File size: 18,755 Bytes
50afd98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
"""Sparse DIAgonal format"""
__docformat__ = "restructuredtext en"
__all__ = ['dia_array', 'dia_matrix', 'isspmatrix_dia']
import numpy as np
from .._lib._util import copy_if_needed
from ._matrix import spmatrix
from ._base import issparse, _formats, _spbase, sparray
from ._data import _data_matrix
from ._sputils import (
isshape, upcast_char, getdtype, get_sum_dtype, validateaxis, check_shape
)
from ._sparsetools import dia_matvec
class _dia_base(_data_matrix):
_format = 'dia'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
_data_matrix.__init__(self)
if issparse(arg1):
if arg1.format == "dia":
if copy:
arg1 = arg1.copy()
self.data = arg1.data
self.offsets = arg1.offsets
self._shape = check_shape(arg1.shape)
else:
if arg1.format == self.format and copy:
A = arg1.copy()
else:
A = arg1.todia()
self.data = A.data
self.offsets = A.offsets
self._shape = check_shape(A.shape)
elif isinstance(arg1, tuple):
if isshape(arg1):
# It's a tuple of matrix dimensions (M, N)
# create empty matrix
self._shape = check_shape(arg1)
self.data = np.zeros((0,0), getdtype(dtype, default=float))
idx_dtype = self._get_index_dtype(maxval=max(self.shape))
self.offsets = np.zeros((0), dtype=idx_dtype)
else:
try:
# Try interpreting it as (data, offsets)
data, offsets = arg1
except Exception as e:
message = 'unrecognized form for dia_array constructor'
raise ValueError(message) from e
else:
if shape is None:
raise ValueError('expected a shape argument')
if not copy:
copy = copy_if_needed
self.data = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy))
offsets = np.array(arg1[1],
dtype=self._get_index_dtype(maxval=max(shape)),
copy=copy)
self.offsets = np.atleast_1d(offsets)
self._shape = check_shape(shape)
else:
#must be dense, convert to COO first, then to DIA
try:
arg1 = np.asarray(arg1)
except Exception as e:
raise ValueError("unrecognized form for"
" %s_matrix constructor" % self.format) from e
A = self._coo_container(arg1, dtype=dtype, shape=shape).todia()
self.data = A.data
self.offsets = A.offsets
self._shape = check_shape(A.shape)
if dtype is not None:
self.data = self.data.astype(dtype)
#check format
if self.offsets.ndim != 1:
raise ValueError('offsets array must have rank 1')
if self.data.ndim != 2:
raise ValueError('data array must have rank 2')
if self.data.shape[0] != len(self.offsets):
raise ValueError('number of diagonals (%d) '
'does not match the number of offsets (%d)'
% (self.data.shape[0], len(self.offsets)))
if len(np.unique(self.offsets)) != len(self.offsets):
raise ValueError('offset array contains duplicate values')
def __repr__(self):
_, fmt = _formats[self.format]
sparse_cls = 'array' if isinstance(self, sparray) else 'matrix'
shape_str = 'x'.join(str(x) for x in self.shape)
ndiag = self.data.shape[0]
return (
f"<{shape_str} sparse {sparse_cls} of type '{self.dtype.type}'\n"
f"\twith {self.nnz} stored elements ({ndiag} diagonals) in {fmt} format>"
)
def _data_mask(self):
"""Returns a mask of the same shape as self.data, where
mask[i,j] is True when data[i,j] corresponds to a stored element."""
num_rows, num_cols = self.shape
offset_inds = np.arange(self.data.shape[1])
row = offset_inds - self.offsets[:,None]
mask = (row >= 0)
mask &= (row < num_rows)
mask &= (offset_inds < num_cols)
return mask
def count_nonzero(self):
mask = self._data_mask()
return np.count_nonzero(self.data[mask])
def _getnnz(self, axis=None):
if axis is not None:
raise NotImplementedError("_getnnz over an axis is not implemented "
"for DIA format")
M,N = self.shape
nnz = 0
for k in self.offsets:
if k > 0:
nnz += min(M,N-k)
else:
nnz += min(M+k,N)
return int(nnz)
_getnnz.__doc__ = _spbase._getnnz.__doc__
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__
def sum(self, axis=None, dtype=None, out=None):
validateaxis(axis)
if axis is not None and axis < 0:
axis += 2
res_dtype = get_sum_dtype(self.dtype)
num_rows, num_cols = self.shape
ret = None
if axis == 0:
mask = self._data_mask()
x = (self.data * mask).sum(axis=0)
if x.shape[0] == num_cols:
res = x
else:
res = np.zeros(num_cols, dtype=x.dtype)
res[:x.shape[0]] = x
ret = self._ascontainer(res, dtype=res_dtype)
else:
row_sums = np.zeros((num_rows, 1), dtype=res_dtype)
one = np.ones(num_cols, dtype=res_dtype)
dia_matvec(num_rows, num_cols, len(self.offsets),
self.data.shape[1], self.offsets, self.data, one, row_sums)
row_sums = self._ascontainer(row_sums)
if axis is None:
return row_sums.sum(dtype=dtype, out=out)
ret = self._ascontainer(row_sums.sum(axis=axis))
if out is not None and out.shape != ret.shape:
raise ValueError("dimensions do not match")
return ret.sum(axis=(), dtype=dtype, out=out)
sum.__doc__ = _spbase.sum.__doc__
def _add_sparse(self, other):
# Check if other is also of type dia_array
if not isinstance(other, type(self)):
# If other is not of type dia_array, default to
# converting to csr_matrix, as is done in the _add_sparse
# method of parent class _spbase
return self.tocsr()._add_sparse(other)
# The task is to compute m = self + other
# Start by making a copy of self, of the datatype
# that should result from adding self and other
dtype = np.promote_types(self.dtype, other.dtype)
m = self.astype(dtype, copy=True)
# Then, add all the stored diagonals of other.
for d in other.offsets:
# Check if the diagonal has already been added.
if d in m.offsets:
# If the diagonal is already there, we need to take
# the sum of the existing and the new
m.setdiag(m.diagonal(d) + other.diagonal(d), d)
else:
m.setdiag(other.diagonal(d), d)
return m
def _matmul_vector(self, other):
x = other
y = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
x.dtype.char))
L = self.data.shape[1]
M,N = self.shape
dia_matvec(M,N, len(self.offsets), L, self.offsets, self.data,
x.ravel(), y.ravel())
return y
def _setdiag(self, values, k=0):
M, N = self.shape
if values.ndim == 0:
# broadcast
values_n = np.inf
else:
values_n = len(values)
if k < 0:
n = min(M + k, N, values_n)
min_index = 0
max_index = n
else:
n = min(M, N - k, values_n)
min_index = k
max_index = k + n
if values.ndim != 0:
# allow also longer sequences
values = values[:n]
data_rows, data_cols = self.data.shape
if k in self.offsets:
if max_index > data_cols:
data = np.zeros((data_rows, max_index), dtype=self.data.dtype)
data[:, :data_cols] = self.data
self.data = data
self.data[self.offsets == k, min_index:max_index] = values
else:
self.offsets = np.append(self.offsets, self.offsets.dtype.type(k))
m = max(max_index, data_cols)
data = np.zeros((data_rows + 1, m), dtype=self.data.dtype)
data[:-1, :data_cols] = self.data
data[-1, min_index:max_index] = values
self.data = data
def todia(self, copy=False):
if copy:
return self.copy()
else:
return self
todia.__doc__ = _spbase.todia.__doc__
def transpose(self, axes=None, copy=False):
if axes is not None and axes != (1, 0):
raise ValueError("Sparse arrays/matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation.")
num_rows, num_cols = self.shape
max_dim = max(self.shape)
# flip diagonal offsets
offsets = -self.offsets
# re-align the data matrix
r = np.arange(len(offsets), dtype=np.intc)[:, None]
c = np.arange(num_rows, dtype=np.intc) - (offsets % max_dim)[:, None]
pad_amount = max(0, max_dim-self.data.shape[1])
data = np.hstack((self.data, np.zeros((self.data.shape[0], pad_amount),
dtype=self.data.dtype)))
data = data[r, c]
return self._dia_container((data, offsets), shape=(
num_cols, num_rows), copy=copy)
transpose.__doc__ = _spbase.transpose.__doc__
def diagonal(self, k=0):
rows, cols = self.shape
if k <= -rows or k >= cols:
return np.empty(0, dtype=self.data.dtype)
idx, = np.nonzero(self.offsets == k)
first_col = max(0, k)
last_col = min(rows + k, cols)
result_size = last_col - first_col
if idx.size == 0:
return np.zeros(result_size, dtype=self.data.dtype)
result = self.data[idx[0], first_col:last_col]
padding = result_size - len(result)
if padding > 0:
result = np.pad(result, (0, padding), mode='constant')
return result
diagonal.__doc__ = _spbase.diagonal.__doc__
def tocsc(self, copy=False):
if self.nnz == 0:
return self._csc_container(self.shape, dtype=self.dtype)
num_rows, num_cols = self.shape
num_offsets, offset_len = self.data.shape
offset_inds = np.arange(offset_len)
row = offset_inds - self.offsets[:,None]
mask = (row >= 0)
mask &= (row < num_rows)
mask &= (offset_inds < num_cols)
mask &= (self.data != 0)
idx_dtype = self._get_index_dtype(maxval=max(self.shape))
indptr = np.zeros(num_cols + 1, dtype=idx_dtype)
indptr[1:offset_len+1] = np.cumsum(mask.sum(axis=0)[:num_cols])
if offset_len < num_cols:
indptr[offset_len+1:] = indptr[offset_len]
indices = row.T[mask.T].astype(idx_dtype, copy=False)
data = self.data.T[mask.T]
return self._csc_container((data, indices, indptr), shape=self.shape,
dtype=self.dtype)
tocsc.__doc__ = _spbase.tocsc.__doc__
def tocoo(self, copy=False):
num_rows, num_cols = self.shape
num_offsets, offset_len = self.data.shape
offset_inds = np.arange(offset_len)
row = offset_inds - self.offsets[:,None]
mask = (row >= 0)
mask &= (row < num_rows)
mask &= (offset_inds < num_cols)
mask &= (self.data != 0)
row = row[mask]
col = np.tile(offset_inds, num_offsets)[mask.ravel()]
idx_dtype = self._get_index_dtype(
arrays=(self.offsets,), maxval=max(self.shape)
)
row = row.astype(idx_dtype, copy=False)
col = col.astype(idx_dtype, copy=False)
data = self.data[mask]
# Note: this cannot set has_canonical_format=True, because despite the
# lack of duplicates, we do not generate sorted indices.
return self._coo_container(
(data, (row, col)), shape=self.shape, dtype=self.dtype, copy=False
)
tocoo.__doc__ = _spbase.tocoo.__doc__
# needed by _data_matrix
def _with_data(self, data, copy=True):
"""Returns a matrix with the same sparsity structure as self,
but with different data. By default the structure arrays are copied.
"""
if copy:
return self._dia_container(
(data, self.offsets.copy()), shape=self.shape
)
else:
return self._dia_container(
(data, self.offsets), shape=self.shape
)
def resize(self, *shape):
shape = check_shape(shape)
M, N = shape
# we do not need to handle the case of expanding N
self.data = self.data[:, :N]
if (M > self.shape[0] and
np.any(self.offsets + self.shape[0] < self.data.shape[1])):
# explicitly clear values that were previously hidden
mask = (self.offsets[:, None] + self.shape[0] <=
np.arange(self.data.shape[1]))
self.data[mask] = 0
self._shape = shape
resize.__doc__ = _spbase.resize.__doc__
def isspmatrix_dia(x):
"""Is `x` of dia_matrix type?
Parameters
----------
x
object to check for being a dia matrix
Returns
-------
bool
True if `x` is a dia matrix, False otherwise
Examples
--------
>>> from scipy.sparse import dia_array, dia_matrix, coo_matrix, isspmatrix_dia
>>> isspmatrix_dia(dia_matrix([[5]]))
True
>>> isspmatrix_dia(dia_array([[5]]))
False
>>> isspmatrix_dia(coo_matrix([[5]]))
False
"""
return isinstance(x, dia_matrix)
# This namespace class separates array from matrix with isinstance
class dia_array(_dia_base, sparray):
"""
Sparse array with DIAgonal storage.
This can be instantiated in several ways:
dia_array(D)
where D is a 2-D ndarray
dia_array(S)
with another sparse array or matrix S (equivalent to S.todia())
dia_array((M, N), [dtype])
to construct an empty array with shape (M, N),
dtype is optional, defaulting to dtype='d'.
dia_array((data, offsets), shape=(M, N))
where the ``data[k,:]`` stores the diagonal entries for
diagonal ``offsets[k]`` (See example below)
Attributes
----------
dtype : dtype
Data type of the array
shape : 2-tuple
Shape of the array
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
DIA format data array of the array
offsets
DIA format offset array of the array
T
Notes
-----
Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import dia_array
>>> dia_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_array((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
>>> from scipy.sparse import dia_array
>>> n = 10
>>> ex = np.ones(n)
>>> data = np.array([ex, 2 * ex, ex])
>>> offsets = np.array([-1, 0, 1])
>>> dia_array((data, offsets), shape=(n, n)).toarray()
array([[2., 1., 0., ..., 0., 0., 0.],
[1., 2., 1., ..., 0., 0., 0.],
[0., 1., 2., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 2., 1., 0.],
[0., 0., 0., ..., 1., 2., 1.],
[0., 0., 0., ..., 0., 1., 2.]])
"""
class dia_matrix(spmatrix, _dia_base):
"""
Sparse matrix with DIAgonal storage.
This can be instantiated in several ways:
dia_matrix(D)
where D is a 2-D ndarray
dia_matrix(S)
with another sparse array or matrix S (equivalent to S.todia())
dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N),
dtype is optional, defaulting to dtype='d'.
dia_matrix((data, offsets), shape=(M, N))
where the ``data[k,:]`` stores the diagonal entries for
diagonal ``offsets[k]`` (See example below)
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
DIA format data array of the matrix
offsets
DIA format offset array of the matrix
T
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
>>> from scipy.sparse import dia_matrix
>>> n = 10
>>> ex = np.ones(n)
>>> data = np.array([ex, 2 * ex, ex])
>>> offsets = np.array([-1, 0, 1])
>>> dia_matrix((data, offsets), shape=(n, n)).toarray()
array([[2., 1., 0., ..., 0., 0., 0.],
[1., 2., 1., ..., 0., 0., 0.],
[0., 1., 2., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 2., 1., 0.],
[0., 0., 0., ..., 1., 2., 1.],
[0., 0., 0., ..., 0., 1., 2.]])
"""
|