetric':
self.act_function = SymQuantizer.apply
else:
self.act_function = AsymQuantizer.apply
self.register_buffer('x_min_max', torch.zeros(2))
def forward(self, x, num_bits, *args):
"""
x: the activation that we need to quantize
num_bits: the number of bits we need to quantize the activation to
*args: some extra arguments that are useless but needed for align with the interface of other quantization functions
"""
if self.training:
x_min = x.data.min()
x_max = x.data.max()
# Initialization
if self.x_min_max[0] == self.x_min_max[1]:
self.x_min_max[0] = x_min
self.x_min_max[1] = x_max
# if do not need momentum, please set self.act_range_momentum = 0
self.x_min_max[0] = self.x_min_max[0] * self.act_range_momentum + x_min * (1 - self.act_range_momentum)
self.x_min_max[1] = self.x_min_max[1] * self.act_range_momentum + x_max * (1 - self.act_range_momentum)
x_q = self.act_function(x, num_bits, self.x_min_max[0], self.x_min_max[1])
return x_q
class Embedding_Compress(nn.Embedding):
def __init__(self, *kargs):
super(Embedding_Compress, self).__init__(*kargs)
self.weight.start_bits = None
self.weight.target_bits = None
self.weight.q_period = None
self.weight_quantization_enabled_in_forward = False
self.weight_quantization_enabled = False
def extra_repr(self):
return 'num_embeddings={}, embedding_dim={}, weight_quantization={}'.format(
self.num_embeddings, self.embedding_dim, self.weight.target_bits)
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
weight_quantization_enabled_in_forward, quantization_type, num_groups):
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = quantization_period
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
if self.weight_quantization_enabled_in_forward:
logger.warning(
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
)
if self.weight.target_bits >= 3:
if quantization_type == 'symmetric':
self.weight_quantizer = SymQuantizer.apply
else:
self.weight_quantizer = AsymQuantizer.apply
elif self.weight.target_bits == 2:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for ternary weight quantization'
self.weight_quantizer = TernaryQuantizer.apply
elif self.weight.target_bits == 1:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for binary weight quantization'
self.weight_quantizer = BinaryQuantizer.apply
# for embedding, we always use token-wise quantization
self.weight_quantize_num_groups = self.weight.size(0)
def fix_weight_quantization(self):
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups).data
self.weight_quantization_enabled_in_forward = False
return None
def forward(self, input):
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups)
else:
weight = self.weight
out = nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type,
self.scale_grad_by_freq, self.sparse)
return out
class LinearLayer_Compress(nn.Linear):
"""
Linear layer with compression.
"""
def __init__(self, *kargs, bias=True):
super(LinearLayer_Compress, self).__init__(*kargs, bias=bias)
self.sparse_pruning_method = None
self.row_pruning_method = None
self.head_pruning_method = None
self.activation_quantization_method = None
self.weight.start_bits = None
self.weight.target_bits = None
self.weight.q_period = None
self.weight_quantization_enabled_in_forward = False
self.weight_quantization_enabled = False
self.sparse_pruning_enabled = False
self.row_pruning_enabled = False
self.head_pruning_enabled = False
self.activation_quantization_enabled = False
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}, sparse pruning={}, row pruning={}, head pruning={}, activation quantization={}, weight_quantization={}'.format(
self.in_features, self.out_features, self.bias is not None, self.sparse_pruning_method is not None, \
self.row_pruning_method is not None, self.head_pruning_method is not None, self.activation_quantization_method is not None, self.weight.target_bits)
def enable_sparse_pruning(self, ratio, method):
# Here, we support two cases: L1 norm based pruning and topk based pruning
self.sparse_pruning_ratio = ratio
self.sparse_pruning_method = method
if method == 'l1':
weight_norm = torch.abs(self.weight.data)
mask = TopKBinarizer.apply(weight_norm, self.sparse_pruning_ratio, False)
mask = mask.view(self.weight.size())
mask = mask.to(self.weight.device)
elif method == 'topk':
self.sparse_mask_scores = nn.Parameter(torch.Tensor(self.weight.size()))
self.sparse_mask_scores.data = self.sparse_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.sparse_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('sparse_pruning_mask', mask)
def enable_row_pruning(self, ratio, method):
# Here, we support two cases: L1 norm based pruning and topk based pruning
self.row_pruning_ratio = ratio
self.row_pruning_method = method
if method == 'l1':
# compute the l1 norm of each column
weight_norm = torch.linalg.norm(self.weight.data, ord=1, dim=1)
mask = TopKBinarizer.apply(weight_norm, self.row_pruning_ratio, False)
mask = mask.view(-1, 1)
mask = mask.to(self.weight.device)
elif method == 'topk':
self.row_mask_scores = nn.Parameter(torch.Tensor(self.weight.size(0), 1))
self.row_mask_scores.data = self.row_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.row_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('row_pruning_mask', mask)
def enable_head_pruning(self, ratio, method, num_heads):
# Here, we support only topk based pruning
self.num_heads = num_heads
self.head_pruning_ratio = ratio
self.head_pruning_method = method
if method not in ['topk']:
raise NotImplementedError
else:
self.head_pruning_ratio = ratio
self.head_pruning_scores = nn.Parameter(torch.Tensor(1,
self.num_heads)) # we apply the pruning to O matrix
self.head_pruning_scores.data = self.head_pruning_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.head_pruning_scores, a=math.sqrt(5))
def fix_sparse_pruning_helper(self):
mask = self.get_mask(pruning_type='sparse')
self.weight.data = self.weight.data * mask
del self.sparse_pruning_mask
if self.sparse_pruning_method == 'topk':
del self.sparse_mask_scores
self.sparse_pruning_method = None
self.sparse_pruning_enabled = False
return None
def fix_row_col_pruning_helper(self, mask=None, dim_reduction=False):
# This function is used for row/col pruning
# particularly, if we have two back-to-back layers, F1 and F2; when
# we remove rows from F1, we also need to remove columns from F2
# However, if we only have one layer, F1, then we only need to mask pruned
# rows as 0 in F1
if mask is None:
mask = self.get_mask(pruning_type='row').bool()
if dim_reduction:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[mask.view(-1), :])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
if self.bias is not None:
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
self.out_features = self.weight.size(0)
else:
self.weight.data = self.weight.data * mask.view(-1, 1)
if self.bias is not None:
self.bias.data = self.bias.data * mask.view(-1)
del self.row_pruning_mask
if self.row_pruning_method == 'topk':
del self.row_mask_scores
self.row_pruning_method = None
else:
# this is generally for column pruning
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[:, mask.view(-1)])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
self.in_features = self.weight.size(1)
mask = None
self.row_pruning_enabled = False
return mask
def fix_head_pruning_helper(self, mask=None, num_heads=None, dim_reduction=False):
# similar as row/col pruning, head pruning also needs to prune QKV which is associated with O matrix
num_heads = num_heads if num_heads else self.num_heads
if mask is None:
if self.head_pruning_method == 'topk':
mask = self.get_mask(pruning_type='head').bool()
if dim_reduction:
shape = self.weight.size(0)
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data.t().reshape(num_heads,
-1)[mask.view(-1), :].reshape(-1,
shape).t())
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
else:
shape = self.weight.size()
self.weight.data = (self.weight.data.t().reshape(self.num_heads, -1) * mask.view(-1, 1)).reshape(
shape[1], shape[0]).t()
if self.head_pruning_method == 'topk':
del self.head_pruning_scores
self.head_pruning_method = None
else:
raise NotImplementedError
else:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
shape = self.weight.size(1)
self.weight = nn.Parameter(self.weight.data.reshape(num_heads, -1)[mask.view(-1), :].reshape(-1, shape))
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
if self.bias is not None:
self.bias = nn.Parameter(self.bias.data.reshape(num_heads, -1)[mask.view(-1), :].reshape(-1))
self.head_pruning_enabled = False
return mask
def get_mask(self, pruning_type='row'):
if pruning_type == 'sparse':
if self.sparse_pruning_method == 'l1':
return self.sparse_pruning_mask.to(self.weight.device)
elif self.sparse_pruning_method == 'topk':
return TopKBinarizer.apply(self.sparse_mask_scores, self.sparse_pruning_ratio, False)
else:
raise NotImplementedError
if pruning_type == 'row':
if self.row_pruning_method == 'l1':
return self.row_pruning_mask.to(self.weight.device)
elif self.row_pruning_method == 'topk':
return TopKBinarizer.apply(self.row_mask_scores, self.row_pruning_ratio, False)
else:
raise NotImplementedError
elif pruning_type == 'head':
if self.head_pruning_method == 'topk':
return TopKBinarizer.apply(self.head_pruning_scores, self.head_pruning_ratio, False)
else:
raise NotImplementedError
else:
raise NotImplementedError
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
weight_quantization_enabled_in_forward, quantization_type, num_groups):
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = quantization_period
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
if self.weight_quantization_enabled_in_forward:
logger.warning(
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
)
if self.weight.target_bits >= 3:
if quantization_type == 'symmetric':
self.weight_quantizer = SymQuantizer.apply
else:
self.weight_quantizer = AsymQuantizer.apply
elif self.weight.target_bits == 2:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for ternary weight quantization'
self.weight_quantizer = TernaryQuantizer.apply
elif self.weight.target_bits == 1:
assert quantization_type == 'symmetric', 'Only symmetric quantization is supported for binary weight quantization'
self.weight_quantizer = BinaryQuantizer.apply
self.weight_quantize_num_groups = num_groups
def fix_weight_quantization(self):
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups).data
self.weight_quantization_enabled_in_forward = False
return None
def enable_activation_quantization(self, bits, quantization_type, range_calibration):
assert bits in [4, 8], 'Only 4/8 bits activation quantization are supported for now'
self.activation_quantization_bits = bits
self.activation_quantization_method = f"{quantization_type}_{range_calibration}"
if range_calibration == 'static':
self.activation_quantizer = QuantAct(quant_mode=quantization_type)
else:
if quantization_type == 'symmetric':
self.activation_quantizer = SymQuantizer.apply
else:
self.activation_quantizer = AsymQuantizer.apply
def head_pruning_reshape(self, w, mask):
shape = w.shape
return (w.t().reshape(self.num_heads, -1) * mask.view(-1, 1)).reshape(shape[1], shape[0]).t()
def forward(self, input, skip_bias_add=False):
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups)
bias = self.bias
else:
weight = self.weight
bias = self.bias
if self.sparse_pruning_enabled and self.sparse_pruning_method:
mask = self.get_mask(pruning_type='sparse')
weight = weight * mask.view(self.weight.size())
if self.row_pruning_enabled and self.row_pruning_method:
mask = self.get_mask(pruning_type='row')
weight = weight * mask.view(-1, 1)
if bias is not None:
bias = bias * mask.view(-1)
if self.head_pruning_enabled and self.head_pruning_method:
mask = self.get_mask(pruning_type='head')
weight = self.head_pruning_reshape(weight, mask)
if self.activation_quantization_enabled:
if 'dynamic' in self.activation_quantization_method:
num_groups = input.numel() // input.size(-1)
else:
num_groups = 1
input = self.activation_quantizer(input, self.activation_quantization_bits, None, None, num_groups)
if skip_bias_add:
# used for mpu linear layers
output = nn.functional.linear(input, weight, None)
return output, bias
else:
output = nn.functional.linear(input, weight, bias)
return output
class Conv2dLayer_Compress(nn.Conv2d):
"""
Conv2D layer with compression.
"""
def __init__(self, *kargs):
super(Conv2dLayer_Compress, self).__init__(*kargs)
self.sparse_pruning_method = None
self.channel_pruning_method = None
self.activation_quantization_method = None
self.weight.start_bits = None
self.weight.target_bits = None
self.weight.q_period = None
self.weight_quantization_enabled_in_forward = False
self.sparse_pruning_enabled = False
self.channel_pruning_enabled = False
self.activation_quantization_enabled = False
def __repr__(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0, ) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1, ) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0, ) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
if self.padding_mode != 'zeros':
s += ', padding_mode={padding_mode}'
output = s.format(**self.__dict__)
return output + ' sparse pruning={}, channel pruning={}, activation quantization={}, weight_quantization={}'.format(
self.sparse_pruning_method is not None, self.channel_pruning_method is not None,
self.activation_quantization_method is not None, self.weight.target_bits)
def enable_sparse_pruning(self, ratio, method):
self.sparse_pruning_ratio = ratio
self.sparse_pruning_method = method
if method == 'l1':
weight_norm = torch.abs(self.weight.data)
mask = TopKBinarizer.apply(weight_norm, self.sparse_pruning_ratio, False)
mask = mask.view(self.weight.size())
mask = mask.to(self.weight.device)
elif method == 'topk':
self.sparse_mask_scores = nn.Parameter(torch.Tensor(self.weight.size()))
self.sparse_mask_scores.data = self.sparse_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.sparse_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('sparse_pruning_mask', mask)
def enable_channel_pruning(self, ratio, method):
# Here, we support two cases: L1 norm based pruning and topk based pruning
self.channel_pruning_ratio = ratio
self.channel_pruning_method = method
if method == 'l1':
# compute the l1 norm of each conv2d kernel (the last three dimension)
weight_norm = torch.linalg.norm(self.weight.data, ord=1, dim=[1, 2, 3])
mask = TopKBinarizer.apply(weight_norm, self.channel_pruning_ratio, False)
mask = mask.view(-1, 1, 1, 1)
mask = mask.to(self.weight.device)
elif method == 'topk':
self.channel_mask_scores = nn.Parameter(torch.Tensor(self.weight.size(0), 1, 1, 1))
self.channel_mask_scores.data = self.channel_mask_scores.data.to(self.weight.device)
init.kaiming_uniform_(self.channel_mask_scores, a=math.sqrt(5))
mask = None
else:
raise NotImplementedError
self.register_buffer('channel_pruning_mask', mask)
def fix_sparse_pruning_helper(self):
mask = self.get_mask(pruning_type='sparse')
self.weight.data = self.weight.data * mask
del self.sparse_pruning_mask
if self.sparse_pruning_method == 'topk':
del self.sparse_mask_scores
self.sparse_pruning_method = None
self.sparse_pruning_enabled = False
return None
def fix_channel_pruning_helper(self, mask=None, dim_reduction=False):
if mask is None:
if self.channel_pruning_method in ['l1', 'topk']:
mask = self.get_mask(pruning_type='channel').bool()
if dim_reduction:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[mask.view(-1), ...])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
if self.bias is not None:
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
else:
self.weight.data = self.weight.data * mask.view(-1, 1, 1, 1)
if self.bias is not None:
self.bias.data = self.bias.data * mask.view(-1)
del self.channel_pruning_mask
if self.channel_pruning_method == 'topk':
del self.channel_mask_scores
self.channel_pruning_method = None
else:
raise NotImplementedError
else:
start_bits = self.weight.start_bits
target_bits = self.weight.target_bits
q_period = self.weight.q_period
self.weight = nn.Parameter(self.weight.data[:, mask.view(-1), ...])
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = q_period
mask = None
self.channel_pruning_enabled = False
return mask
def get_mask(self, pruning_type='sparse'):
if pruning_type == 'sparse':
if self.sparse_pruning_method == 'l1':
return self.sparse_pruning_mask.to(self.weight.device)
elif self.sparse_pruning_method == 'topk':
return TopKBinarizer.apply(self.sparse_mask_scores, self.sparse_pruning_ratio, False)
else:
raise NotImplementedError
elif pruning_type == 'channel':
if self.channel_pruning_method == 'l1':
return self.channel_pruning_mask.to(self.weight.device)
elif self.channel_pruning_method == 'topk':
return TopKBinarizer.apply(self.channel_mask_scores, self.channel_pruning_ratio, False)
else:
raise NotImplementedError
else:
raise NotImplementedError
def fix_weight_quantization(self):
self.weight.data = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups).data
self.weight_quantization_enabled_in_forward = False
return None
def enable_weight_quantization(self, start_bits, target_bits, quantization_period,
weight_quantization_enabled_in_forward, quantization_type, num_groups):
self.weight.start_bits = start_bits
self.weight.target_bits = target_bits
self.weight.q_period = quantization_period
self.weight_quantization_enabled_in_forward = weight_quantization_enabled_in_forward
if self.weight_quantization_enabled_in_forward:
assert self.weight.target_bits >= 4, 'Only >=4 bits weight quantization are supported during forward pass for now'
logger.warning(
"************ A lot of MoQ features are not supported in quantize_weight_in_forward mode, please consider to use DS-FP16 optimizer************"
)
if quantization_type == 'symmetric':
self.weight_quantizer = SymQuantizer.apply
else:
self.weight_quantizer = AsymQuantizer.apply
self.weight_quantize_num_groups = num_groups
def enable_activation_quantization(self, bits, quantization_type, range_calibration):
assert bits in [4, 8], 'Only 4/8 bits activation quantization are supported for now'
self.activation_quantization_bits = bits
self.activation_quantization_method = f"{quantization_type}_{range_calibration}"
if range_calibration == 'static':
self.activation_quantizer = QuantAct(quant_mode=quantization_type)
else:
if quantization_type == 'symmetric':
self.activation_quantizer = SymQuantizer.apply
else:
self.activation_quantizer = AsymQuantizer.apply
def forward(self, input):
if self.weight_quantization_enabled_in_forward and self.weight_quantization_enabled:
weight = self.weight_quantizer(self.weight, self.weight.target_bits, None, None,
self.weight_quantize_num_groups)
bias = self.bias
else:
weight = self.weight
bias = self.bias
if self.sparse_pruning_enabled and self.sparse_pruning_method:
mask = self.get_mask(pruning_type='sparse')
weight = weight * mask.view(self.weight.size())
if self.channel_pruning_enabled:
mask = self.get_mask(pruning_type='channel')
weight = weight * mask.view(-1, 1, 1, 1)
if bias is not None:
bias = bias * mask.view(-1)
if self.activation_quantization_enabled:
if 'dynamic' in self.activation_quantization_method:
num_groups = input.numel() // input[0].numel()
else:
num_groups = 1
input = self.activation_quantizer(input, self.activation_quantization_bits, None, None, num_groups)
return nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class BNLayer_Compress(nn.BatchNorm2d):
def fix_channel_pruning_helper(self, mask, dim_reduction=True):
self.weight = nn.Parameter(self.weight.data[mask.view(-1)])
self.bias = nn.Parameter(self.bias.data[mask.view(-1)])
self.running_mean = self.running_mean[mask.view(-1)]
self.running_var = self.running_var[mask.view(-1)]
def _reduce(input_):
"""All-reduce the input tensor across model parallel group."""
group = g_mpu.get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if dist.get_world_size(group=group) == 1:
return input_
# All-reduce.
dist.all_reduce(input_, group=group)
return input_
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False):
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
assert tensor.size()[last_dim] % num_partitions == 0
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
def _split(input_):
"""Split the tensor along its last dimension and keep the
corresponding slice."""
group = g_mpu.get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if dist.get_world_size(group=group) == 1:
return input_
# Split along last dimension.
world_size = dist.get_world_size(group=group)
input_list = split_tensor_along_last_dim(input_, world_size)
# Note: torch.split does not create contiguous tensors by default.
rank = dist.get_rank(group=group)
output = input_list[rank].contiguous()
return output
def _gather(input_):
"""Gather tensors and concatenate along the last dimension."""
group = g_mpu.get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if dist.get_world_size(group=group) == 1:
return input_
# Size and dimension.
last_dim = input_.dim() - 1
rank = dist.get_rank(group=group)
world_size = dist.get_world_size(group=group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
dist.all_gather(tensor_list, input_, group=group)
# Note: torch.cat already creates a contiguous tensor.
output = torch.cat(tensor_list, dim=last_dim).contiguous()
return output
class _CopyToModelParallelRegion(torch.autograd.Function):
"""Pass the input to the model parallel region."""
@staticmethod
def forward(ctx, input_):
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output)
class _ReduceFromModelParallelRegion(torch.autograd.Function):
"""All-reduce the input from the model parallel region."""
@staticmethod
def forward(ctx, input_):
return _reduce(input_)
@staticmethod
def backward(ctx, grad_output):
return grad_output
class _ScatterToModelParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chuck to the rank."""
@staticmethod
def forward(ctx, input_):
return _split(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output)
class _GatherFromModelParallelRegion(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate."""
@staticmethod
def forward(ctx, input_):
return _gather(input_)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output)
# -----------------
# Helper functions.
# -----------------
def copy_to_model_parallel_region(input_):
return _CopyToModelParallelRegion.apply(input_)
def reduce_from_model_parallel_region(input_):
return _ReduceFromModelParallelRegion.apply(input_)
def scatter_to_model_parallel_region(input_):
return _ScatterToModelParallelRegion.apply(input_)
def gather_from_model_parallel_region(input_):
return _GatherFromModelParallelRegion.apply(input_)
class ColumnParallelLinear_Compress(LinearLayer_Compress):
def __init__(self, mpu, input_size, output_size, bias=True, gather_output=True, skip_bias_add=False):
# Keep input parameters
global g_mpu
g_mpu = mpu
self.input_size = input_size
self.output_size = output_size
self.gather_output = gather_output
self.skip_bias_add = skip_bias_add
# Divide the weight matrix along the last dimension.
world_size = mpu.get_model_parallel_world_size()
assert output_size % world_size == 0
self.output_size_per_partition = output_size // world_size
super(ColumnParallelLinear_Compress, self).__init__(self.input_size, self.output_size_per_partition, bias=bias)
def forward(self, input_):
# Set up backprop all-reduce.
input_parallel = copy_to_model_parallel_region(input_)
# Matrix multiply.
if self.skip_bias_add:
output_parallel, bias = super().forward(input_parallel, True)
else:
output_parallel = super().forward(input_parallel)
bias = None
if self.gather_output:
# All-gather across the partitions.
output = gather_from_model_parallel_region(output_parallel)
else:
output = output_parallel
return output, bias
class RowParallelLinear_Compress(LinearLayer_Compress):
def __init__(self, mpu, input_size, output_size, bias=True, input_is_parallel=False, skip_bias_add=False):
# Keep input parameters
global g_mpu
g_mpu = mpu
self.input_size = input_size
self.output_size = output_size
self.input_is_parallel = input_is_parallel
self.skip_bias_add = skip_bias_add
# Divide the weight matrix along the last dimension.
world_size = mpu.get_model_parallel_world_size()
assert input_size % world_size == 0
self.input_size_per_partition = input_size // world_size
super(RowParallelLinear_Compress, self).__init__(self.input_size_per_partition, self.output_size, bias=bias)
def forward(self, input_):
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
input_parallel = scatter_to_model_parallel_region(input_)
# Matrix multiply.
output_parallel, bias = super().forward(input_parallel, True)
# All-reduce across all the partitions.
output_ = reduce_from_model_parallel_region(output_parallel)
if not self.skip_bias_add:
if bias is not None:
output = output_ + bias
else:
output = output_
output_bias = None
else:
output = output_
output_bias = bias
return output, output_bias
|