File size: 45,266 Bytes
dd3126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Use to partition the activations stored for backward propagation
Therefore reduces the memory consumption
Also implements CPU checkpointing and contiguous memory checkpointing
Reduces memory consumption and memory fragmentation
Code for rng checkpointing taken from NVIDIA Megatron-LM mpu/random.py
b886b7bb972afe72bac0f5de4f42a4a7bae8ebef
"""
# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch
import copy
import torch
import contextlib
from deepspeed import comm as dist
import weakref
import mmap
from torch import _C
from deepspeed.runtime.config import DeepSpeedConfig
from deepspeed.utils import logger
from deepspeed.runtime.utils import copy_to_device, move_to_device, see_memory_usage
from deepspeed.utils.timer import SynchronizedWallClockTimer as Timers, FORWARD_GLOBAL_TIMER
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank
from deepspeed.accelerator import get_accelerator
# DeepSpeed Checkpointing Enabled or Disabled
deepspeed_checkpointing_enabled = False
# MP parameters
mpu = None
mp_rank = None
mp_size = None
mp_group = None
# Model Parameters
num_layers = None
# Checkpointing buffers
contiguous_data_buffers = []
data_offsets = []
contiguous_size_buffers = []
size_offsets = []
timers = None
# optimization flags
PARTITION_ACTIVATIONS = False
CPU_CHECKPOINT = False
CONTIGUOUS_CHECKPOINTING = False
SYNCHRONIZE = False
PROFILE_TIME = False
# Default name for the model parallel rng tracker.
_MODEL_PARALLEL_RNG_TRACKER_NAME = 'model-parallel-rng'
transport_stream = None
cuda_device = None
def detach_variable(inputs, device=None):
if isinstance(inputs, tuple):
out = []
for inp in inputs:
if not isinstance(inp, torch.Tensor):
out.append(inp)
continue
requires_grad = inp.requires_grad
if device is not None:
x = inp.to(device=device)
else:
x = inp
x = x.detach()
x.requires_grad = requires_grad
out.append(x)
return tuple(out)
else:
raise RuntimeError("Only tuple of tensors is supported. Got Unsupported input type: ", type(inputs).__name__)
def _set_cuda_rng_state(new_state, device=-1):
"""Sets the random number generator state of the current GPU.
Arguments:
new_state (torch.ByteTensor): The desired state
This function is adapted from PyTorch repo (torch.cuda.set_rng_state) #ignore-cuda
with a single change: the input state is not cloned. Cloning caused
major performance issues for +4 GPU cases.
"""
if hasattr(_C, '_cuda_setRNGState') and callable(_C._cuda_setRNGState):
# older PyTorch
def cb():
with get_accelerator().device(device):
_C._cuda_setRNGState(new_state)
else:
# newer PyTorch
if device == -1:
device = torch.device(get_accelerator().device_name())
elif isinstance(device, str):
device = torch.device(device)
elif isinstance(device, int):
device = torch.device(get_accelerator().device_name(), device)
def cb():
idx = device.index
if idx is None:
idx = get_accelerator().current_device()
default_generator = get_accelerator().default_generator(idx)
default_generator.set_state(new_state)
get_accelerator().lazy_call(cb)
class CudaRNGStatesTracker:
"""Tracker for the cuda RNG states.
Using the `add` method, a cuda rng state is initialized based on
the input `seed` and is assigned to `name`. Later, by forking the
rng state, we can perform operations and return to our starting
cuda state.
"""
def __init__(self):
# Map from a string name to the cuda rng state.
self.states_ = {}
# Seeds are just for book keeping and ensure no seed is set twice.
self.seeds_ = set()
def reset(self):
"""Set to the initial state (no tracker)."""
self.states_ = {}
self.seeds_ = set()
def get_states(self):
"""Get rng states. Copy the dictionary so we have direct
pointers to the states, not just a pointer to the dictionary."""
return copy.copy(self.states_)
def set_states(self, states):
"""Set the rng states. For efficiency purposes, we do not check
the size of seed for compatibility."""
self.states_ = states
def add(self, name, seed):
"""Track the rng state."""
# Check seed is not already used.
if seed in self.seeds_:
raise Exception('seed {} already exists'.format(seed))
self.seeds_.add(seed)
# Check that state is not already defined.
if name in self.states_:
raise Exception('cuda rng state {} already exists'.format(name))
# Get the current rng state.
orig_rng_state = get_accelerator().get_rng_state()
# Set the new state and store it.
get_accelerator().manual_seed(seed)
self.states_[name] = get_accelerator().get_rng_state()
# Reset rng state to what it was.
_set_cuda_rng_state(orig_rng_state)
@contextlib.contextmanager
def fork(self, name=_MODEL_PARALLEL_RNG_TRACKER_NAME):
"""Fork the cuda rng state, perform operations, and exit with
the original state."""
# Check if we have added the state
if name not in self.states_:
raise Exception('cuda rng state {} is not added'.format(name))
# Store current rng state.
orig_cuda_rng_state = get_accelerator().get_rng_state()
# Set rng state to the desired one
_set_cuda_rng_state(self.states_[name])
# Do the stuff we wanted to do.
try:
yield
finally:
# Update the current rng state for later use.
self.states_[name] = get_accelerator().get_rng_state()
# And set the state to the original state we started with.
_set_cuda_rng_state(orig_cuda_rng_state)
# RNG tracker object.
_CUDA_RNG_STATE_TRACKER = CudaRNGStatesTracker()
def get_cuda_rng_tracker():
"""Get cuda rng tracker."""
return _CUDA_RNG_STATE_TRACKER
def model_parallel_cuda_manual_seed(seed):
"""Initialize model parallel cuda seed.
This function should be called after the model parallel is
initialized. Also, no get_accelerator().manual_seed should be called
after this function. Basically, this is replacement for that
function.
Two set of RNG states are tracked:
default state: This is for data parallelism and is the same among a
set of model parallel GPUs but different across
different model parallel groups. This is used for
example for dropout in the non-model-parallel regions.
model-parallel state: This state is different among a set of model
parallel GPUs, but the same across data parallel
groups. This is used for example for dropout in
model parallel regions.
"""
global mpu
tp_rank = bwc_tensor_model_parallel_rank(mpu)
# 2718 is just for fun and any POSITIVE value will work.
offset = seed + 2718
model_parallel_seed = offset + tp_rank
# Data parallel gets the original seed.
data_parallel_seed = seed
if dist.get_rank() == 0:
logger.info(
'> initializing model parallel cuda seeds on global rank {}, '
'model parallel rank {}, and data parallel rank {} with '
'model parallel seed: {} and data parallel seed: {}'.format(dist.get_rank(), tp_rank,
mpu.get_data_parallel_rank(),
model_parallel_seed, data_parallel_seed), )
_CUDA_RNG_STATE_TRACKER.reset()
# Set the default state.
get_accelerator().manual_seed(data_parallel_seed)
# and model parallel state.
_CUDA_RNG_STATE_TRACKER.add(_MODEL_PARALLEL_RNG_TRACKER_NAME, model_parallel_seed)
def model_parallel_reconfigure_tp_seed(seed):
global mpu
tp_rank = bwc_tensor_model_parallel_rank(mpu)
model_parallel_seed = seed + 2718 + tp_rank
with _CUDA_RNG_STATE_TRACKER.fork():
get_accelerator().manual_seed(model_parallel_seed)
def get_partition_start(item):
global mp_rank, mp_size, mp_group
size = item.numel()
partition_size = size / mp_size
start = partition_size * mp_rank
return int(start)
def get_partition_size(item):
global mp_rank, mp_size, mp_group
size = item.numel()
assert size % mp_size == 0, "Doesn't handle if partition activation if item is not divisible by mp size"
partition_size = size / mp_size
return int(partition_size)
def gather_partitioned_activations(tensors, device=None):
global mp_rank, mp_size, mp_group
assert len(tensors) % 2 == 0, f'Expected even count of tensors, instead got {len(tensors)}'
inputs = []
num_args = int(len(tensors) / 2)
for i in range(num_args):
item = tensors[2 * i]
size = tensors[2 * i + 1]
if not is_activation_to_checkpoint(item):
inputs.append(item)
continue
# don't need to do all_gather if model parallel is not enabled
if mp_group is None or mp_size == 1:
item = item.view(list(size.numpy()))
if device is not None:
item = item.to(device)
inputs.append(item)
continue
partition_size = item.numel()
tensor_size = partition_size * mp_size
if device is not None:
flat_tensor = torch.zeros([tensor_size], dtype=item.dtype, device=device)
else:
flat_tensor = torch.zeros([tensor_size], dtype=item.dtype, device=item.device)
part = flat_tensor.narrow(0, partition_size * mp_rank, partition_size)
part.copy_(item)
dist.all_gather_into_tensor(flat_tensor, part, group=mp_group)
input_tensor = flat_tensor.view(list(size.numpy()))
item.data = input_tensor.data
inputs.append(item)
return tuple(inputs)
def extract_tensors(all_objects):
"""
Separate objects in list/tuple into tensors and non-tensors and create a mapping to enable re-aggregation.
The order of tensors and non-tensors is preserved in their respective output groups.
Parameters:
all_objects (list/tuple): Objects containing tensors and non-tensors to be split.
Returns:
tuple: Containing tensors, non-tensors, and bools of whether each position in original list/tuple was a tensor.
"""
tensor_objects = [v for v in all_objects if torch.is_tensor(v)]
non_tensor_objects = [v for v in all_objects if not torch.is_tensor(v)]
tensor_flags = [torch.is_tensor(v) for v in all_objects]
if type(all_objects) is tuple:
return tuple(tensor_objects), tuple(non_tensor_objects), tuple(tensor_flags)
return tensor_objects, non_tensor_objects, tensor_flags
def merge_tensors(tensor_objects, non_tensor_objects, tensor_flags):
"""
Merge two lists (or tuples) of tensors and non-tensors using a mapping of positions in merged list (or tuple).
Parameters:
tensor_objects (list/tuple): Tensors to merge.
non_tensor_objects (list/tuple): Non-tensors to merge.
tensor_flags (list/tuple): Indicates whether each position in output is a tensor.
Returns:
tuple: Merge of tensors and non-tensors
"""
merged_objects = []
tensor_idx = 0
non_tensor_idx = 0
real_tensor_flags = None
# remove the flags that are assigned to the size of the flattened tensors
if PARTITION_ACTIVATIONS:
real_tensor_flags = []
previous_flag = False
for flag in tensor_flags:
if previous_flag:
previous_flag = False
continue
previous_flag = flag
real_tensor_flags.append(flag)
else:
real_tensor_flags = tensor_flags
for is_tensor in real_tensor_flags:
if is_tensor:
merged_objects.append(tensor_objects[tensor_idx])
tensor_idx += 1
else:
merged_objects.append(non_tensor_objects[non_tensor_idx])
non_tensor_idx += 1
return tuple(merged_objects)
def is_activation_to_checkpoint(item):
"""
Is an activation to be checkpointed
"""
global mp_size
return torch.is_tensor(item) and item.is_floating_point() and item.numel() >= mp_size
def partition_activations(args, cpu_checkpoint, contiguous_checkpoint):
global contiguous_data_buffers, data_offsets
inputs = []
num_non_fp_tensors = 0
for arg_index, item in enumerate(args):
if not is_activation_to_checkpoint(item):
inputs.append(item)
num_non_fp_tensors += 1
continue
i = arg_index - num_non_fp_tensors
partition_size = get_partition_size(item)
partition = item.detach().contiguous().view(-1).narrow(0, get_partition_start(item), partition_size).clone()
buffer_device = torch.device('cpu') if cpu_checkpoint else partition.device
if contiguous_checkpoint:
if i >= len(contiguous_data_buffers):
tensor_list = [
torch.tensor(()).new_empty([partition_size], dtype=partition.dtype, device=buffer_device)
for _ in range(num_layers)
]
contiguous_data_buffers.append(tensor_list)
data_offsets.append(0)
elif contiguous_data_buffers[i] is None:
tensor_list = [
torch.tensor(()).new_empty([partition_size], dtype=partition.dtype, device=buffer_device)
for _ in range(num_layers)
]
contiguous_data_buffers[i] = tensor_list
data_offsets[i] = 0
# Because the 'new_empty' returns uninitialized pages,
# the pages need to be populated during the cudaMemcpy time
# which increases the data copy time. To avoid this, we
# pre-populate these pages by simply writing 0 ahead of
# the actual cudaMemcpy operation time. Due to the
# previously launched GPU kernels, there is a small
# window of time here for CPUs to populate pages asynchronously.
contiguous_data_buffers[i][data_offsets[i]].data[range(
0, contiguous_data_buffers[i][data_offsets[i]].data.shape[0],
int(mmap.PAGESIZE / contiguous_data_buffers[i][data_offsets[i]].data.element_size()))] = 0
contiguous_partition = contiguous_data_buffers[i][data_offsets[i]].data.copy_(partition.data)
data_offsets[i] = data_offsets[i] + 1
inputs.append(contiguous_partition)
else:
partition = partition.cpu() if CPU_CHECKPOINT else partition
inputs.append(partition)
return inputs
def get_partitioned_activations_for_backward(args, inputs, contiguous_checkpoint):
global contiguous_size_buffers, size_offsets
new_args = []
num_non_fp_tensors = 0
for arg_index, (arg, inp) in enumerate(zip(args, inputs)):
size = torch.tensor(arg.size()) if torch.is_tensor(arg) else None
if not is_activation_to_checkpoint(arg):
new_args.append(arg)
new_args.append(size)
num_non_fp_tensors += 1
continue
arg.data = torch.empty([], device=arg.device).data
arg.saved_data = inp.data
new_args.append(arg)
i = arg_index - num_non_fp_tensors
if contiguous_checkpoint:
numel = size.numel()
if i >= len(contiguous_size_buffers):
tmp = torch.tensor(())
contiguous_size_buffers.append(
tmp.new_empty([numel * num_layers], dtype=size.dtype, device=size.device))
size_offsets.append(0)
elif contiguous_size_buffers[i] is None:
tmp = torch.tensor(())
contiguous_size_buffers[i] = tmp.new_empty([numel * num_layers], dtype=size.dtype, device=size.device)
size_offsets[i] = 0
contiguous_size = contiguous_size_buffers[i].narrow(0, size_offsets[i], numel).data.copy_(size.data)
contiguous_size = contiguous_size.view_as(size)
size_offsets[i] = size_offsets[i] + numel
new_args.append(contiguous_size)
else:
new_args.append(size)
return new_args
def get_cpu_activations_for_backward(args, inputs):
new_args = []
for i, (arg, inp) in enumerate(zip(args, inputs)):
if not is_activation_to_checkpoint(arg):
new_args.append(arg)
continue
arg.data = torch.empty([], device=arg.device).data
arg.saved_data = inp.data
new_args.append(arg)
return new_args
class CheckpointFunction(torch.autograd.Function):
"""This function is adapted from torch.utils.checkpoint with
two main changes:
1) torch.cuda.set_rng_state is replaced with `_set_cuda_rng_state` #ignore-cuda
2) the states in the model parallel tracker are also properly
tracked/set/reset.
3) Performance activation partitioning, contiguous memory optimization
4) CPU Checkpointing
5) Profile forward and backward functions
"""
@staticmethod
def forward(ctx, run_function, all_outputs, *args):
global mpu, timers, SYNCHRONIZE, PROFILE_TIME
def save_args_for_backward(*all_args):
tensor_args, non_tensor_args, tensor_flags = extract_tensors(all_objects=all_args)
ctx.deepspeed_saved_tensors = tensor_args
ctx.non_tensor_args = non_tensor_args
ctx.tensor_flags = tensor_flags
if SYNCHRONIZE:
get_accelerator().synchronize()
if timers is None and PROFILE_TIME:
timers = Timers()
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).start()
ctx.run_function = run_function
global num_layers
global mp_rank, mp_size, mp_group
global contiguous_data_buffers, contiguous_size_buffers
global data_offsets, size_offsets
if mp_rank is None:
if mpu is not None:
if hasattr(mpu, 'get_tensor_model_parallel_rank'):
mp_rank = mpu.get_tensor_model_parallel_rank()
mp_size = mpu.get_tensor_model_parallel_world_size()
mp_group = mpu.get_tensor_model_parallel_group()
else:
mp_rank = mpu.get_model_parallel_rank()
mp_size = mpu.get_model_parallel_world_size()
mp_group = mpu.get_model_parallel_group()
else:
mp_rank = 0
mp_size = 1
mp_group = None
global cuda_device, transport_stream, PARTITION_ACTIVATIONS, buffer_0, buffer_1, buffer_0_offset, buffer_1_offset
if cuda_device is None:
see_memory_usage("First Forward Beginning", force=False)
if dist.get_rank() == 0:
logger.info(f"Activation Checkpointing Information")
logger.info(f"----Partition Activations {PARTITION_ACTIVATIONS}, CPU CHECKPOINTING {CPU_CHECKPOINT}")
logger.info(
f"----contiguous Memory Checkpointing {CONTIGUOUS_CHECKPOINTING} with {num_layers} total layers")
logger.info(f"----Synchronization {SYNCHRONIZE}")
logger.info(f"----Profiling time in checkpointing {PROFILE_TIME}")
cuda_device = get_accelerator().current_device_name()
transport_stream = get_accelerator().Stream(device=cuda_device)
if PARTITION_ACTIVATIONS:
inputs = partition_activations(args, CPU_CHECKPOINT, CONTIGUOUS_CHECKPOINTING)
elif CPU_CHECKPOINT:
inputs = copy_to_device(args, device=torch.device('cpu'), criterion_func=is_activation_to_checkpoint)
# just in case something funky is happening such as reuse of inputs
inputs_cuda = copy_to_device(args, device=cuda_device, criterion_func=is_activation_to_checkpoint)
# Copy the rng states.
ctx.fwd_cpu_rng_state = torch.get_rng_state()
ctx.fwd_cuda_rng_state = get_accelerator().get_rng_state()
ctx.fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
see_memory_usage("Before running forward on the layer", force=False)
# ctx.save_for_backward(*args)
with torch.no_grad():
outputs = run_function(*inputs_cuda)
see_memory_usage("After running forward on the layer", force=False)
del inputs_cuda
if PARTITION_ACTIVATIONS:
new_args = get_partitioned_activations_for_backward(args, inputs, CONTIGUOUS_CHECKPOINTING)
assert len(new_args) % 2 == 0, f'save_for_backward called with odd number of args, {len(new_args)}'
save_args_for_backward(*new_args)
elif CPU_CHECKPOINT:
new_args = get_cpu_activations_for_backward(args, inputs)
save_args_for_backward(*new_args)
else:
save_args_for_backward(*args)
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).stop()
timers.log([FORWARD_GLOBAL_TIMER])
if SYNCHRONIZE:
get_accelerator().synchronize()
# Tensors returned from forward() may not be differentiable.
if torch.is_tensor(outputs):
non_grad_outputs = [outputs] if not outputs.is_floating_point() else []
else:
non_grad_outputs = [o for o in outputs if torch.is_tensor(o) and not o.is_floating_point()]
ctx.mark_non_differentiable(*non_grad_outputs)
if torch.is_tensor(outputs):
all_outputs += [outputs]
return outputs
else:
all_outputs += outputs
outputs, _, _ = extract_tensors(all_objects=outputs)
return tuple(outputs)
@staticmethod
def backward(ctx, *grads):
global timers
see_memory_usage("In backward", force=False)
# removing pointers to the contiguous buffer memory
# so that they can be garbage collected once the checkpoints
# have been used
if SYNCHRONIZE:
get_accelerator().synchronize()
if PROFILE_TIME:
timers('backward').start()
if CONTIGUOUS_CHECKPOINTING:
global data_offsets, size_offsets
global contiguous_data_buffers, contiguous_size_buffers
for buffers in contiguous_data_buffers:
buffers = []
# frees up all the pointers to the checkpoints except for the ones
# stored by save for backward
contiguous_data_buffers = []
contiguous_size_buffers = []
data_offsets = []
size_offsets = []
see_memory_usage("In backward checkpointing code", force=False)
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad(), "
"please use .backward() if possible")
global cuda_device, transport_stream, PARTITION_ACTIVATIONS
# Rebuild deepspeed_saved_tensors
for t in ctx.deepspeed_saved_tensors:
if t is not None and hasattr(t, 'saved_data') and t.saved_data is not None:
t.data = t.saved_data.to(t.device)
t.saved_data = None
if PARTITION_ACTIVATIONS:
# with get_accelerator().stream(transport_stream):
inputs = gather_partitioned_activations(ctx.deepspeed_saved_tensors,
device=cuda_device if CPU_CHECKPOINT else None)
detached_inputs = detach_variable(inputs)
elif CPU_CHECKPOINT:
inputs = move_to_device(ctx.deepspeed_saved_tensors, cuda_device, is_activation_to_checkpoint)
detached_inputs = detach_variable(inputs)
else:
inputs = ctx.deepspeed_saved_tensors
detached_inputs = detach_variable(inputs)
# Add non tensor input args
detached_inputs = merge_tensors(tensor_objects=detached_inputs,
non_tensor_objects=ctx.non_tensor_args,
tensor_flags=ctx.tensor_flags)
# Store the current states.
bwd_cpu_rng_state = torch.get_rng_state()
bwd_cuda_rng_state = get_accelerator().get_rng_state()
bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
# Set the states to what it used to be before the forward pass.
torch.set_rng_state(ctx.fwd_cpu_rng_state)
_set_cuda_rng_state(ctx.fwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(ctx.fwd_cuda_rng_state_tracker)
# if PARTITION_ACTIVATIONS:
# current_stream=get_accelerator().current_stream()
# current_stream.wait_stream(transport_stream)
see_memory_usage("In backward checkpointing code before forward", force=False)
with torch.enable_grad():
outputs = ctx.run_function(*detached_inputs)
see_memory_usage("In backward checkpointing code after forward", force=False)
# Set the states back to what it was at the start of this function.
torch.set_rng_state(bwd_cpu_rng_state)
_set_cuda_rng_state(bwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker)
if isinstance(outputs, torch.Tensor):
outputs = (outputs, )
# Filter out non tensor outputs
outputs, _, _ = extract_tensors(all_objects=outputs)
# Construct arguments to autograd.backward().
# This is usually just outputs and grads, but forward() can return tensors that
# are not differentiable.
output_tensors = []
grad_tensors = []
for out, grad in zip(outputs, grads):
if out.requires_grad:
output_tensors.append(out)
grad_tensors.append(grad)
see_memory_usage("In backward checkpointing code before backward", force=False)
torch.autograd.backward(output_tensors, grad_tensors)
# Force clear our stashed tensors to prevent a memory leak in certain scenarios
ctx.deepspeed_saved_tensors = None
ctx.non_tensor_args = None
ctx.tensor_flags = None
see_memory_usage("After backward checkpointing code after backward", force=False)
if PROFILE_TIME:
timers('backward').stop()
timers.log(['backward'])
if SYNCHRONIZE:
get_accelerator().synchronize()
ret_list = [None, None] # first None for ctx
for inp in detached_inputs:
if torch.is_tensor(inp):
ret_list.append(inp.grad)
else:
ret_list.append(None)
return tuple(ret_list)
def non_reentrant_checkpoint(function, *args):
"""This function is union of `torch.utils.checkpoint._checkpoint_without_reentrant` and `CheckpointFunction` in this module
This function is aim to solve the back probagation error raised from all input requires no grad.
* has already been implemented in pytorch for a while, the solution is stable at most time except for jit module mode.
* can help to solve the issue which is hacked by `deepspeed.runtime.pipe.module.PipelineModule._is_checkpointable`
Main modifications compared to the implementation of torch:
1. adapt to the signature of `checkpoint` function in this module
2. solve the non-deterministic by random state management consistent with deepspeed `CheckpointFunction`
3. when there is partition or cpu checkpointing, gather them in the unpack_hook during back probagation
4. make all after backward blocks in the hook which will executed after all leaf nodes backward execution.
5. above 4. is inspired by `torch.autograd.graph.register_multi_grad_hook`, which is only implemented after 2.0.0
"""
global mpu, timers, SYNCHRONIZE, PROFILE_TIME
deepspeed_saved_tensors = None
non_tensor_args = None
tensor_flags = None
def save_args_for_backward(*all_args):
"""keep this function to reduce the modification from original implementation"""
nonlocal deepspeed_saved_tensors, non_tensor_args, tensor_flags
tensor_args, non_tensor_args, tensor_flags = extract_tensors(all_objects=all_args)
deepspeed_saved_tensors = tensor_args
non_tensor_args = non_tensor_args
tensor_flags = tensor_flags
if SYNCHRONIZE:
get_accelerator().synchronize()
if timers is None and PROFILE_TIME:
timers = Timers()
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).start()
global num_layers
global mp_rank, mp_size, mp_group
global contiguous_data_buffers, contiguous_size_buffers
global data_offsets, size_offsets
if mp_rank is None:
if mpu is not None:
if hasattr(mpu, 'get_tensor_model_parallel_rank'):
mp_rank = mpu.get_tensor_model_parallel_rank()
mp_size = mpu.get_tensor_model_parallel_world_size()
mp_group = mpu.get_tensor_model_parallel_group()
else:
mp_rank = mpu.get_model_parallel_rank()
mp_size = mpu.get_model_parallel_world_size()
mp_group = mpu.get_model_parallel_group()
else:
mp_rank = 0
mp_size = 1
mp_group = None
global cuda_device, transport_stream, PARTITION_ACTIVATIONS, buffer_0, buffer_1, buffer_0_offset, buffer_1_offset
if cuda_device is None:
see_memory_usage("First Forward Beginning", force=False)
if dist.get_rank() == 0:
logger.info(f"Activation Checkpointing Information")
logger.info(f"----Partition Activations {PARTITION_ACTIVATIONS}, CPU CHECKPOINTING {CPU_CHECKPOINT}")
logger.info(
f"----contiguous Memory Checkpointing {CONTIGUOUS_CHECKPOINTING} with {num_layers} total layers")
logger.info(f"----Synchronization {SYNCHRONIZE}")
logger.info(f"----Profiling time in checkpointing {PROFILE_TIME}")
cuda_device = get_accelerator().current_device_name()
transport_stream = get_accelerator().Stream(device=cuda_device)
if PARTITION_ACTIVATIONS:
inputs = partition_activations(args, CPU_CHECKPOINT, CONTIGUOUS_CHECKPOINTING)
elif CPU_CHECKPOINT:
inputs = copy_to_device(args, device=torch.device('cpu'), criterion_func=is_activation_to_checkpoint)
# just in case something funky is happening such as reuse of inputs
inputs_cuda = copy_to_device(args, device=cuda_device, criterion_func=is_activation_to_checkpoint)
# Copy the rng states.
fwd_cpu_rng_state = torch.get_rng_state()
fwd_cuda_rng_state = get_accelerator().get_rng_state()
fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
if PARTITION_ACTIVATIONS:
new_args = get_partitioned_activations_for_backward(args, inputs, CONTIGUOUS_CHECKPOINTING)
assert len(new_args) % 2 == 0, f'save_for_backward called with odd number of args, {len(new_args)}'
save_args_for_backward(*new_args)
elif CPU_CHECKPOINT:
new_args = get_cpu_activations_for_backward(args, inputs)
save_args_for_backward(*new_args)
else:
save_args_for_backward(*args)
class Holder():
"""the place holder object used as activations to save memory"""
pass
# weakref seems utilized to discover the tensor deletion before a whole
# forward backward pair loop finished
storage: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
weak_holder_list = []
leaf_tensors = []
backward_visited_leaf_nodes = 0
def checkpoint_pack(tensor_from_forward):
"""used to record the activation order in the `weak_holder_list`
the activation order in holder list is consistent between the first forward and recomputing forward.
* the jit compiled forward will break the order consistency *
"""
res = Holder()
weak_holder_list.append(weakref.ref(res))
# if this is a leaf tensor, save it for backward progression trace
# leaf tensor used to be input or parameters, which is not activations and
# has no memory overhead
if tensor_from_forward.requires_grad and tensor_from_forward.is_leaf:
leaf_tensors.append(tensor_from_forward)
return res
def checkpoint_unpack(holder_from_backward):
"""retrieve the activations from recompute"""
nonlocal deepspeed_saved_tensors, non_tensor_args, tensor_flags
# if this is the first step of backward probagation, recompute the graph and save
# all the activations with the same order as `checkpoint_pack` does
if len(storage) == 0:
unpack_counter = 0
def replay_pack(tensor_from_replay):
"""save recompute activations"""
nonlocal unpack_counter
unpack_counter += 1
if weak_holder_list[unpack_counter - 1]() is None:
return
detached_activations = tensor_from_replay.detach()
storage[weak_holder_list[unpack_counter - 1]()] = detached_activations
return
def replay_unpack(none_value):
"""recompute graph need not to backward"""
raise RuntimeError("You are calling backwards on a tensor that is never exposed.")
global timers
see_memory_usage("In backward", force=False)
# removing pointers to the contiguous buffer memory
# so that they can be garbage collected once the checkpoints
# have been used
if SYNCHRONIZE:
get_accelerator().synchronize()
if PROFILE_TIME:
timers('backward').start()
if CONTIGUOUS_CHECKPOINTING:
global data_offsets, size_offsets
global contiguous_data_buffers, contiguous_size_buffers
for buffers in contiguous_data_buffers:
buffers = []
# frees up all the pointers to the checkpoints except for the ones
# stored by save for backward
contiguous_data_buffers = []
contiguous_size_buffers = []
data_offsets = []
size_offsets = []
see_memory_usage("In backward checkpointing code", force=False)
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError("Checkpointing is not compatible with .grad(), "
"please use .backward() if possible")
global cuda_device, transport_stream, PARTITION_ACTIVATIONS
# gather inputs which is partitioned or checkpointed before first forward
if PARTITION_ACTIVATIONS:
# with get_accelerator().stream(transport_stream):
inputs = gather_partitioned_activations(deepspeed_saved_tensors,
device=cuda_device if CPU_CHECKPOINT else None)
detached_inputs = detach_variable(inputs)
elif CPU_CHECKPOINT:
inputs = move_to_device(deepspeed_saved_tensors, cuda_device, is_activation_to_checkpoint)
detached_inputs = detach_variable(inputs)
else:
inputs = deepspeed_saved_tensors
detached_inputs = detach_variable(inputs)
# Add non tensor input args
detached_inputs = merge_tensors(tensor_objects=detached_inputs,
non_tensor_objects=non_tensor_args,
tensor_flags=tensor_flags)
# Store the current states.
bwd_cpu_rng_state = torch.get_rng_state()
bwd_cuda_rng_state = get_accelerator().get_rng_state()
bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states()
# Set the states to what it used to be before the forward pass.
torch.set_rng_state(fwd_cpu_rng_state)
_set_cuda_rng_state(fwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(fwd_cuda_rng_state_tracker)
see_memory_usage("In backward checkpointing code before forward", force=False)
with torch.enable_grad(), torch.autograd.graph.saved_tensors_hooks(replay_pack, replay_unpack):
_unused = function(*detached_inputs)
see_memory_usage("In backward checkpointing code after forward", force=False)
# Set the states back to what it was at the start of this function.
torch.set_rng_state(bwd_cpu_rng_state)
_set_cuda_rng_state(bwd_cuda_rng_state)
get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker)
deepspeed_saved_tensors = None
non_tensor_args = None
tensor_flags = None
if holder_from_backward not in storage:
raise RuntimeError("Attempt to retrieve a tensor saved by autograd multiple times without checkpoint"
" recomputation being triggered in between, this is not currently supported.")
return storage[holder_from_backward]
def after_backward_hook(_nonuse_grads):
"""the hook registered to all leaf tensors"""
nonlocal leaf_tensors, backward_visited_leaf_nodes
backward_visited_leaf_nodes += 1
if backward_visited_leaf_nodes == len(leaf_tensors):
see_memory_usage("After backward checkpointing code after backward", force=False)
if PROFILE_TIME:
timers('backward').stop()
timers.log(['backward'])
if SYNCHRONIZE:
get_accelerator().synchronize()
with torch.autograd.graph.saved_tensors_hooks(checkpoint_pack, checkpoint_unpack):
outputs = function(*inputs_cuda)
for leaf_tensor in leaf_tensors:
leaf_tensor.register_hook(after_backward_hook)
see_memory_usage("After running forward on the layer", force=False)
if PROFILE_TIME:
timers(FORWARD_GLOBAL_TIMER).stop()
timers.log([FORWARD_GLOBAL_TIMER])
if SYNCHRONIZE:
get_accelerator().synchronize()
all_outputs = []
if torch.is_tensor(outputs):
all_outputs += [outputs]
else:
all_outputs += outputs
if len(all_outputs) == 1:
return all_outputs[0]
else:
return tuple(all_outputs)
def checkpoint(function, *args):
"""Checkpoint a model or part of the model.
This has been directly copied from torch.utils.checkpoint. """
all_outputs = []
CheckpointFunction.apply(function, all_outputs, *args)
if len(all_outputs) == 1:
return all_outputs[0]
else:
return tuple(all_outputs)
def partition_activations_in_checkpoint(partition_activation):
global PARTITION_ACTIVATIONS
PARTITION_ACTIVATIONS = partition_activation
if dist.get_rank() == 0:
logger.info(f"**************Partition Activations {PARTITION_ACTIVATIONS}************")
def set_num_layers(nlayers):
global num_layers
num_layers = nlayers
def reset():
"""Resets memory buffers related to contiguous memory optimizations.
Should be called during eval when multiple forward propagations are
computed without any backward propagation that usually clears these
buffers.
Arguments:
None
Return:
None
"""
if CONTIGUOUS_CHECKPOINTING:
global data_offsets, size_offsets
global contiguous_data_buffers, contiguous_size_buffers
for buffers in contiguous_data_buffers:
buffers = []
# frees up all the pointers to the checkpoints except for the ones
# stored by save for backward
contiguous_data_buffers = []
contiguous_size_buffers = []
data_offsets = []
size_offsets = []
def _configure_using_config_file(config, mpu=None):
global num_layers, PARTITION_ACTIVATIONS, CONTIGUOUS_CHECKPOINTING, \
CPU_CHECKPOINT, SYNCHRONIZE, PROFILE_TIME
config = DeepSpeedConfig(config, mpu=mpu).activation_checkpointing_config
if dist.get_rank() == 0:
logger.info(config.repr())
PARTITION_ACTIVATIONS = config.partition_activations
CONTIGUOUS_CHECKPOINTING = config.contiguous_memory_optimization
num_layers = config.number_checkpoints
CPU_CHECKPOINT = config.cpu_checkpointing
SYNCHRONIZE = config.synchronize_checkpoint_boundary
PROFILE_TIME = config.profile
def _configure_defaults():
global mpu, num_layers, deepspeed_checkpointing_enabled
global PARTITION_ACTIVATIONS, CONTIGUOUS_CHECKPOINTING, \
CPU_CHECKPOINT, SYNCHRONIZE, PROFILE_TIME
PARTITION_ACTIVATIONS = False
CONTIGUOUS_CHECKPOINTING = False
num_layers = False
CPU_CHECKPOINT = False
SYNCHRONIZE = False
PROFILE_TIME = False
deepspeed_checkpointing_enabled = True
def configure(
mpu_,
deepspeed_config=None,
partition_activations=None,
contiguous_checkpointing=None,
num_checkpoints=None,
checkpoint_in_cpu=None,
synchronize=None,
profile=None,
):
"""Configure DeepSpeed Activation Checkpointing.
Arguments:
mpu_: Optional: An object that implements the following methods
get_model_parallel_rank/group/world_size, and get_data_parallel_rank/group/world_size
deepspeed_config: Optional: DeepSpeed Config json file when provided will be used to
configure DeepSpeed Activation Checkpointing
partition_activations: Optional: Partitions activation checkpoint across model parallel
GPUs when enabled. By default False. Will overwrite deepspeed_config if provided
contiguous_checkpointing: Optional: Copies activation checkpoints to a contiguous memory
buffer. Works only with homogeneous checkpoints when partition_activations is enabled.
Must provide num_checkpoints. By default False. Will overwrite deepspeed_config if
provided
num_checkpoints: Optional: Number of activation checkpoints stored during the forward
propagation of the model. Used to calculate the buffer size for contiguous_checkpointing
Will overwrite deepspeed_config if provided
checkpoint_in_cpu: Optional: Moves the activation checkpoint to CPU. Only works with
partition_activation. Default is false. Will overwrite deepspeed_config if provided
synchronize: Optional: Performs get_accelerator().synchronize() at the beginning and end of
each call to deepspeed.checkpointing.checkpoint for both forward and backward pass.
By default false. Will overwrite deepspeed_config if provided
profile: Optional: Logs the forward and backward time for each
deepspeed.checkpointing.checkpoint invocation. Will overwrite deepspeed_config
if provided
Returns:
None
"""
global mpu, num_layers, deepspeed_checkpointing_enabled
global PARTITION_ACTIVATIONS, CONTIGUOUS_CHECKPOINTING, \
CPU_CHECKPOINT, SYNCHRONIZE, PROFILE_TIME
_configure_defaults()
if mpu_ is not None:
mpu = mpu_
if deepspeed_config is not None:
_configure_using_config_file(deepspeed_config, mpu=mpu)
if partition_activations is not None:
PARTITION_ACTIVATIONS = partition_activations
if contiguous_checkpointing is not None:
CONTIGUOUS_CHECKPOINTING = contiguous_checkpointing
if num_checkpoints is not None:
num_layers = num_checkpoints
if checkpoint_in_cpu is not None:
CPU_CHECKPOINT = checkpoint_in_cpu
if synchronize is not None:
SYNCHRONIZE = synchronize
if profile is not None:
PROFILE_TIME = profile
if CONTIGUOUS_CHECKPOINTING:
assert PARTITION_ACTIVATIONS, "Contiguous Checkpointing is only available with partitioned activations. Set partitioned activations to true in deepspeed config"
if CONTIGUOUS_CHECKPOINTING:
assert num_layers is not None, "Must specify the number of layers with contiguous memory checkpointing"
def is_configured():
"""True if deepspeed activation checkpointing has been configured
by calling deepspeed.checkpointing.configure, else returns false
Arguments:
None
Return:
True of configured, else False
"""
return deepspeed_checkpointing_enabled
|