File size: 25,424 Bytes
0cee4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from collections import OrderedDict
import torch
import sys
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from deepspeed import comm as dist
from deepspeed.runtime.constants import PIPE_REPLICATED
from deepspeed.runtime.base_optimizer import ZeROOptimizer
from packaging import version as pkg_version
from deepspeed.git_version_info import version
from deepspeed.runtime.utils import (get_global_norm_of_tensors, clip_tensors_by_global_norm, DummyOptim,
align_dense_tensors, all_gather_dp_groups, is_model_parallel_parameter,
see_memory_usage, graph_process, get_norm_with_moe_layers)
from deepspeed.utils import link_hp_params, lazy_init_hp_params_optimizer_state, fragment_address, groups
from deepspeed.moe.utils import is_moe_param, is_moe_param_group
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank
from deepspeed.checkpoint import enable_universal_checkpoint
from deepspeed.checkpoint.constants import (DS_VERSION, PARTITION_COUNT, BASE_OPTIMIZER_STATE,
SINGLE_PARTITION_OF_FP32_GROUPS, CLIP_GRAD, GROUP_PADDINGS,
PARAM_SLICE_MAPPINGS)
setattr(sys.modules[__name__], 'fragment_address', fragment_address)
class BF16_Optimizer(ZeROOptimizer):
def __init__(self,
init_optimizer,
param_names,
mpu=None,
clip_grad=0.0,
norm_type=2,
allgather_bucket_size=5000000000,
dp_process_group=None,
timers=None,
grad_acc_dtype=None,
graph_harvesting=False,
immediate_grad_update=False,
has_moe_layers=False):
super().__init__()
see_memory_usage('begin bf16_optimizer', force=True)
self.timers = timers
self.optimizer = init_optimizer
self.param_names = param_names
self.using_real_optimizer = not isinstance(self.optimizer, DummyOptim)
assert grad_acc_dtype in [torch.float32, torch.bfloat16
], f"BF16Optimizer: Unsupported gradient accumulation data type: {grad_acc_dtype}"
self.grad_acc_dtype = grad_acc_dtype
self.immediate_grad_update = immediate_grad_update
self.clip_grad = clip_grad
self.norm_type = norm_type
self.mpu = mpu
self.allgather_bucket_size = int(allgather_bucket_size)
self.dp_process_group = dp_process_group
self.dp_rank = dist.get_rank(group=self.dp_process_group)
self.has_moe_layers = has_moe_layers
self.non_expert_gradients = []
self.real_dp_process_group = [dp_process_group for i in range(len(self.optimizer.param_groups))]
if self.has_moe_layers:
self._configure_moe_settings()
# Use torch (un)flatten ops
self.flatten = _flatten_dense_tensors
self.unflatten = _unflatten_dense_tensors
#align nccl all-gather send buffers to 4-bye boundary
self.nccl_start_alignment_factor = 2 # 4-byte alignment/sizeof(fp16) = 2
# Build BF16/FP32 groups
self.bf16_groups = []
self.bf16_groups_flat = []
self.bf16_partitioned_groups = []
self.fp32_groups_flat_partition = []
# Maintain different fp32 gradients views for convenience
self.fp32_groups_gradients = []
self.fp32_groups_gradient_dict = {}
self.fp32_groups_gradients_flat = []
self.fp32_groups_actual_gradients_flat = []
self.fp32_groups_gradient_flat_partition = []
self.fp32_groups_has_gradients = []
self.group_paddings = []
self.graph_harvesting = graph_harvesting
if self.using_real_optimizer:
self._setup_for_real_optimizer()
see_memory_usage('end bf16_optimizer', force=True)
def _configure_moe_settings(self):
assert any(
[is_moe_param_group(group) for group in self.optimizer.param_groups]
), "The model has moe layers, but None of the param groups are marked as MoE. Create a param group with 'moe' key set to True before creating optimizer"
for i, group in enumerate(self.optimizer.param_groups):
if is_moe_param_group(group):
assert all([is_moe_param(param)
for param in group['params']]), "All params in MoE group must be MoE params"
self.real_dp_process_group[i] = groups._get_expert_data_parallel_group(group['name'])
self.expert_gradients = {}
if self.has_moe_layers:
for key in groups._get_expert_data_parallel_group_dict().keys():
self.expert_gradients[key] = []
def _setup_for_real_optimizer(self):
self.partition_count = [dist.get_world_size(group=pg) for pg in self.real_dp_process_group]
for i, param_group in enumerate(self.optimizer.param_groups):
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i])
see_memory_usage(f'before initializing group {i}', force=True)
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
# grab the original list
trainable_parameters = [param for param in param_group['params'] if param.requires_grad]
self.bf16_groups.append(trainable_parameters)
# create flat bf16 params
self.bf16_groups_flat.append(
self._flatten_dense_tensors_aligned(self.bf16_groups[i],
self.nccl_start_alignment_factor * real_dp_world_size))
# Make bf16 params point to flat tensor storage
self._update_storage_to_flattened_tensor(tensor_list=self.bf16_groups[i],
flat_tensor=self.bf16_groups_flat[i])
# divide flat weights into equal sized partitions
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size
bf16_dp_partitions = [
self.bf16_groups_flat[i].narrow(0, dp_index * partition_size, partition_size)
for dp_index in range(real_dp_world_size)
]
self.bf16_partitioned_groups.append(bf16_dp_partitions)
# create fp32 params partition
self.fp32_groups_flat_partition.append(bf16_dp_partitions[partition_id].clone().float().detach())
self.fp32_groups_flat_partition[i].requires_grad = True
num_elem_list = [t.numel() for t in self.bf16_groups[i]]
# create fp32 gradients
fp32_flat_buffer = torch.zeros_like(self.bf16_groups_flat[i], dtype=self.grad_acc_dtype)
self.fp32_groups_gradients_flat.append(fp32_flat_buffer)
if self.has_moe_layers and is_moe_param_group(param_group):
self.expert_gradients[param_group['name']].append(fp32_flat_buffer)
else:
self.non_expert_gradients.append(fp32_flat_buffer)
# track individual fp32 gradients for entire model
fp32_gradients = self._split_flat_tensor(flat_tensor=self.fp32_groups_gradients_flat[i],
num_elem_list=num_elem_list)
self.fp32_groups_gradients.append(fp32_gradients)
self.fp32_groups_gradient_dict[i] = fp32_gradients
# flat tensor corresponding to actual fp32 gradients (i.e., minus alignment padding)
length_without_padding = sum(num_elem_list)
self.fp32_groups_actual_gradients_flat.append(
torch.narrow(self.fp32_groups_gradients_flat[i], 0, 0, length_without_padding))
# flat tensor corresponding to gradient partition
self.fp32_groups_gradient_flat_partition.append(
torch.narrow(self.fp32_groups_gradients_flat[i], 0, partition_id * partition_size, partition_size))
# track fp32 gradient updates
self.fp32_groups_has_gradients.append([False] * len(self.bf16_groups[i]))
# Record padding required for alignment
if partition_id == dist.get_world_size(group=self.real_dp_process_group[i]) - 1:
padding = self.bf16_groups_flat[i].numel() - length_without_padding
else:
padding = 0
self.group_paddings.append(padding)
# update optimizer param groups to reference fp32 params partition
param_group['params'] = [self.fp32_groups_flat_partition[i]]
see_memory_usage(f'after initializing group {i}', force=True)
see_memory_usage('before initialize_optimizer', force=True)
self.initialize_optimizer_states()
see_memory_usage('end initialize_optimizer', force=True)
if self.immediate_grad_update:
self.create_grad_acc_hooks()
# Need optimizer states initialized before linking lp to optimizer state
self._link_all_hp_params()
self._hp_optimizer_states_linked = False
self._enable_universal_checkpoint()
self._param_slice_mappings = self._create_param_mapping()
def _enable_universal_checkpoint(self):
for lp_param_group in self.bf16_groups:
enable_universal_checkpoint(param_list=lp_param_group)
def _create_param_mapping(self):
param_mapping = []
for i, _ in enumerate(self.optimizer.param_groups):
param_mapping_per_group = OrderedDict()
for lp in self.bf16_groups[i]:
if lp._hp_mapping is not None:
lp_name = self.param_names[lp]
param_mapping_per_group[lp_name] = lp._hp_mapping.get_hp_fragment_address()
param_mapping.append(param_mapping_per_group)
return param_mapping
def _link_all_hp_params(self):
for i, _ in enumerate(self.optimizer.param_groups):
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i])
# Link bf16 and fp32 params in partition
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size
flat_hp_partition = self.fp32_groups_flat_partition[i]
link_hp_params(lp_param_list=self.bf16_groups[i],
flat_hp_partition=flat_hp_partition,
gradient_dict=self.fp32_groups_gradient_dict,
offload_gradient_dict=None,
use_offload=False,
param_group_index=i,
partition_start=partition_id * partition_size,
partition_size=partition_size,
dp_group=self.real_dp_process_group[i])
def _lazy_init_hp_params_optimizer_state(self):
if not self._hp_optimizer_states_linked:
for i, _ in enumerate(self.optimizer.param_groups):
lazy_init_hp_params_optimizer_state(self.bf16_groups[i], self.fp32_groups_flat_partition[i],
self.optimizer.state)
self._hp_optimizer_states_linked = True
def initialize_optimizer_states(self):
"""Take an optimizer step with zero-valued gradients to allocate internal
optimizer state.
This helps prevent memory fragmentation by allocating optimizer state at the
beginning of training instead of after activations have been allocated.
"""
for param_partition, grad_partition in zip(self.fp32_groups_flat_partition,
self.fp32_groups_gradient_flat_partition):
# In case of grad acc dtype different than FP32, need to cast to high precision.
param_partition.grad = grad_partition.to(
param_partition.dtype) if grad_partition.dtype != param_partition.dtype else grad_partition
if self.grad_acc_dtype is not torch.float32:
for param_partition in self.fp32_groups_flat_partition:
param_partition.grad = None
self.clear_hp_grads()
def _split_flat_tensor(self, flat_tensor, num_elem_list):
assert sum(num_elem_list) <= flat_tensor.numel()
tensor_list = []
offset = 0
for num_elem in num_elem_list:
dense_tensor = torch.narrow(flat_tensor, 0, offset, num_elem)
tensor_list.append(dense_tensor)
offset += num_elem
return tensor_list
def _update_storage_to_flattened_tensor(self, tensor_list, flat_tensor):
updated_params = self.unflatten(flat_tensor, tensor_list)
for p, q in zip(tensor_list, updated_params):
p.data = q.data
def _flatten_dense_tensors_aligned(self, tensor_list, alignment):
return self.flatten(align_dense_tensors(tensor_list, alignment))
@torch.no_grad()
def step(self, closure=None):
if closure is not None:
raise NotImplementedError(f'{self.__class__} does not support closure.')
non_expert_grads_for_norm, expert_grads_for_norm = self.get_grads_for_norm()
non_expert_groups_norm = get_global_norm_of_tensors(input_tensors=non_expert_grads_for_norm,
mpu=self.mpu,
norm_type=self.norm_type,
use_graph=self.graph_harvesting)
all_groups_norm = non_expert_groups_norm
if self.has_moe_layers:
all_groups_norm = get_norm_with_moe_layers(non_expert_groups_norm,
mpu=self.mpu,
expert_tensors=expert_grads_for_norm,
norm_type=self.norm_type)
self._global_grad_norm = all_groups_norm
assert all_groups_norm > 0.
if self.clip_grad > 0.:
clip_tensors_by_global_norm(input_tensors=self.get_grads_for_norm(for_clipping=True),
max_norm=self.clip_grad,
global_norm=all_groups_norm,
mpu=self.mpu,
use_graph=self.graph_harvesting)
self.optimizer.step()
# We need to link optimizer state after the first step() call
self._lazy_init_hp_params_optimizer_state()
self.update_lp_params()
self.clear_hp_grads()
def backward(self, loss, update_hp_grads=True, clear_lp_grads=False, **bwd_kwargs):
"""Perform a backward pass and copy the low-precision gradients to the
high-precision copy.
We copy/accumulate to the high-precision grads now to prevent accumulating in the
bf16 grads after successive backward() calls (i.e., grad accumulation steps > 1)
The low-precision grads are deallocated during this procedure.
"""
self.clear_lp_grads()
loss.backward(**bwd_kwargs)
if update_hp_grads:
self.update_hp_grads(clear_lp_grads=clear_lp_grads)
@torch.no_grad()
def _update_hp_grad(self, lp, group_idx, param_idx, clear_lp_grads):
if lp.grad is None:
return
hp_grad = self.fp32_groups_gradients[group_idx][param_idx]
assert hp_grad is not None, \
f'high precision param has no gradient, lp param_id = {id(lp)} group_info = [{group_idx}][{param_idx}]'
hp_grad.data.add_(lp.grad.data.to(hp_grad.dtype).view(hp_grad.shape))
lp._hp_grad = hp_grad
self.fp32_groups_has_gradients[group_idx][param_idx] = True
# clear gradients
if clear_lp_grads:
lp.grad.zero_()
@torch.no_grad()
def _update_hp_grads_func(self, clear_lp_grads=False):
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
self._update_hp_grad(lp, i, j, clear_lp_grads)
@torch.no_grad()
def update_hp_grads(self, clear_lp_grads=False):
if self.immediate_grad_update:
return
if self.graph_harvesting:
graph_process(False, self._update_hp_grads_func, clear_lp_grads)
else:
self._update_hp_grads_func(clear_lp_grads)
#cpu op
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
if lp.grad is None:
continue
self.fp32_groups_has_gradients[i][j] = True
@torch.no_grad()
def get_grads_for_reduction(self):
if self.has_moe_layers:
return self.non_expert_gradients, self.expert_gradients
return self.non_expert_gradients, {}
@torch.no_grad()
def get_grads_for_norm(self, for_clipping=False):
"""
Returns:
tuple[list[Tensor], dict[ep_name, List[Tensor]] | list:
If for_clipping, return all gradients.
Otherwise, separate and return dict of expert_grad and list of non_expert_grad
"""
# (grads, expert_group_name)
expert_grads_for_norm = {}
# grads
non_expert_grads_for_norm = []
all_grads_for_clip = []
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=self.mpu)
assert len(self.bf16_groups) == len(self.optimizer.param_groups)
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
if not for_clipping:
if hasattr(lp, PIPE_REPLICATED) and lp.ds_pipe_replicated:
continue
# skip duplicated parameters. perform norm only on cards with tp_rank=0.
# non-duplicated parameters include:
# - Parameters with tp: Use allreducesum of mp_group.
# - Moe Parameters with ep: Use allreducesum of ep_group.
if not (tensor_mp_rank == 0 or is_model_parallel_parameter(lp) or is_moe_param(lp)):
continue
if not self.fp32_groups_has_gradients[i][j]:
continue
if not for_clipping:
param_group = self.optimizer.param_groups[i]
if self.has_moe_layers and is_moe_param_group(param_group):
if param_group['name'] not in expert_grads_for_norm:
expert_grads_for_norm[param_group['name']] = []
expert_grads_for_norm[param_group['name']].append(self.fp32_groups_gradients[i][j])
else:
non_expert_grads_for_norm.append(self.fp32_groups_gradients[i][j])
else:
all_grads_for_clip.append(self.fp32_groups_gradients[i][j])
if not for_clipping:
return non_expert_grads_for_norm, expert_grads_for_norm
return all_grads_for_clip
@torch.no_grad()
def update_lp_params(self):
for i, (bf16_partitions,
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
bf16_partitions[partition_id].data.copy_(fp32_partition.data)
# print_rank_0(f'update_lp_params {i=} {partition_id=}', force=True)
# if i == 0:
# print_rank_0(f'{fp32_partition[:10]=}', force=True)
all_gather_dp_groups(groups_flat=self.bf16_groups_flat,
partitioned_param_groups=self.bf16_partitioned_groups,
dp_process_group=self.real_dp_process_group,
start_alignment_factor=self.nccl_start_alignment_factor,
allgather_bucket_size=self.allgather_bucket_size)
def clear_hp_grads(self):
for flat_gradients in self.fp32_groups_gradients_flat:
flat_gradients.zero_()
for i, group in enumerate(self.fp32_groups_gradients):
self.fp32_groups_has_gradients[i] = [False] * len(group)
def clear_lp_grads(self):
# using zero_() fixed memory address for graph replay
set_to_none = False if self.graph_harvesting else True
zero_grads_list = []
for group in self.bf16_groups:
for param in group:
if set_to_none:
param.grad = None
elif param.grad is not None:
if param.grad.grad_fn is not None:
param.grad.detach_()
zero_grads_list.append(param.grad)
if not set_to_none and len(zero_grads_list) > 0:
torch._foreach_zero_(zero_grads_list)
def state_dict(self):
state_dict = {}
state_dict[CLIP_GRAD] = self.clip_grad
state_dict[BASE_OPTIMIZER_STATE] = self.optimizer.state_dict()
state_dict[SINGLE_PARTITION_OF_FP32_GROUPS] = self.fp32_groups_flat_partition
state_dict[GROUP_PADDINGS] = self.group_paddings
state_dict[PARTITION_COUNT] = self.partition_count
state_dict[DS_VERSION] = version
state_dict[PARAM_SLICE_MAPPINGS] = self._param_slice_mappings
return state_dict
# Restore base optimizer fp32 weights bfloat16 weights
def _restore_from_bit16_weights(self):
for i, group in enumerate(self.bf16_groups):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
for bf16_partitions, fp32_partition in zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition):
fp32_partition.data.copy_(bf16_partitions[partition_id].data)
def refresh_fp32_params(self):
self._restore_from_bit16_weights()
def load_state_dict(self,
state_dict_list,
checkpoint_folder,
load_optimizer_states=True,
load_from_fp32_weights=False,
load_serial=None):
if checkpoint_folder:
self._load_universal_checkpoint(checkpoint_folder, load_optimizer_states, load_from_fp32_weights)
else:
self._load_legacy_checkpoint(state_dict_list, load_optimizer_states, load_from_fp32_weights)
def _load_legacy_checkpoint(self, state_dict_list, load_optimizer_states=True, load_from_fp32_weights=False):
dp_rank = dist.get_rank(group=self.dp_process_group)
current_rank_sd = state_dict_list[dp_rank]
ckpt_version = current_rank_sd.get(DS_VERSION, False)
assert ckpt_version, f"Empty ds_version in checkpoint, not clear how to proceed"
ckpt_version = pkg_version.parse(ckpt_version)
self.clip_grad = current_rank_sd.get(CLIP_GRAD, self.clip_grad)
if load_optimizer_states:
print(f"_load_legacy_checkpoint current_rank_sd[BASE_OPTIMIZER_STATE]")
self.optimizer.load_state_dict(current_rank_sd[BASE_OPTIMIZER_STATE])
if load_from_fp32_weights:
for current, saved in zip(self.fp32_groups_flat_partition,
current_rank_sd[SINGLE_PARTITION_OF_FP32_GROUPS]):
src_tensor = _get_padded_tensor(saved, current.numel())
current.data.copy_(src_tensor.data)
if load_optimizer_states:
self._link_all_hp_params()
def _load_universal_checkpoint(self, checkpoint_folder, load_optimizer_states, load_from_fp32_weights):
self.load_hp_checkpoint_state_from_checkpoint_dir("bf16_groups", checkpoint_folder)
def _load_global_state(self, sd):
pass
@property
def param_groups(self):
"""Forward the wrapped optimizer's parameters."""
return self.optimizer.param_groups
def accumulate_hp_grads_and_remove_lp(self, lp_param, group_idx, param_idx):
assert self.immediate_grad_update
self._update_hp_grad(lp_param, group_idx, param_idx, clear_lp_grads=True)
def create_grad_acc_hooks(self):
self.grad_accs = []
for i, param_group in enumerate(self.bf16_groups):
for j, param in enumerate(param_group):
if param.requires_grad:
def wrapper(param, i, j):
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]
def accumulate_hp_grads_and_remove_lp(*notneeded):
self.accumulate_hp_grads_and_remove_lp(param, i, j)
grad_acc.register_hook(accumulate_hp_grads_and_remove_lp)
self.grad_accs.append(grad_acc)
wrapper(param, i, j)
def _get_padded_tensor(src_tensor, size):
if src_tensor.numel() >= size:
return src_tensor
padded_tensor = torch.zeros(size, dtype=src_tensor.dtype, device=src_tensor.device)
slice_tensor = torch.narrow(padded_tensor, 0, 0, src_tensor.numel())
slice_tensor.data.copy_(src_tensor.data)
return padded_tensor
|