File size: 16,095 Bytes
6cf19f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import warnings
import numpy as np
from scipy.linalg import eig
from scipy.special import comb
from scipy.signal import convolve
__all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'morlet2', 'cwt']
_msg="""scipy.signal.%s is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
"""
def daub(p):
"""
The coefficients for the FIR low-pass filter producing Daubechies wavelets.
.. deprecated:: 1.12.0
scipy.signal.daub is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
p>=1 gives the order of the zero at f=1/2.
There are 2p filter coefficients.
Parameters
----------
p : int
Order of the zero at f=1/2, can have values from 1 to 34.
Returns
-------
daub : ndarray
Return
"""
warnings.warn(_msg % 'daub', DeprecationWarning, stacklevel=2)
sqrt = np.sqrt
if p < 1:
raise ValueError("p must be at least 1.")
if p == 1:
c = 1 / sqrt(2)
return np.array([c, c])
elif p == 2:
f = sqrt(2) / 8
c = sqrt(3)
return f * np.array([1 + c, 3 + c, 3 - c, 1 - c])
elif p == 3:
tmp = 12 * sqrt(10)
z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6
z1c = np.conj(z1)
f = sqrt(2) / 8
d0 = np.real((1 - z1) * (1 - z1c))
a0 = np.real(z1 * z1c)
a1 = 2 * np.real(z1)
return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1,
a0 - 3 * a1 + 3, 3 - a1, 1])
elif p < 35:
# construct polynomial and factor it
if p < 35:
P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1]
yj = np.roots(P)
else: # try different polynomial --- needs work
P = [comb(p - 1 + k, k, exact=1) / 4.0**k
for k in range(p)][::-1]
yj = np.roots(P) / 4
# for each root, compute two z roots, select the one with |z|>1
# Build up final polynomial
c = np.poly1d([1, 1])**p
q = np.poly1d([1])
for k in range(p - 1):
yval = yj[k]
part = 2 * sqrt(yval * (yval - 1))
const = 1 - 2 * yval
z1 = const + part
if (abs(z1)) < 1:
z1 = const - part
q = q * [1, -z1]
q = c * np.real(q)
# Normalize result
q = q / np.sum(q) * sqrt(2)
return q.c[::-1]
else:
raise ValueError("Polynomial factorization does not work "
"well for p too large.")
def qmf(hk):
"""
Return high-pass qmf filter from low-pass
.. deprecated:: 1.12.0
scipy.signal.qmf is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
Parameters
----------
hk : array_like
Coefficients of high-pass filter.
Returns
-------
array_like
High-pass filter coefficients.
"""
warnings.warn(_msg % 'qmf', DeprecationWarning, stacklevel=2)
N = len(hk) - 1
asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)]
return hk[::-1] * np.array(asgn)
def cascade(hk, J=7):
"""
Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients.
.. deprecated:: 1.12.0
scipy.signal.cascade is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
Parameters
----------
hk : array_like
Coefficients of low-pass filter.
J : int, optional
Values will be computed at grid points ``K/2**J``. Default is 7.
Returns
-------
x : ndarray
The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where
``len(hk) = len(gk) = N+1``.
phi : ndarray
The scaling function ``phi(x)`` at `x`:
``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N.
psi : ndarray, optional
The wavelet function ``psi(x)`` at `x`:
``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N.
`psi` is only returned if `gk` is not None.
Notes
-----
The algorithm uses the vector cascade algorithm described by Strang and
Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values
and slices for quick reuse. Then inserts vectors into final vector at the
end.
"""
warnings.warn(_msg % 'cascade', DeprecationWarning, stacklevel=2)
N = len(hk) - 1
if (J > 30 - np.log2(N + 1)):
raise ValueError("Too many levels.")
if (J < 1):
raise ValueError("Too few levels.")
# construct matrices needed
nn, kk = np.ogrid[:N, :N]
s2 = np.sqrt(2)
# append a zero so that take works
thk = np.r_[hk, 0]
gk = qmf(hk)
tgk = np.r_[gk, 0]
indx1 = np.clip(2 * nn - kk, -1, N + 1)
indx2 = np.clip(2 * nn - kk + 1, -1, N + 1)
m = np.empty((2, 2, N, N), 'd')
m[0, 0] = np.take(thk, indx1, 0)
m[0, 1] = np.take(thk, indx2, 0)
m[1, 0] = np.take(tgk, indx1, 0)
m[1, 1] = np.take(tgk, indx2, 0)
m *= s2
# construct the grid of points
x = np.arange(0, N * (1 << J), dtype=float) / (1 << J)
phi = 0 * x
psi = 0 * x
# find phi0, and phi1
lam, v = eig(m[0, 0])
ind = np.argmin(np.absolute(lam - 1))
# a dictionary with a binary representation of the
# evaluation points x < 1 -- i.e. position is 0.xxxx
v = np.real(v[:, ind])
# need scaling function to integrate to 1 so find
# eigenvector normalized to sum(v,axis=0)=1
sm = np.sum(v)
if sm < 0: # need scaling function to integrate to 1
v = -v
sm = -sm
bitdic = {'0': v / sm}
bitdic['1'] = np.dot(m[0, 1], bitdic['0'])
step = 1 << J
phi[::step] = bitdic['0']
phi[(1 << (J - 1))::step] = bitdic['1']
psi[::step] = np.dot(m[1, 0], bitdic['0'])
psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0'])
# descend down the levels inserting more and more values
# into bitdic -- store the values in the correct location once we
# have computed them -- stored in the dictionary
# for quicker use later.
prevkeys = ['1']
for level in range(2, J + 1):
newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys]
fac = 1 << (J - level)
for key in newkeys:
# convert key to number
num = 0
for pos in range(level):
if key[pos] == '1':
num += (1 << (level - 1 - pos))
pastphi = bitdic[key[1:]]
ii = int(key[0])
temp = np.dot(m[0, ii], pastphi)
bitdic[key] = temp
phi[num * fac::step] = temp
psi[num * fac::step] = np.dot(m[1, ii], pastphi)
prevkeys = newkeys
return x, phi, psi
def morlet(M, w=5.0, s=1.0, complete=True):
"""
Complex Morlet wavelet.
.. deprecated:: 1.12.0
scipy.signal.morlet is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
Parameters
----------
M : int
Length of the wavelet.
w : float, optional
Omega0. Default is 5
s : float, optional
Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1.
complete : bool, optional
Whether to use the complete or the standard version.
Returns
-------
morlet : (M,) ndarray
See Also
--------
morlet2 : Implementation of Morlet wavelet, compatible with `cwt`.
scipy.signal.gausspulse
Notes
-----
The standard version::
pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))
This commonly used wavelet is often referred to simply as the
Morlet wavelet. Note that this simplified version can cause
admissibility problems at low values of `w`.
The complete version::
pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))
This version has a correction
term to improve admissibility. For `w` greater than 5, the
correction term is negligible.
Note that the energy of the return wavelet is not normalised
according to `s`.
The fundamental frequency of this wavelet in Hz is given
by ``f = 2*s*w*r / M`` where `r` is the sampling rate.
Note: This function was created before `cwt` and is not compatible
with it.
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> M = 100
>>> s = 4.0
>>> w = 2.0
>>> wavelet = signal.morlet(M, s, w)
>>> plt.plot(wavelet.real, label="real")
>>> plt.plot(wavelet.imag, label="imag")
>>> plt.legend()
>>> plt.show()
"""
warnings.warn(_msg % 'morlet', DeprecationWarning, stacklevel=2)
x = np.linspace(-s * 2 * np.pi, s * 2 * np.pi, M)
output = np.exp(1j * w * x)
if complete:
output -= np.exp(-0.5 * (w**2))
output *= np.exp(-0.5 * (x**2)) * np.pi**(-0.25)
return output
def ricker(points, a):
"""
Return a Ricker wavelet, also known as the "Mexican hat wavelet".
.. deprecated:: 1.12.0
scipy.signal.ricker is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
It models the function:
``A * (1 - (x/a)**2) * exp(-0.5*(x/a)**2)``,
where ``A = 2/(sqrt(3*a)*(pi**0.25))``.
Parameters
----------
points : int
Number of points in `vector`.
Will be centered around 0.
a : scalar
Width parameter of the wavelet.
Returns
-------
vector : (N,) ndarray
Array of length `points` in shape of ricker curve.
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> points = 100
>>> a = 4.0
>>> vec2 = signal.ricker(points, a)
>>> print(len(vec2))
100
>>> plt.plot(vec2)
>>> plt.show()
"""
warnings.warn(_msg % 'ricker', DeprecationWarning, stacklevel=2)
return _ricker(points, a)
def _ricker(points, a):
A = 2 / (np.sqrt(3 * a) * (np.pi**0.25))
wsq = a**2
vec = np.arange(0, points) - (points - 1.0) / 2
xsq = vec**2
mod = (1 - xsq / wsq)
gauss = np.exp(-xsq / (2 * wsq))
total = A * mod * gauss
return total
def morlet2(M, s, w=5):
"""
Complex Morlet wavelet, designed to work with `cwt`.
.. deprecated:: 1.12.0
scipy.signal.morlet2 is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
Returns the complete version of morlet wavelet, normalised
according to `s`::
exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s)
Parameters
----------
M : int
Length of the wavelet.
s : float
Width parameter of the wavelet.
w : float, optional
Omega0. Default is 5
Returns
-------
morlet : (M,) ndarray
See Also
--------
morlet : Implementation of Morlet wavelet, incompatible with `cwt`
Notes
-----
.. versionadded:: 1.4.0
This function was designed to work with `cwt`. Because `morlet2`
returns an array of complex numbers, the `dtype` argument of `cwt`
should be set to `complex128` for best results.
Note the difference in implementation with `morlet`.
The fundamental frequency of this wavelet in Hz is given by::
f = w*fs / (2*s*np.pi)
where ``fs`` is the sampling rate and `s` is the wavelet width parameter.
Similarly we can get the wavelet width parameter at ``f``::
s = w*fs / (2*f*np.pi)
Examples
--------
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> M = 100
>>> s = 4.0
>>> w = 2.0
>>> wavelet = signal.morlet2(M, s, w)
>>> plt.plot(abs(wavelet))
>>> plt.show()
This example shows basic use of `morlet2` with `cwt` in time-frequency
analysis:
>>> t, dt = np.linspace(0, 1, 200, retstep=True)
>>> fs = 1/dt
>>> w = 6.
>>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t)
>>> freq = np.linspace(1, fs/2, 100)
>>> widths = w*fs / (2*freq*np.pi)
>>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w)
>>> plt.pcolormesh(t, freq, np.abs(cwtm), cmap='viridis', shading='gouraud')
>>> plt.show()
"""
warnings.warn(_msg % 'morlet2', DeprecationWarning, stacklevel=2)
x = np.arange(0, M) - (M - 1.0) / 2
x = x / s
wavelet = np.exp(1j * w * x) * np.exp(-0.5 * x**2) * np.pi**(-0.25)
output = np.sqrt(1/s) * wavelet
return output
def cwt(data, wavelet, widths, dtype=None, **kwargs):
"""
Continuous wavelet transform.
.. deprecated:: 1.12.0
scipy.signal.cwt is deprecated in SciPy 1.12 and will be removed
in SciPy 1.15. We recommend using PyWavelets instead.
Performs a continuous wavelet transform on `data`,
using the `wavelet` function. A CWT performs a convolution
with `data` using the `wavelet` function, which is characterized
by a width parameter and length parameter. The `wavelet` function
is allowed to be complex.
Parameters
----------
data : (N,) ndarray
data on which to perform the transform.
wavelet : function
Wavelet function, which should take 2 arguments.
The first argument is the number of points that the returned vector
will have (len(wavelet(length,width)) == length).
The second is a width parameter, defining the size of the wavelet
(e.g. standard deviation of a gaussian). See `ricker`, which
satisfies these requirements.
widths : (M,) sequence
Widths to use for transform.
dtype : data-type, optional
The desired data type of output. Defaults to ``float64`` if the
output of `wavelet` is real and ``complex128`` if it is complex.
.. versionadded:: 1.4.0
kwargs
Keyword arguments passed to wavelet function.
.. versionadded:: 1.4.0
Returns
-------
cwt: (M, N) ndarray
Will have shape of (len(widths), len(data)).
Notes
-----
.. versionadded:: 1.4.0
For non-symmetric, complex-valued wavelets, the input signal is convolved
with the time-reversed complex-conjugate of the wavelet data [1].
::
length = min(10 * width[ii], len(data))
cwt[ii,:] = signal.convolve(data, np.conj(wavelet(length, width[ii],
**kwargs))[::-1], mode='same')
References
----------
.. [1] S. Mallat, "A Wavelet Tour of Signal Processing (3rd Edition)",
Academic Press, 2009.
Examples
--------
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 200, endpoint=False)
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
>>> widths = np.arange(1, 31)
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
.. note:: For cwt matrix plotting it is advisable to flip the y-axis
>>> cwtmatr_yflip = np.flipud(cwtmatr)
>>> plt.imshow(cwtmatr_yflip, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
>>> plt.show()
"""
warnings.warn(_msg % 'cwt', DeprecationWarning, stacklevel=2)
return _cwt(data, wavelet, widths, dtype, **kwargs)
def _cwt(data, wavelet, widths, dtype=None, **kwargs):
# Determine output type
if dtype is None:
if np.asarray(wavelet(1, widths[0], **kwargs)).dtype.char in 'FDG':
dtype = np.complex128
else:
dtype = np.float64
output = np.empty((len(widths), len(data)), dtype=dtype)
for ind, width in enumerate(widths):
N = np.min([10 * width, len(data)])
wavelet_data = np.conj(wavelet(N, width, **kwargs)[::-1])
output[ind] = convolve(data, wavelet_data, mode='same')
return output
|